Low-fidelity Prototyping

CS 160, Spring 2004
Professor John Canny
Feb 11
Outline

- Low-fidelity prototyping
- Wizard of OZ technique
- Administrivia
- Informal user interfaces
- Sketching user interfaces electronically
Why Do We Prototype?

- Get feedback on our design faster
 * saves money
- Experiment with alternative designs
- Fix problems before code is written
- Keep the design centered on the user
Fidelity in Prototyping

- Fidelity refers to the level of detail
- High fidelity
 * prototypes look like the final product
- Low fidelity
 * artists renditions with many details missing
Low-fidelity Sketches
Low-fidelity Sketches

SCENARIO 1: "I want to listen to alternative music"
Low-fi Storyboards

Where do storyboards come from?
* Film & animation

Give you a “script” of important events
* leave out the details
* concentrate on the important interactions
DESCRIPTION: EXT. FOREST - MS LUKE & LEIA - TRUCKING

<table>
<thead>
<tr>
<th>ELEMENTS</th>
<th>STAGE</th>
<th>ANM</th>
<th>PLATE</th>
<th>MATTE</th>
<th>NON-HLM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Luke</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leia</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biker #3</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biker #4</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ink Chat

- Black: page content
- Red: page title
- Green: annotations
- Blue: links
Why Use Low-fi Prototypes?

- Traditional methods take too long
 - sketches -> prototype -> evaluate -> iterate

- Can simulate the prototype
 - sketches -> evaluate -> iterate
 - sketches act as prototypes
 + designer “plays computer”
 + other design team members observe & record

- Kindergarten implementation skills
 - allows non-programmers to participate
Hi-fi Prototypes Warp

- Perceptions of the tester/reviewer?
 * formal representation indicates “finished” nature
 + comments on color, fonts, and alignment

- Time?
 * encourage precision
 + specifying details takes more time

- Creativity?
 * lose track of the big picture
The Basic Materials

- Large, heavy, white paper (11 x 17)
- 5x8 in. index cards
- Tape, stick glue, correction tape
- Pens & markers (many colors & sizes)
- Overhead transparencies
- Scissors, X-acto knives, etc.
- Sources: Office Depot, “The Art Store”,...
Constructing the Model

- Set a deadline
 * don’t think too long - build it!

- Draw a window frame on large paper

- Put different screen regions on cards
 * anything that moves, changes, appears/disappears

- Ready response for any user action
 * e.g., have those pull-down menus already made

- Use photocopier to make many versions
Preparing for a Test

Select your users
* understand background of intended users
* use a questionnaire to get the people you need
* don’t use friends or family

Prepare scenarios that are
* typical of the product during actual use
* make prototype support these (small, yet broad)

Practice to avoid “bugs” in the system
Conducting a Test

Four testers (minimum)

* greeter - puts users at ease & gets data
* facilitator - only team member who speaks
 + gives instructions & encourages thoughts, opinions
* computer - knows application logic & controls it
 + always simulates the response, w/o explanation
* observers - take notes & recommendations

Typical session is 1 hour

* preparation, the test, debriefing
Conducting a Test (cont.)

- **Greet**
 - get forms filled, assure confidentiality, etc.

- **Test**
 - facilitator hands written tasks to the user
 - must be clear & detailed
 - facilitator keeps getting “output” from participant
 - “What are you thinking right now?”, “Think aloud”
 - observe -> avoid strong reactions: laugh, gape, etc.
Conducting a Test (cont.)

Debrief
* fill out post-evaluation questionnaire
* ask questions about parts you saw problems on
* gather impressions
* give thanks
Evaluating Results

- Sort & prioritize observations
 - what was important?
 - lots of problems in the same area?
- Create a written report on findings
 - gives agenda for meeting on design changes
- Make changes & iterate
Advantages of Low-fi Prototyping

- Takes only a few hours
 - no expensive equipment needed

- Can test multiple alternatives
 - fast iterations
 + number of iterations is tied to final quality

- Almost all interaction can be faked
Wizard of Oz Technique

- Faking the interaction. Comes from?
 * from the film “The Wizard of OZ”
 + “the man behind the curtain”

- Long tradition in computer industry
 * prototype of a PC w/ a VAX behind the curtain

- Much more important for hard to implement features
 * Speech & handwriting recognition
Wizard of Oz Tips

1. Rehearse your actions
 * For a complicated UI, make a flowchart which is hidden from the user
 * Make list of legal words for a speech interface

2. Stay “in role”
 * You are a computer, and have no common sense, or ability to understand spoken English.

3. Facilitator can remind user of the rules if the user gets stuck
Administrivia

- Contextual inquiry (or explanation) due today
- JFC Office hours moving to: Tu 2-3, W 3-4

Break
Research on UI Design tools
“Design Exploration Phase”

- **Brainstorming**
 - put designs in a tangible form
 - consider different ideas rapidly

- **Incomplete designs**
 - do not need to cover all cases
 - illustrate important examples

- **Present several designs to client**
Goal of Research in Informal UI Design Tools

- Allow designers to
 - quickly sketch interface ideas
 - test these ideas with users
 - transform to a more finished design without reprogramming
Quickly Sketch this...
Add Behavior...
Transform it to this...
Drawbacks of Current Tools

1. Require specification of lots of detail
 * must give specific instance of a general idea
 + e.g., exact widgets, fonts, alignments, colors
 * designers led to focus on unimportant details
 * evaluators focus on wrong issues

2. Take too much time to use
 * poor support for iterative design
 + sketched interface took 5 times longer with traditional tool (no icons)
Paper Sketches

Advantages
- support brainstorming
- do not require specification of details
- designers feel comfortable sketching

Drawbacks
- do not evolve easily
- lack support for “design memory”
- force manual translation to electronic format
- do not allow end-user interaction
What is SILK???

Sketching Interfaces Like Krazy
Designing Interfaces with SILK

1) Designer sketches ideas rapidly with electronic pad and pen
 * SILK recognizes widgets
 * easy editing with gestures

2) Designer or end-user tests interface
 * widgets behave
 * specify additional behavior visually

3) Automatically transforms to a “finished” UI
 * downplayed now
Designing Interfaces with SILK

- Behavior of widgets takes over some of the tedious aspects of Woz:
 * Recognizing and reacting to commands
 * Moving dialog boxes around
 * Following a script/flowchart
Specifying Behaviors

Sequencing behavior *between* widgets?

Storyboards
* series of rough sketches depicting changes in response to end-user interaction

Expresses many common behaviors
SILK Storyboards

- Copy sketches to storyboard window
- Draw arrows from objects to screens

Switch to run mode to test
SILK changes screens on mouse clicks
DENIM: Designing Web Sites by Sketching

- Early-phase information & navigation design
- Supports informal interaction
 - sketching, pen-based interaction
- Available and used by CS160 project groups
DENIM: Designing Web Sites by Sketching

DENIM uses multiple scales, based on observation and interviews with designers.
Informal prototypes allow you to design (and test!) before writing code.

Rapid evolution and elimination of many problems happen in this phase.

Paper+ink is the traditional tool, some emerging research tools (SILK, DENIM) also support informal design.