Low-fidelity Prototyping

CS 160, Fall 2004
Professor John Canny

Why Do We Prototype?

- Get feedback on our design faster
 * saves money
- Experiment with alternative designs
- Fix problems before code is written
- Keep the design centered on the user

Fidelity in Prototyping

- Fidelity refers to the level of detail
- High fidelity
 * prototypes look like the final product
- Low fidelity
 * artists renditions with many details missing

Low-fidelity Sketches
Low-fi Storyboards

Where do storyboards come from?
- Film & animation
- Give you a "script" of important events
 - leave out the details
 - concentrate on the important interactions

Why Use Low-fi Prototypes?

- Traditional methods take too long
 * sketches -> prototype -> evaluate -> iterate
- Can **simulate** the prototype
 * sketches -> evaluate -> iterate
 * sketches act as prototypes
 + designer "plays computer"
 + other design team members observe & record
- Kindergarten implementation skills
 * allows non-programmers to participate in the design process

Hi-fi Prototypes Distort:

- Perceptions of the tester/reviewer?
 * formal representation indicates "finished" nature
 + comments on color, fonts, and alignment
- Time?
 * encourage precision
 + specifying details takes more time
- Creativity?
 * lose track of the big picture

The Basic Materials

- Large, heavy, white paper (11 x 17)
- 5x8 in. index cards
- Tape, stick glue, correction tape
- Pens & markers (many colors & sizes)
- Overhead transparencies (for small items)
- Scissors, X-acto knives, etc.
- Sources: Office Depot, "The Art Store"...
Constructing the Model

- Set a deadline
 * don’t think too long - build it!
- Draw a window frame on large paper
- Put different screen regions on cards
 * anything that moves, changes, appears/disappears
- Ready response for any user action
 * e.g., have those pull-down menus already made
- Use photocopier to make many versions

Preparing for a Test

- Select your users
 * understand background of intended users
 * use a questionnaire to get the people you need
 * don’t use friends or family
- Prepare scenarios that are
 * typical of the product during actual use
 * make prototype support these (small, yet broad)
- Practice to avoid "bugs" in the system

Conducting a Test

- Four testers (minimum)
 * greeter - puts users at ease & gets data
 * facilitator - only team member who speaks
 + gives instructions & encourages thoughts, opinions
 * computer - knows application logic & controls it
 + always simulates the response, w/o explanation
 * observers - take notes & recommendations
- Typical session is 1 hour
 * preparation, the test, debriefing

Conducting a Test (cont.)

- Greet
 * get forms filled, assure confidentiality, etc.
- Test
 * facilitator hands written tasks to the user
 + must be clear & detailed
 * facilitator keeps getting "output" from participant
 + "What are you thinking right now?", "Think aloud"
 * observe -> avoid strong reactions: laugh, gape, etc.
- Debrief
 * fill out post-evaluation questionnaire
 * ask questions about parts you saw problems on
 * gather impressions
 * give thanks
Evaluating Results

- Sort & prioritize observations
 * what was important?
 * lots of problems in the same area?
- Create a written report on findings
 * gives agenda for meeting on design changes
- Make changes & iterate

Advantages of Low-fi Prototyping

- Takes only a few hours
 * no expensive equipment needed
- Can test multiple alternatives
 * fast iterations
 * number of iterations is tied to final quality
- Almost all interaction can be faked

Wizard of Oz Technique

- Faking the interaction. Comes from?
 * from the film “The Wizard of OZ”
 * “the man behind the curtain”
- Long tradition in computer industry
 * prototype of a PC w/ a VAX behind the curtain
- Much more important for hard to implement features
 * Speech & handwriting recognition

Wizard of Oz Tips

- Rehearse your actions
 * For a complicated UI, make a flowchart which is hidden from the user
 * Make list of legal words for a speech interface
- Stay “in role”
 * You are a computer, and have no common sense, or ability to understand spoken English.
- Facilitator can remind user of the rules if the user gets stuck

Administrivia

- Contextual inquiry (or explanation) due today

Break

Research on UI Design tools
“Design Exploration Phase”

- Brainstorming
 * put designs in a tangible form
 * consider different ideas rapidly
- Incomplete designs
 * do not need to cover all cases
 * illustrate important examples
- Present several designs to client
Goal of Research in Informal UI Design Tools

- Allow designers to
 - quickly sketch interface ideas
 - test these ideas with users
 - transform to a more finished design without reprogramming

Drawbacks of Current Tools

- Examples:
 - Visual Basic
 - Viseo
 - Visual C++

Drawbacks of Current Tools

- Require specification of lots of detail
 - must give specific instance of a general idea
 - e.g., exact widgets, fonts, alignments, colors
 - designers led to focus on unimportant details
- Take too much time to use
 - poor support for iterative design
 - sketched interface took 5 times longer with traditional tool (no icons)

Paper Sketches

- Advantages
 - support brainstorming
 - do not require specification of details
 - designers feel comfortable sketching
- Drawbacks
 - do not evolve easily
 - lack support for "design memory"
 - force manual translation to electronic format
 - do not allow end-user interaction

What is SILK?????

Sketching Interfaces Like Krazy

Quickly Sketch this...
Designing Interfaces with SILK

1) Designer sketches ideas rapidly with electronic pad and pen
 * SILK recognizes widgets
 * easy editing with gestures
2) Designer or end-user tests interface
 * widgets behave
 * specify additional behavior visually
3) Automatically transforms to a "finished" UI
 * downplayed now

Designing Interfaces with SILK

Behavior of widgets takes over some of the tedious aspects of Woz:
* Recognizing and reacting to commands
* Moving dialog boxes around
* Following a script/flowchart

DENIM: Designing Web Sites by Sketching

Early-phase information & navigation design
Supports informal interaction
 * sketching, pen-based interaction
Available and used by CS160 project groups:
http://quir.berkeley.edu/projects/denim/

DENIM: Designing Web Sites by Sketching

DENIM’s features are based on interviews with many designers.

DENIM supports navigation between pages, at both page and anchor level.
It has multiple “scale” views for the entire site, part of the site, a pair of pages, a single page, or part of a page.
Closing

- There is a down-side to the informal design approach:

- Often hard to involve paying clients as subjects - they treat the fidelity of the interface as a sign of development effort.

Summary

- Informal prototypes allow you to design (and test!) before writing code.

- Rapid evolution and elimination of many problems happens in this phase.

- Paper+ink is the traditional tool, some emerging research tools (SILK, DENIM) also support informal design.