Randomized Data Structures

We look at the role of randomization in building data structures that are elegant and efficient.

Example 1: Universal Hash Functions

Many applications call for a dynamic dictionary, i.e., a data structure for storing sets of keys S that supports the operations INSERT, DELETE and FIND. We assume that the keys are drawn from a large universe $U = \{0, 1, \ldots, m - 1\}$.

We will hash the keys in S into a hash table $T = \{0, 1, \ldots, n - 1\}$ using a hash function $h : U \rightarrow T$. I.e., we store element $x \in S$ at location $h(x)$ of T. Typically, we will want n to be much smaller than m, and comparable to $|S|$, the size of the set to be stored.

We assume that each location of T is able to hold a single key. If h maps several elements of S to a single location, we store them in an auxiliary data structure (say, a linked list) at that location. The time to perform any of the above operations is proportional to the time to evaluate a single location, we store them in an auxiliary data structure (say, a linked list) at that location.

We assume that each location of T is able to hold a single key. If h maps several elements of S to a single location, we store them in an auxiliary data structure (say, a linked list) at that location. The time to perform any of the above operations is proportional to the time to evaluate h (to find the location $h(x)$) plus the length of the list at $h(x)$ (since the operation may have to search the entire linked list). So good performance depends on having few collisions in the table.

Traditionally, people have developed hash functions that give a small expected number of collisions assuming that the sequence of operations is random. But such schemes based on a deterministic hash function h are bound to be very bad for some sequences (see the next two exercises).

Ex: Show that any fixed hash function $h : U \rightarrow T$ must map at least $\frac{m}{n}$ elements of U to some location in T. Deduce that, if m is much larger than n, then there will be sets $S \subseteq U$ that are all mapped by h to a single location in T. □

Ex: A hash function h is said to be perfect for a set $S \subseteq U$ if it causes no collisions on S. Show that, for any particular set S of size $\leq n$, it is possible to construct a hash function that is perfect for S, but that it is not possible to construct a hash function that is perfect for all S of this size. Show also that, for any fixed hash function h, the maximum possible number of sets S of size n for which h is perfect is $\binom{m}{n}$. Compare this with the total number of such sets S. □

Instead, we will use a random hash function chosen from a suitable family. Building randomization into the hash function will mean that there will be no bad sequences.

Definition: A family \mathcal{H} of hash functions $h : U \rightarrow T$ is 2-universal if, for all $x, y \in U$ with $x \neq y$, and for h chosen u.a.r. from \mathcal{H}, we have $\Pr[h(x) = h(y)] \leq \frac{1}{n}$. □

Note that the functions in a 2-universal family “behave at least as well as” random functions wrt collisions on pairs of keys. The following fact illustrates why this is an appropriate definition:

Theorem: Consider any sequence of operations with at most s inserts performed using a hash function h chosen u.a.r. from a 2-universal family. The expected cost of each operation is proportional to (at most) $1 + \frac{s}{n}$.

Proof: Consider one of the operations, involving an element x. The cost of this operation is proportional to $1 + Z$, where Z is the number of elements currently stored at $h(x)$. What is the expectation $E(Z)$? Well, let S be the set of all (at most) s elements that are ever inserted, and for each $y \in S$ let Z_y be the indicator r.v. of the event that y is currently stored at $h(x)$. Thus $Z = \sum_{y \in S} Z_y$ and $E(Z) = \sum_{y \in S} E(Z_y)$. Since h is chosen from a 2-universal family, we have $E(Z_y) \leq \Pr[h(x) = h(y)] \leq \frac{1}{n}$. Hence $E(Z) \leq \frac{s}{n}$. This completes the proof. □
So what? Well, choose a table size \(n \) that is at least as large as the largest set \(S \) we will ever want to store, so that \(n \geq s \). Then the above Theorem ensures that the expected cost per operation is (proportional to) at most 2. I.e., we have constant expected time per operation, for any sequence of requests: there are no bad sequences.

Q: How do we construct a 2-universal family?
A: Simply make \(\mathcal{H} = \) set of all functions \(h: U \to T \)

Ex: Verify that this family is indeed 2-universal. \(\square \)

But is this a good choice? Actually no, because there are \(n^m \) functions in the family, and so it takes \(O(m \log n) \) bits to represent any of them. (Check you understand this.) Since the universe size \(m \) is assumed to be huge, this is impractical. What we need is a 2-universal family that is small and that is efficient to work with.

A 2-universal family

Let \(p \) be a prime with \(p \geq m \). Since for any \(m \) there exists a prime between \(m \) and \(2m \), we can assume that \(p \leq 2m \).

Our hash functions will operate over the field \(\mathbb{Z}_p = \{0, 1, \ldots, p-1\} \), which includes our universe \(U \). (So if we get a family that is 2-universal over \(\mathbb{Z}_p \), it will certainly be 2-universal over \(U \) also.)

For \(a, b \in \mathbb{Z}_p \), define the function \(h_{ab}: \mathbb{Z}_p \to T \) by

\[
h_{ab}(x) = ((ax + b) \mod p) \mod n.
\]

Our hash family will be \(\mathcal{H} = \{ h_{ab}: a, b \in \mathbb{Z}_p, a \neq 0 \} \).

The key point here is that \(\mathcal{H} \) contains only \(p(p-1) \) functions (why?), and specifying a function \(h_{ab} \) requires only \(O(\log p) = O(\log m) \) bits. (Compare the \(O(m \log n) \) bits required for a purely random function.) To choose \(h_{ab} \in \mathcal{H} \), we simply select \(a, b \) independently and u.a.r. from \(\mathbb{Z}_p - \{0\} \) and \(\mathbb{Z}_p \) respectively. Moreover, evaluating \(h_{ab}(x) \) takes only a few arithmetic operations on \(O(\log m) \)-bit integers.

So this hash family is very efficient. But is it “random enough”? Surprisingly it is, as we now see:

Claim: The above family \(\mathcal{H} \) is 2-universal.

Proof: Consider any \(x, y \in \mathbb{Z}_p \) with \(x \neq y \). We need to figure out \(\Pr[h_{ab}(x) = h_{ab}(y)] \), where \(h_{ab} \) is chosen u.a.r. from \(\mathcal{H} \).

For convenience, define \(g_{ab}(x) = (ax + b) \mod p \), so that \(h_{ab}(x) = g_{ab}(x) \mod n \).

How can \(h_{ab}(x) = h_{ab}(y) \)? For this to happen, we must have

\[
g_{ab}(x) = g_{ab}(y) \mod n. \tag{*}
\]

So let's focus first on \(g_{ab} \). Let \(\alpha, \beta \) be any numbers in \(\mathbb{Z}_p \). I claim that

\[
\Pr[g_{ab}(x) = \alpha \land g_{ab}(y) = \beta] = \begin{cases} 0 & \text{if } \alpha = \beta; \\
\frac{1}{p(p-1)} & \text{otherwise}. \end{cases} \tag{**}
\]

To see this, note that if \(g_{ab}(x) = \alpha \) and \(g_{ab}(y) = \beta \) then we must have, in the field \(\mathbb{Z}_p \),

\[
ax + b = \alpha \quad \text{and} \quad ay + b = \beta.
\]

But these two linear equations in the two unknowns \(a, b \) have a unique solution in \(\mathbb{Z}_p \), namely \(a = (\alpha - \beta)(x - y)^{-1} \) and a similar expression for \(b \). (Check this.) And since \(x \neq y \), \(a \) is non-zero.
if and only if $\alpha \neq \beta$. This means that there is exactly one function g_{ab} that gives us the values $g_{ab}(x) = \alpha$ and $g_{ab}(y) = \beta$ (and no function when $\alpha = \beta$). Since there are $p(p-1)$ functions in all, and we are picking one u.a.r., we’ve verified (**)).

Now let’s return to condition (∗). This tells us that we’ll get $h_{ab}(x) = h_{ab}(y)$ if and only if $\alpha = \beta \pmod{n}$, i.e., α and β must be in the same residue class \pmod{n}. And from (**) we see that all such pairs with $\alpha \neq \beta$ have probability $\frac{1}{p(p-1)}$. So we have

$$\Pr[h_{ab}(x) = h_{ab}(y)] = \frac{1}{p(p-1)} \times |\{ (\alpha, \beta) : \alpha \neq \beta \text{ and } \alpha = \beta \pmod{n} \}|.$$

(***)

How many pairs (α, β) are there which satisfy $\alpha \neq \beta$ and $\alpha = \beta \pmod{n}$? Well, there are p choices for α, and for each one the number of values of β is one less than the size of the residue class of α. Each residue class \pmod{n} clearly has size at most $\lceil \frac{p}{n} \rceil$. So the number of such (α, β) pairs is

$$\leq p \left(\lceil \frac{p}{n} \rceil - 1 \right) \leq \frac{p(p-1)}{n}.$$

Plugging this into (***), gives

$$\Pr[h_{ab}(x) = h_{ab}(y)] \leq \frac{1}{p(p-1)} \times \frac{p(p-1)}{n} = \frac{1}{n},$$

which is exactly the condition for 2-universality. □

Ex: Why did we work with \mathbb{Z}_p for a prime $p \geq m$, rather than directly with $\mathbb{Z}_m = U$? □

Ex: Consider the family $\mathcal{H'} = \{ h_{ab} : a, b \in \mathbb{Z}_p \}$ (i.e., we have removed the restriction that $a \neq 0$). Is this family also 2-universal? □