1. List all possible values of \(n \) such that the multiplicative group \(\mathbb{Z}_n^* \) is cyclic and has order which is a power of 2, i.e. \(\phi(n) = 2^k \).

2. If \(n = 5^k \) so that \(\mathbb{Z}_n^* \) is cyclic, what fraction of the elements of \(\mathbb{Z}_n^* \) (the multiplicative group) are generators?

3. Suppose that a message \(M \) is encrypted using RSA twice, as \(C_1 = M^{e_1} \mod n \) and \(C_2 = M^{e_2} \mod n \). Note that the encryption keys are different, but the modulus \(n \) is the same in both cases. Show that \(M \) can be recovered from \(C_1 \) and \(C_2 \) in polynomial time.

4. If \(q \) is a prime, then \(p = 2q + 1 \) is also prime in some cases. Assuming \(q \) is large and \(p \) is prime, what fraction of the elements in \(\mathbb{Z}_p^* \) are generators? Combinations like this are important in discrete-log crypto-systems.