1. (a) This is 10 Bernoulli trials. So the expected number of heads is $0.8 \times 10 = 8$.

(b) In a random permutation, 1, 2, 3 can have $3! = 6$ total number of possible configurations. There are only two possible configurations if we require 1 and 2 both come before 3 in the permutation. Each configuration is equally likely. So the probability in the question is $2/6 = 1/3$.

(c) Because X and Y are two independent random variables, $E[XY] = E[X] \cdot E[Y] = 4 \times 4 = 16$.

(d) $\ln n$.

2. Because X has approximately a Poisson distribution with parameter $\lambda = 1$, $E[X] = \text{Var}[X] = 1$.

(a) $\Pr[X \geq 5] \leq \frac{E[X]}{5} = \frac{1}{5}$.

(b) $\Pr[X \geq 5] \leq \Pr[|X - 1| \geq 4] \leq \frac{1}{16}$.

(c) $\Pr[X \geq 5] = \Pr[X \geq (1 + 4) \cdot 1] < e^{-4}$, because $\delta = 4 < 2e - 1$.

(d) This is a two-step argument. First of all, X has approximately a Poisson distribution. This does not mean that X is a sum of Poisson trials. But the binomial distribution is a sum of Bernoulli trials and is well-approximated by a Poisson distribution. In other words $X \approx Y \approx Z$ where X is the number of fixed points, Y is a Poisson r.v., and Z is a binomial r.v. Chernoff can be applied to Z.

3. Details of the derivation are in the lecture notes.

(a) This is the coupon collector problem. $n \ln n$.

(b) This is the birthday-paradox problem. $\sqrt{2n}$.

(c) Expected number of proposals a male makes = ln \(n \), expected rank of his final spouse = ln \(n \).

(d) Expected number of proposals a female receives = ln \(n \), expected rank of her final spouse = \(\frac{n}{\ln n} \).

4. (a) \(n \ln n + \Omega(n) \).

(b) Approximately, we can consider the process of generating random graphs of \(n \) vertices as throwing balls into \(n \) bins. Adding an edge is equivalent to throwing two balls into the bins. So when we add \(n \) edges, i.e., throw \(2n \) balls, the expected number of empty bins is \(n(1 - \frac{1}{n})^{2n} = \frac{n}{e^2} \). An empty bin means a single vertex that touches no edges, and is therefore an isolated connected piece. So the expected number of connected pieces is at least \(\frac{n}{e^2} + 1 \).

(c) Let \(Y_i \) denote the number of edges we need to add to make the graph change from \(i \) connected pieces to \(i - 1 \) connected pieces. From the lecture notes, the probability of adding an edge that can change the graph from \(i \) connected pieces to \(i - 1 \) connected pieces is greater than or equal to \((i - 1)/(n - 1) \).

Let \(X_i \) denote the number of balls we need to throw into \(n - 1 \) bins to change the number of empty bins from \(i - 1 \) to \(i - 2 \). So the probability of adding a ball that can change the number of empty bins from \(i - 1 \) to \(i - 2 \) is \((i - 1)/(n - 1) \). So \(\Pr[X_i \geq k] \geq \Pr[Y_i \geq k] \). Because \(E[X_i] = \sum_k \Pr[X_i \geq k] \), and \(E[Y_i] = \sum_k \Pr[Y_i \geq k] \), \(E[X_i] \geq E[Y_i] \). As we have computed in class, when we throw \(n \) balls into \(n \) bins, the expected number of empty bins is \(n/e \). Let \(T_1 \) be the number of epochs the random graph goes through when we throw in \(n \) edges, which is the number of connected pieces in the graph. Let \(T_2 \) be the number of empty bins when we throw in \(n \) balls into \(n \) bins. Because \(E[X_i] \geq E[Y_i] \), we can see that \(\Pr[T_1 \geq k] \leq \Pr[T_2 \geq k] \), which implies \(E[T_1] \leq E[T_2] = n/e \). So the upper bound is \(n/e \).