Learning and Games

CS160: User Interfaces
John Canny

Review

- Sketching and Storyboarding
- Creating a Low-Fi prototype
- Wizard of Oz prototype testing

This Time

- Children and Learning
- Teaching Techniques
- Learning Games

Piaget's Ages and Stages

- Sensori-Motor Level (0-18 months)
 - Movement, perception, objects, causality
- Semiotic Period (18 months 7-8 years)
 - Language, mental images, drawing, memories
- Concrete Operations (7-8 years 11-12 years)
 - Classification, numbers, space, time
- Formal Thought (11-12 onwards)
 - Logic, abstraction,...

Piaget's Constructivism

 Children don't receive knowledge, they actively construct it.

- i.e. Children "learn by doing,"
- They assemble and organize information for a purpose, e.g. winning a playground game.
- Successful learners also plan their own learning, assess their understanding, use strategies for memory etc.

Social Constructivism

- Lev Vygotsky also emphasized the active role of the learner.
- But he argued that the child explored a world that is carefully structured by adults.
- Adults place objects in the child's world (toys, games, stories) that help them learn from their exploration.
- They encourage, teach by showing, and critique the child.

Zone of Proximal Development

 Vygotsky argued that learning is fastest in the "Zone of Proximal" development.

ZPD and Game Design

For games we have

Metacognition

- Children don't come equally equipped to learn.
- Since learning is an active, exploratory process, you can teach children **how to learn**.
- Children's deliberate approaches to learning are called meta-cognition.
- These include strategies for finding information, remembering it, testing hypotheses, and testing understanding.

Privileged Domains

- Learners aren't equally interested or prepared to learn different things.
- Children typically focus on certain topics (causality, persistence etc.) at certain developmental stages.
- E.g. Children in the late sensori-motor phase are learning about object persistence, and are fascinated by games of peekaboo.

Metacognitive Strategies

- Children and adults have limited short-term memory,
 7 ± 2 items.
- Adults use chunking to stretch their memory capacity, e.g. 31-555-1234
- Memory capacity improves when children are able to categories things – this is a metacognitive strategy.
- To add 3+5, some children count up from the larger number, some from the smaller.
 - But children often experiment with strategies.

Teaching Strategies

- Peer instruction (Mazur):
- Teacher covers some new background material.
- Asks students a multiple-choice question, they vote.
- Teacher tallies votes, presents results.
- Students then discuss in small groups
- They vote again
- Teacher tallies, usually (not always) the tally moves toward the right answer.
- Teacher analyzes the question and provides the right answer.

- Teacher covers some new background material
 - This is where traditional instruction stops.
 - Some of the material sinks in, but how much depends strongly on students individual meta-cognitive skills.
 - Some students catch little or nothing in live lectures, rely on reading notes or cramming for exams later.

- Teacher covers some new background material.
- Asks students a multiple-choice question, they vote.
 - Here students relate the new topic to their own experience, apply it to the new problem, and commit to an answer.

- Teacher covers some new background material.
- Asks students a multiple-choice question, they vote.
- Teacher tallies votes, presents results.
 - Creates a game aspect to the problem. Students are interested in how they compare to their peers.
 - Helps teacher understand students' mental models for the problem.

- Teacher covers some new background material.
- Asks students a multiple-choice question, they vote.
- Teacher tallies votes, presents results.
- Students then discuss in small groups
 - Students hear each other's explanation, contrast their own mental models with several others.
 - Excellent chance to improve meta-cognitive skills.

- Teacher covers some new background material.
- Asks students a multiple-choice question, they vote.
- Teacher tallies votes, presents results.
- Students then discuss in small groups.
- Students vote again, teacher tallies...
 - Game aspect again, this time it's a team sport.

- Teacher covers some new background material.
- Asks students a multiple-choice question, they vote.
- Teacher tallies votes, presents results.
- Students then discuss in small groups
- They vote again, teacher tallies,...
- Teacher analyzes the question and provides the right answer.
 - Students have strong vested interest in the answer and in the rationale, are highly motivated to use the answer.
 - Students "learn by doing" from the experience.

- After the peer instruction, student attention
 continues to be much higher, even on other topics.
 - Recall IDEO's strategy of "stretching mental muscles"
- Challenges:
 - Takes time, instructors have to remove some material.
 - Often happens only once per class
 - May be left until the end of the lecture
- Realities
 - Typical student "time-on-task" is < 50% in university classes
 - Pl at the start of class can effectively lengthen the lecture

Teaching History

- Is hard because the material involves (usually dead)
 people and places far from the student's experience –
 hard to make them care about these.
- Typically presented as "fait accompli" the outcome is known, students have no influence over it.
- Characters and events on a grand scale, what can students draw from for their own experience?

Activating History

- Have students choose the artifacts they believe are important – actively define "historical significance".
 - Connects with personal experience
- Explain history as a *process of inquiry*, so that students take an active role in defining it.
 - Becomes more of a detective story, look for evidence, produce and test theories, refine hypotheses.
 - Events happened for a reason, discovering those causal influences means deeper understanding of history.

Historical Strategy Games

 Civilization IV and Europa Universalis give detailed historical contexts for strategy gameplay.

Historical Strategy Games

- Players actively "make history"
- Act as famous heads-of-state, and interact with other (computerized) leaders.
- Other world events unfold realistically around the gameplay.

Historical Strategy Games

- But emphasis is really on gameplay, conquering other civilizations, or improving your own.
- No control over where you play and what you actually learn.
- Allow and encourage playful distortions: Napoleon commanding Persia,...

Structure vs. Freedom

- Games usually benefit by allowing users more freedom.
 - Gameplay is more surprising, novel, funny,
 - Replay value improves.
- But deep learning requires breadth, topics reinforce each other, and haphazard coverage can lead to major gaps in knowledge.

Serious vs. Games

 Like it or not, there is a real tension between good learning titles and many self-proclaimed "educational games".

- The difference is, serious learning games have an explicit meta-cognitive strategy – they aim to teach the content through appropriate exercises.
- This normally involves a detailed curriculum with interrelated *learning goals*.

Game Scenarios

- Most games can be tailored as much as needed to match a curriculum.
- Sites like <u>this one</u> present tailored curricula built on top of games (Civilization IV in this case). These curricula can form the base of college-level history courses.

Other History Games

- An ambitious historical recreation was MIT's
 Revolution, built on top of the Neverwinter Nights
 game engine.
- Revolution recreated civil was scenarios in Colonial Williamsburg, VA.
- A design process summary is here.

Teaching Math

- Challenging for many students:
- Goal is to eventually develop abstract, symbolic, reasoning skills.
- But student's experience with numbers is quite concrete – as counts of things.
- How to bridge and build from student's concrete, informal, numerical thinking to "understanding" of mathematics?
- Students don't start with logic, so they cant prove an test hypothesis in a mathematical sense.

Understanding understanding

 Learning scientists have spent much effort elaborating what "understanding" is. A concept is understood not by a dictionary definition, but by success in applying in a wide range of examples.

• i.e. a student of math understands "commutativity" not because they can give a dictionary definition, but when they can successfully apply it to many different examples.

Activating Math

- Encourage children to think concretely about math (using Piaget's concrete operations of thought), to draw conclusions that might generalize.
 - E.g. use underground floors to model negative numbers

- Interestingly, they cant "prove" their ideas, but the intuition is often right.
 - Probably closer to the way mathematicians think, than to the way math is sanitized in textbooks.

Activating Math

• Connecting math with physical systems is a great way to make it more concrete (and help students care).

 An good example of this is a game called "Math and Music" by Wildridge Software.

 An online manual is <u>here</u>, and the web site includes example activities.

Activating Math

• Timez Attack is a simple but surprisingly effective game that teaches multiplication tables. A simplified version is available for <u>free download</u>.

Teaching Science

- Challenges: students already have informal theories about the physical world, and can reason concretely.
 But these "theories" are often wrong.
- Formal theories fight with naïve ones during learning.
 - "Lab physics" vs. "road-runner physics"

 Science learning is an ideal domain for metacognitive development. Ideas of "hypothesis" and "experiment" are explicit in science learning.

Teaching Science

 Good science learning systems "Make Thinking Visible" to help children improve metacognitively.

 Inquiry Island from UC Berkeley

Teaching Science

Alameda Creek Project

Summary

- Children and Learning
- Teaching Techniques
- Learning Games