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Abstract Distributed manipulation devices make use of a large number of ac-
tuators, organized in array fashion, to manipulate a small number of
parts. Inspired by minimalism we look at a complementary question:
can a device with few degrees of actuation freedom be used to exibly
manipulate a large number of parts? In previous publications we have
shown that a single horizontally-vibrating plate is just such a device.
This suggests that actuator count can be traded for control complexi-
ty. In this paper we review our theory of minimalist manipulation and
describe implementation solutions towards a working prototype.

1 INTRODUCTION

Distributed manipulation devices make use of a large number of ac-
tuators, organized in array fashion, to manipulate a small number of
parts (Luntz et al., 1998; Kavraki, 1997; B�ohringer et al., 1998). In-
spired by minimalism in robotics (Canny and Goldberg, 1994), in our
own research we have looked at a complementary question: can a device
with few degrees of actuation freedom be used to independently manip-
ulate a large number of parts? The well-known bowl feeder (Boothroyd,
1991) achieves just that at the expense of non-programmability, i.e., its
function { e.g., part presentation at known orientation { is determined
once and for all by its design.
In previous publications (Reznik and Canny, 1998a; Reznik and Can-

ny, 1998b; Reznik and Canny, 1998c) we have shown that, surprisingly, a
programmable parallel manipulation device { a Universal Planar Manip-
ulator (UPM) { can be built out of a single at plate. In the approach
proposed, a horizontally-vibrating plate manipulates (i.e., translates and
rotates) parts via frictional interactions (of the sliding type) with the lat-
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ter. Perhaps the simplest form of this type of manipulation is rectilinear
part feeding. In (Reznik and Canny, 1998a) we show that by introduc-
ing pump-like asymmetries on horizontal vibrations of a at plate, parts
placed on its surface are propelled forward at a well-known speed. Here
we use similar friction-based actuation principles to achieve parallel part
manipulation.

The parallel manipulation problem we consider is that of translating
and/or rotating multiple parts along independent trajectories, e.g., as
required by a high-level task such as part presentation, sorting, or assem-
bly/mating. Here we ignore part rotation, focusing on translation only
(part orientation can be achieved under the same method, see (Reznik
and Canny, 1998a)). The basic problem solved is to compute a suitable
closed motion of the plate which creates \correct" frictional forces un-
der each part. I.e., friction averaged over the entire motion causes each
part to move a discrete step along the part's independent trajectory. If
this procedure is iterated over quickly, smooth parallel manipulation is
achieved.

An important contribution has been to show that a sequence of plate
rotations about a known set of centers is just such a desired closed
motion (Reznik and Canny, 1998c). Each iteration of the manipulation
algorithm reduces to (i) locating parts, (ii) obtaining the desired steps,
(iii) computing the duration of each rotation, and (iv) executing the
rotation.

An important issue is that the current approach requires that parts'
positions be known at all times, e.g., through image sensing. Indeed, this
precludes open-loop, sensorless manipulation, which has been recently
investigated as an application for distributed-manipulation devices.

The main contribution of this paper to the �eld of distributed manip-
ulation is to show that device complexity (indeed actuator count) can
be dramatically reduced and traded for more sophisticated control.

1.1 RELATED WORK

A number of researchers have studied manipulation devices based on
a single horizontal plate. In (Hayward et al., 1995), vertical oscillations
of a plate are used to trigger resonances on coins so as to make them stay
upright. In (B�ohringer et al., 1995), the nodes of a vibrating plate are
used to gather pellets and orient polygonal objects. In (Swanson et al.,
1995), closed horizontal motions of a at plate are used to \ratchet" a
part of known shape to a desired �nal orientation.

One researcher has reported experimental results utilizing our method
in the simpler case of parts feeding (Quaid, 1999). Another researcher
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has designed a distributed manipulation device (Frei and Wiesendanger,
1999) based on sliding friction actuators.
This paper is organized as follows: in Section 2 we concisely review

the theory behind our manipulation algorithm. In Section 3 we address
practical implementation issues in building a prototype of our device. In
Section 4 we present preliminary experimental results. Conclusions are
presented in Section 5.

2 REVIEW

2.1 THE MANIPULATION ALGORITHM

The manipulation problem being addressed is illustrated in Figure 1(a).
N parts lie at known positions Pi; i = 1: : :N within a bounded area
of the plane. A desired small, straight motion �Pi = (�P x

i ;�P
y
i )

T

is prescribed for each part, e.g., along a trajectory associated with a
high-level task such as part mating, sorting, etc. De�ne a set of points
Cj; j = : : :M , M�2N in the plane, called centers of rotation (see be-
low).
Through friction (see below), our manipulation algorithm can alter

parts' positions via a special motion primitive: parts can be \told" to
rotate a constant distance d about any of the Cj 's. This is unlike a
rigid rotation for which part's displacements would be proportional to
their distance from C. We consider d suÆciently small so the primitive
rotation is approximately straight and along the tangent, as shown in
Figure 1(b). This primitive causes parts to ow along a vector �eld
�C = (�xC ; �

y
C)

T de�ned as:

�C =
(P �C)?

jjP � Cjj (1)

Note that at any point P , �C is unit and perpendicular to P � C. It
can be shown that the family of these �elds is not closed under addition,
i.e., f�Cj

g; j = 1: : :M will, in general, span an M -dimensional space.
Compare this with the linear space of rigid rotations which is closed at
dimension 3. (Reznik and Canny, 1998b).
De�ne a set of scalars dj ; j = 1: : :M . De�ne �P 0

i as part i's net dis-
placement after it has owed a distance dj along �Cj

, sequentially, for
j = 1: : :M . With the dj 's small, the concatenation of ows is approxi-
mately equal to their sum (i.e., we ignore second- and higher-order terms
of the Taylor expansion), and write a linear expression for the �P 0

i :
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Figure 1 (a) The planar manipulation problem: N parts Pi need to execute a motion
�Pi, e.g., along trajectories �i speci�ed by some high-level task (assembly, sorting,
etc.). A set of M points Cj is pre-speci�ed about which the parts can execute a
special type of rotation (see below). In the picture, N = 2 and M = 4. (b) The
non-linear rotation primitive used by the manipulation algorithm: all parts Pi ow
tangentially with respect to C by a speci�ed d.
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�P 0

i =
MX
j=1

dj�ij; i = 1: : :N (2)

where �ij is simply �Cj
evaluated at Pi. The above can be expressed

succinctly as the following linear system:

�P = �:d (3)

With:

�P =

2
4 �P x

i

- - - - -
�P y

i

3
5
2N�1

� =

2
64

�xij
- - - - -
�yij

3
75
2N�M

d = [dj ]M�1

The manipulation algorithm can be summarized as follows:

1. Obtain (e.g., from sensors) current part positions Pi

2. Obtain (e.g., from task) the desired part translations �Pi

3. Solve Equation 3 for d, i.e., compute ��1:�P

4. Rotate parts dj about Cj, sequentially, for j = 1: : :M

5. Repeat

After each sequence of rotations, we expect:

�P 0

i
�= �Pi; i = 1: : :N

Visualization of the concepts discussed in this Section is provided in
Figures 2 and 3.

2.2 TIME-ASYMMETRIC MOTION

Consider a horizontal surface S constrained to move along x. Let the
surface's motion be periodic, with velocity pro�le �s(t), �s(t) = �s(t+T ).
Consider a part P of mass m lying on S, with velocity �p. Assume S's
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Figure 2 Race Track Experiment: three parts are allowed to \race" simultaneously
(i.e., ow) along a non-linear rotation �eld. Their initial positions are all along a line
directly to the right of the center of rotation, which is located at the lower left corner
of the �eld. Four consecutive snapshots of the motion are shown. As expected, the
inner parts advance more rapidly than the outer ones.
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Figure 3 Four snapshots of a 2-part parallel manipulation problem: in (a) two parts
are shown lying at starting locations S1 and S2; the goal is to move them to �nal
locations F1 and F2. Four centers of rotation Cj ; j = 1: : :4 are speci�ed, each
at the corners of a square workspace. The rotations will take place starting with
C1, in counterclockwise order. Snapshots (a) through (d) show the parts' motions
incrementally, after each rotation. Intermediate positions are labeled 1 through 4,
and connected by a polygonal line. (d) Part's �nal positions (labeled 4) deviate from
the intended destinations F1 and F2. This error was made intentionally large by
prescribing large desired steps for each part.
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acceleration relative to P is high enough so that (i) the part is always
sliding on S and (ii) the part's speed �p is constant within one cycle,
i.e., frictional forces are negligible compared to inertia. The average
Coulomb friction �f1d applied to the part per cycle is given by:

�f1d =
�mg

T

Z T

0

sgn[�s(t)� �p] dt (4)

De�ne t+ as the duration of positive �s(t)� �p within one cycle. It can
be shown (Reznik and Canny, 1998a) that:

�f1d = �mg(
2t+

T
� 1) (5)

With t+ > T=2, �f1d is positive, and the part will feed. In (Reznik and
Canny, 1998a), we considered �s(t) of the form:

�s(t) = cos(wt)� 1

2
cos(2wt) (6)

This particular velocity waveform was picked because it contains only
two harmonics and delivers a large �f1d relative to its peak acceleration
(Reznik and Canny, 1998a). In particular, for �p small, it can be shown
that �f1d �= 0:24�mg, denoted �f0.

Consider now a surface S which is constrained to rotate about a �xed
point C. Let ws(t) represent the periodic angular velocity of S about C.
Let ws(t) be of the form of Equation 6. Then for a part resting (jj�pjj =
0) at position P on S, the surface will apply �f0 average force along
(P �C)?. Assuming the Coulomb model of sliding friction applies, over
a time �t, the part will displace d / �t2, regardless of its distance from
C (in fact, near C tangential accelerations are too small and the part
won't slide). The moral is: vibratory rotation can be used to synthesize
the \non-linear rotation primitive" described in Section 2.1.

3 PRACTICAL CHALLENGES &
SOLUTIONS

3.1 ACTUATION KINEMATICS

One way to accomplish the oscillatory surface motion prescribed in
Section 2.2 is to have the surface's three dof's (x, y, and �) move in phase
with velocities as in Equation 6. Note that the instantaneous velocity of
a rigid body in the plane is related to its instantaneous center of rotation
by the following map (Craig, 1989):
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2
4 cx
cy
w

3
5 =

2
64
� _y= _�

_x= _�
_�

3
75 (7)

The actuation kinematics illustrated in Figure 4 is designed to apply
forces along the table's 3 dof's so that C can be easily chosen. As
shown, the plate is positioned at the center of a working area. Four
linear actuators are used to apply forces to the each of the plate's sides.
Shafts connect the table to the motor, allowing the latter to both push
and pull on the former. Shafts are sti� along the actuation direction and
compliant perpendicularly.
Let X1;X2; Y1; Y2 denote the force applied to the table the motor

positioned to the left, right, bottom, and top of the table, respectively,
as shown in Figure 4(a). At the operating frequencies, overall table
displacements will be small, so we can decouple cross-talk between dof's.
Namely, the table will tend to rotate clockwise if motors at opposite sides
push (or pull) in tandem, while the table will tend to translate if a given
motor pushes while the one on the opposite side pulls (or vice versa).
This can be expressed by the following set of equations which relates
applied forces to the resultants along the plate's 3 dof's:

fx = X1 �X2

fy = Y1 � Y2

�� = r[(Y1 + Y2)� (X1 +X2)] (8)

where r denotes the table's center distance to the actuation point on
each side. In Figure 4(b), a more space eÆcient (and kinematically
equivalent) arrangement of motors and table is shown, in which the
position (and force signs) of X2 and Y2 are changed.
We will model the o�-axis shaft compliances as linear damped springs.

If input forces are well above resonance, inertial forces dominate both
spring and damping forces, so that the velocity along each axis is simply
the time integral of the applied external force. So let each motor apply
a force of the type:

f(t) = cos(wt)� sin(2wt) (9)

scaled by chosen constants X1;X2; Y1; Y2. Then, because the map in (8)
is linear, the force applied to the table along each of its dofs will also be
of this form, so that the resulting integrated velocity will be as desired:
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Figure 4 The actuation kinematics: (a) Four linear actuators, labeled Xi; Yi; i = 1; 2,
apply force to an individual side of the table through a shaft, attached at a distance r
from the center of the table. Shafts are sti� along the driving direction and compliant
perpendicularly. In the �gure, Y1's shaft is shown sti� along y and compliant x. (b)
A more space-eÆcient arrangement of motors is shown, along with side views of the
table; these show weight-supporting exible rods under the table (also present in -a-).
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Using Equations 7 and 8, we can choose X1;X2; Y1; Y2 to place C at
a desired spot and scale the angular velocity about it.

3.2 SIGNAL GENERATION AND COR
VISUALIZATION

We use voice coils (BEI Kimco Magnetic Systems, 1999) for each
linear actuator. These devices respond with force along the driving axis
proportionally to the current owing through them. We built a dedicated
circuit to generate the motor waveforms as de�ned in Equation 9; a
block diagram of the signal-generation hardware is shown in Figure 5.
Two microcontrollers (Microchip Catalog, 1996) running appropriate
�rmware produce a total of four independent analog signals; each signal
is power ampli�ed and sent to a motor. A host PC communicates with
the board via the parallel port. The microcontroller �rmware allows for
the exible calibration of relative phase and amplitude between the 1st
and 2nd harmonic components in Equation 9, and for the turning on
and o� of signals sent to motors, with chosen scaling amplitudes X1,
X2, Y1, and Y2.
Instead of calculating C based on a set of known dynamic parameter-

s (input forces, plate mass and geometry, motors' force constants), we
took a reverse-engineering approach. We installed accelerometers (Ana-
log Devices Catalog, 1999) at two opposite corners of the plate (actually
glued underneath). Each sensor provides two analog measurements cor-
responding to the acceleration at two perpendicular axes.
In Appendix 5 we show that by knowing the rigid velocities v1 and

v2 at two distinct points p1 and p2 of a moving plate (e.g., two opposite
corners, p1 = �p2) we can determine the plate's instantaneous center of
rotation and angular velocity:

jwj =
jjv2 � v1jj
2jjr1jj (11)

C =
(v1 + v2)

?

2w
(12)

There are two problems with the above: (1) the sensors recover ac-
celeration, and not velocity; (2) sensor data is noisy. To address (1)
we simply state that under sinusoidal excitation, the RMS velocity will
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be proportional to the RMS acceleration, independently for the 1st and
2nd harmonic components. Speaking of RMS, this suggests a solution
for (2), i.e., rather than computing C and w based on instantaneous ac-
celeration readings we do that based on average amplitudes over a large
number of sampled cycles.

Figure 5 shows the 11-bit A/D converter used to sample the four
accelerometer signals simultaneously. This is currently done at a rate
of 5 KHz. Samples are passed to the PC via the parallel port in real-
time. One such sequence of samples is shown in Figure 6(a). Since
the force frequency w is known, the least-squares amplitude and phase
of the signal are recovered by dotting the sensor samples with the four
orthogonal functions cos(wt), sin(wt), cos(2wt) and sin(2wt) (essentially
a DFT (Haykin, 1989)), yielding coeÆcients c1, s1, c2, s2, i.e., we �t the
following \model" acceleration a(t) to our data:

a(t) = c1 cos(wt) + s1 sin(wt)

+ c2 cos(2wt) + s2 sin(2wt) (13)

which we express succinctly as a(t) = [c1; s1; c2; s2]. A well-registered
least-squares �t to the data in Figure 6(a) is shown in Figure 6(b). To
visualize the least squares-�t velocity waveform, we simply integrate
Equation 13, obtaining an identical waveform expressed as:

v(t) =
1

w
[�s1; c1;�s2

2
;
c2
2
] (14)

This is used to generate the velocity waveform shown in Figure 13.
Real-time visualization of v(t) allows the user to �ne tune relative phase
and amplitude parameters between �rst and second harmonic to com-
pensate for frequency dependent phase and amplitude response (ideally,
phase is at and amplitude roll-o� is as 1=w when w >> w0, however a
bit of pre-compensation is always needed).

The least-squares �t recover unsigned amplitudes to the sinusoidal
accelerations along each of the four probed axes. To assign directions to
each of these vectors we need to consider the phase relationship between
the �rst and second harmonic of each acceleration signal. For a 1d
acceleration pro�le of the form cos(t)+cos(2t+�), the average force will
be positive i� � 2 (0; �) (Reznik and Canny, 1998a). In Appendix 1, we
shown that this corresponds to the following expression in terms of the
four free parameters in Equation 13:

sgn[force] = sgn[2s1c1c2 + s2(s
2
1 � c21)] (15)
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Figure 5 Block diagram of the signal generation and acceleration acquisition hard-
ware: two microcontrollers (picA and picB) generate four independent PWM signals.
These are low-pass �ltered and power-ampli�ed, and then applied to each motor.
Two 2-axis accelerometers are glued under opposite corners of the table. The four
acceleration readings are pre-ampli�ed and input to a 4-channel, 11-bit A/D, whose
sampling is controlled by one of the PICs. The PC can send commands and/or read
samples from the A/D via a parallel port interface.
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(a)
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Figure 6 The waveform �tting process: (a) Samples coming from one sensed axis;
(b) Least-squares �t (shown solid) and original samples (shown dotted); (c) Least-
squares �t (shown dotted) and closed-form integral, i.e., the �tted velocity signal
(shown solid).
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3.3 SYNTHESIZING SCALED
DISPLACEMENT FIELDS

Consider a surface rotating periodically about point C with angular
velocity w(t) as in Equation 6. Consider N parts Pi lying on S at
rest. With enough motor power the amplitude of w(t) can be made
high enough so that parts velocities �p are negligible compared to the
peak tangential velocity at the part's locations, call it �max.Under sliding
Coulomb friction, parts will experience and average tangential force per
cycle of �f1d = �f0, as mentioned above.
To simplify control, we make the following key assumptions: (i) A

desired displacement �eld will be generated by a �nite-duration pulse.
(ii) At the beginning of the pulse all parts will have zero velocity. To
ensure this, each pulse will be preceded by a suÆciently long rest phase.
(iii) By keeping all parts' velocities negligible with respect to the peak
of w(t)�rmin, where rmin = minifPi � Cg, all parts will accelerate by
the exact same amount, and that amount will be linearly proportional
to the pulse's length.
To avoid impulse-response ringing, we will initiate (resp. terminate)

the pulse with smooth attack (resp. decay) phases, of identical duration.
The pulse's middle part, called its sustain phase will be of a much higher
duration S. These concepts are illustrated in Figure 8. The �nal desired
displacement d for all parts Pi will be proportional to S

2, i.e.:

S /
p
d

The signal-generation hardware allows for the easy tuning of attack/decay
and sustain durations shaping of the output waveform. Oscilloscope pho-
tographs showing actual output are reproduced in Figure 7.

3.4 TRACKING PARTS

A camera is placed a few feet above the table pointing downward at
the latter's center. The ground is black, the table is white and the parts
are pennies painted black.
The �rst step is to determine the table's rotation and translation

relative to the image. This is a one-time operation, done prior to the
task, given that the table itself moves negligibly when it vibrates. We
compute the table's edge map using standard procedures (Russell and
Norvig, 1995). Each edge in the image is then hashed by its distance to
the image's center and angle onto a 2d Hough-vote array (Russell and
Norvig, 1995). Edges making up the table's four sides will cluster at
four locations on the Hough-array. Each of the Hough peaks gives rise
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(a)

(b)

(c)
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Figure 7 Waveform shaping: (a) four cycles of the original velocity waveform sin(t)+
cos(2t)=2; (b) the attack/sustain/decay envelope; (c) the shaped waveform, i.e., -
a- multiplied by -b-; (d) the envelope superimposed on the shaped wave, showing
registration. These pictures were taken from an actual oscilloscope (the sweeping
rate for -a is four times faster than for the rest).
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Figure 8 Emulating rotation intensity through pulse duration: two shaped pulses are
shown. The pulse is represented by the outline of a normalized tangential velocity,
covering [�1:5; 0:75] along y (i.e., the range of cos(t)�cos(2t)=2). Each pulse contains
10s-100s of cycles of the basic driving waveform (not drawn). Each pulse starts (resp.
�nishes) with a smooth attack (resp. decay) phase lasting A (resp. D = A) second-
s. The �rst (resp. second) pulse sustain duration is S1 (resp. S2). For convenient
visualization, S2 = 2S1. The part's velocity is shown in plotted with a thicker line.
Pulses are preceded and followed by a rest phase which ensures part velocity is null
at the beginning of each pulse. Though not drawn to scale, assume the attack/decay
phases are very short compared to the sustain; in this fashion, part speed will increase
steadily so that at the end of the pulse, its value (shown as Æ1 and Æ2) is proportional
to S1, S2, i.e., part displacement will be proportional to Æ2i . To ensure this, the dy-
namic parameters must be tuned so that Æi is negligible compared to the peak of the
envelope.
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to a line. Sorting these lines by angle and then intersecting consecutive
line pairs, we obtain the 4 corners of the table and its coordinate frame.

The second step is to locate the coins' initial locations. Having previ-
ously determined the table's sides (and their lengths as they appear in
the image) we compute a circular kernel (a solid disk) with a pixel-radius
proportional to the penny/table-side ratio known a priori. This kernel
is convolved with all points in the image interior to the table outline,
computed above. The convolved image will contain peaks corresponding
to the center of each coin.

Determining coins' initial locations is done once prior to the task.
The actual tracking of coins is a much cheaper operation. Once they
start moving, once must simply convolve the aforementioned disk-shaped
kernel over a 1 or 2 pixel neighborhood of a part's current location; the
peak in the convolved neighborhood determines the coin's new position.

3.5 THE CONTROL LOOP

The sequence of steps suggested in Section 2.1 is slightly modi�ed to
incorporate the practical solutions described in this Section:

Use vision to obtain parts' coordinates Pi

From task trajectories, specify new motion subgoals �Pi

Given a set of M feasible COR's, solve for rotation scaling dj ; j = 1: : :M .

Actuate table so it rotates
p
dj seconds about Cj (using a shaped pulse),

sequentially, for j = 1: : :M .

Compare with desired steps (report error), repeat

4 EXPERIMENTS

4.1 COR STEERING AND CALIBRATION

Given the actuation kinematics in Figure 4(a), Equations 10 and 7
give rise to the following proportionality laws:

w / (Y1 + Y2)� (X1 +X2)

cx / (Y2 � Y1)=w

cy / (X1 �X2)=w (16)

We used the signal generation hardware to test the table's vibration
under six distinct choices for amplitudes Xi; Yi; i = 1; 2, as shown in
Table 1. As it is apparent, in all combinations the w control (Y1 +
Y2) � (X1 + X2) is kept constant. By varying the other components,
the idea is to \steer" the COR away from its original position in �xed
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X1 X2 Y1 Y2 Y1 � Y2 X1 �X2 cx cy �cx �cy

(a) -128 -128 128 128 0 0 �:22 :02
(b) -256 0 128 128 �256 0 2:92 :04 3:14 :02
(c) -256 0 0 256 �256 256 2:72 2:52 �:20 2:48
(d) -128 -128 0 256 0 256 �:18 2:66 �2:90 :14
(e) -128 -128 -128 384 0 512 �:14 5:34 :02 2:68
(f) 0 -256 -128 384 256 512 �3:25 5:54 �3:11 :2

Table 1 Motor amplitudes Xi; Yi; i = 1; 2 as they were passed to the hardware wave-
form generator. Real-time accelerometer output was used to compute the coordinates
cx and cy of the associated center of rotation, displayed in inches with respect to the
table's center (the table is an 8"x8" square). Notice that the last two CORs lie out-
side the table's surface. The �cx;y show the COR displacement with respect to its
location given the controls in the preceding row. As seen, the device is fairly \bal-
anced" on both axis, responding linearly to changes in the control as predicted by
Equation 16.

steps along the following axes: +x, +y, �x, +y, and �x. A program
was written which performs real-time acquisition of acceleration data
and the simultaneous computation/visualization of the COR's. Figure 9
shows the CORs placement for each of the amplitude combinations sent
to the motors; as shown, the COR does get placed at the intended
locations. The actual coordinates for C calculated in real-time from the
accelerometers' outputs are shown in the last two columns of Table 1.
With this machinery, one can tweak waveform amplitudes input to the

four motors until the COR is steered to a convenient location. Repeating
this process for enough distinct locations and recording the required
amplitudes gives rise to a \COR library" which can then be used by our
parallel manipulation algorithm.

4.2 ONE-PART TRAJECTORY-FOLLOWING

In order to test the integrity of key parts of the system, namely, the
image-processing/part tracking, the interfacing with the signal genera-
tion hardware, and the mechanical functionality of our prototype, we
designed a simple automated, visually-servoed task involving a single
part (a penny painted black). The experimental setup is shown in Fig-
ure 10.
(a) The penny is placed at a random location on the table. (b) The

image processing system locates it. (c) The penny is brought to the
exact center of the table via translations along x and y. (d) The penny
will traverse clockwise and inde�nitely, the four branches of an imaginary
\plus" sign laid over the table. It starts out traversing in the�x direction
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Figure 9 Steering the COR with the 6 amplitude combinations shown in Table 1.
The table is drawn as an outline; the accelerometers are drawn centered at their
actual locations near the lower-left and upper-right corners of the table. The actual
magnitude of acceleration measured by each two-axis accelerometer is shown along
with the perpendicular (the COR is supposed to fall at the intersection of these).
The actual computed COR is shown as a black dot. Snapshots should be read left-
to-right, top-to-bottom; in the �rst four, the COR lies inside the table's surface; in
the remaining two, it falls outside.
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camera

device

Figure 10 Experimental Setup for the 1-coin experiment: the computer, shaker table,
and camera are visible.

Figure 11 Eight consecutive snapshots (to be read left-to-right, top-to-bottom) of a
simple visually-servoed trajectory-following task involving a single part (black penny).
The plate is vibrated along x and y to steer the coin along the branches of an imaginary
\plus" sign centered on the board. It does so in clockwise order, starting with the
�y branch. For each branch, the coin advances from the table's center to its edge at
which point visual-servoing commands the motors to reverse feeding direction.
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until it hits the table's edge, at which point it switches directions and
returns to the center. After that, the +y branch is explored, and so forth.
For this simple task, the system performed robustly and consistently.
Eight consecutive snapshots of this experiment, are shown in Figure 11.

5 CONCLUSION & FUTURE WORK

We have described a minimalist approach to parallel part manipu-
lation which is dual to the standard array-based device in distributed
manipulation in the sense that a small (indeed a single) number of ac-
tuators is used to manipulate a large number of parts. This is achieved
through a more complex manipulation scheme. Additionally, our al-
gorithm requires that parts' positions be known, precluding sensorless
manipulation, a direction which is of much interest in array-based dis-
tributed manipulators.

Implementation of the device is underway; important hurdles already
cleared include the design, mechanical tuning, and control of the actua-
tion kinematics, the ability to exibly generate signals to the actuators,
visualization and calibration of centers-of-rotation, and part localization
through image processing.

Appendix: COR Calculation

Assume the table is a rigid square with center O. Assume the in-
stantaneous velocities v1 and v2 at points r1 and r2 are known. These
quantities are illustrated in Figure 1. The goal is to compute the ta-
ble's instantaneous center of rotation c and the associated instantaneous
angular velocity w measured about c. We can write:

v1 = w(r1 � c)? (A.1)

v2 = w(r2 � c)? (A.2)

Taking the di�erence (A.1)-(A.2) eliminates c, i.e.:

v2 � v1 = w(r2 � r1)
? = �2wr1 (A.3)

Which implies:

jwj =
jjv2 � v1jj
2jjr1jj (A.4)

sgn(w) = sgn[(v2 � v1)� r1]

Taking the sum (A.1)+(A.2) yields:
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Figure 1 The shaker table is shown with two accelerometers placed at r1 and r2,
with r2 = �r1. The instantaneous velocities at these points are v1 and v2, respec-
tively. Lines L1 and L2 pass through r1 and r2, and are perpendicular to v1 and v2,
respectively. The instantaneous center of rotation C and angular velocity w are also
shown. Notice that C will lie at L1\L2.

v1 + v2 = w(r1 + r2)
? � 2wc?

Since r1 + r2 vanishes in the above, we proceed with:

v1 + v2 = �2wc?
(v1 + v2)

? = 2wc

c =
(v1 + v2)

?

2w
(A.5)

With w computed as in (A.4). Equations A.4 and A.5 are then the
�nal results. An alternative method to compute c is to �nd the intersec-
tion of in�nite lines L1, L2 passing thru r1, r2, which are perpendicular
to v1, v2, respectively (see Figure 1). This method is inconvenient since
the intersection is ill-de�ned with nearly parallel v1 and v2.

Appendix: COR Calculation

Assume plate's acceleration relative to part is of the form:

ap(t) = cos(t) + 2b cos(2t+ �) (B.1)
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In (Reznik and Canny, 1998a) we show that under the above plate
motion, the part's equilibrium velocity is:

�eq = b sin(�); jbj < 1=2 (B.2)

Though a closed-form expression was not derived for the average force
applied to the part per cycle (assuming zero part velocity) in terms of b
and �, Equation B.2 implies that the sign of the average force is given
by sgn[b sin(�)]. An alternative representation for Equation B.1 is:

ap(t) = c1 cos(t) + s1 sin(t) +

c2 cos(2t) + s2 sin(2t) (B.3)

= m1 cos(t� �1) +m2 cos(2t� �2) (B.4)

(mi; �i) = (
q
c2i + s2i ; tan�1

si
ci
); i = 1; 2

Let t0 = t� �1, then Equation B.4 can be rewritten as:

ap(t) = m1[cos(t
0) +

m2

m1

cos(2t0 + 2�1 � �2)] (B.5)

Modulo the m1 scaling factor, Equation B.5 is in the form of Equa-
tion B.1, with � = 2�1 � �2 and b = m2

2m1
> 0. So the force will be

positive when sin(2�1 � �2) > 0, i.e.:

2�1 � �2 2 (0; �) (B.6)

De�ne complex numbers zi = ci + jsi; i = 1; 2. Then 2�1 and �2
are the angles under z21 = c21 � s21 + 2jc1s1 and z2, respectively. So
Equation B.6 is equivalent to stating z21 � z2 > 0, or equivalently:

2s1c1c2 + s2(s
2
1 � c21) > 0
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