Solutions for CS174 Homework 2

Solution 1. As in the lecture notes, let X_k be the number of random edges added while there are k connected components, until there are $k - 1$ connected components. Let X be the number of edges added to the graph in total until the graph has \sqrt{n} or fewer connected components. So $E[X] = \sum_{\pi \leq k \leq n} E[X_k] \leq \sum_{\pi \leq k \leq n} \frac{n-1}{k-1} = (n-1)(H_{n-1} - H_{\pi-1}) \sim \frac{(n \ln n)}{2}$.

For the variance, $\text{Var}[X] = \sum_{\pi \leq k \leq n} \text{Var}[X_k] \leq \sum_{1 \leq k \leq n} \text{Var}[X_k]$. From lecture 9, the latter sum is approximately $n^2 \pi^2/6$. Therefore σ_X is at most $n \pi / \sqrt{6}$.

To apply Chebyshev, we set the probability of exceeding the mean at 0.01, then $t = 10$ in the Chebyshev formula: $\Pr[|X - \bar{X}| \geq t \sigma_X] \leq \frac{1}{t^2}$, so $X \geq \frac{(n \ln n)}{2} + 10 n \pi / \sqrt{6}$.

(b) $\text{Var}[X + Y] = \text{Var}[X] + \text{Var}[Y] + \text{Cov}[X, Y] = 7/12$.

Solution 3. As in the lecture notes, define X_s for each subset $S \subseteq V$ of 5 vertices as: $X_s = 1$ if S are the vertices of a 5-clique, and $X_s = 0$ otherwise. So $X = \sum X_s$ is the total number of 5-cliques in the graph, and $E[X] = \binom{n}{5} p^{10} \approx n^5 p^{10}/120$.

At the threshold probability, $E[X]$ is close to 1, so the threshold value is $p_0 = 120^{0.1} n^{-0.5} \approx 1.6 n^{-0.5}$.

Solution 4. Let X to denote the sum of the 1000 tosses. $E[X] = 3500$. $\text{Var}[X] = 1000 \times ((1 - 3.5)^2 + (2 - 3.5)^2 + (3 - 3.5)^2 + (4 - 3.5)^2 + (5 - 3.5)^2 + (6 - 3.5)^2)/6 = 2900$. So using Markov bound, $\Pr[X > 5000] < \frac{3500}{5000} = 0.7$.

Using Chebyshev bound, $\Pr[X > 5000] < \Pr[|X - 3500| > 1500] < \frac{2900}{(1500^2)} = 1.3 \times 10^{-3}$.

Using Chernoff bound, let Y_i be a dice toss that takes value 1/6, 2/6, 3/6, 4/6, 5/6, 1. Thus $E[Y_i] = 3.5/6$. Let Z_i be a bernoulli variable with $\Pr[Z_i = 1] = 3.5/6$. Note that function $f(x) = e^{tx}$ for $t > 0$ is convex. For a convex function f, we can see that $E[f(Y_i)] \leq E[f(Z_i)]$. So we can extend
the Chernoff bound to apply to random variables take values in $[0, 1]$. This bound is called Hoeffding Bound. So $Y = \sum Y_i = X/6$. $
abla Y > 5000 = \Pr[Y > 5000/6] = \Pr[Y > (1 + 1500/3500)(3500/6) < e^{-(3500/6)(1500/3500)^2} / 4 \leq e^{-27}$.

2