CS 160: Lecture 24

Professor John Canny
Fall 2004
Speech: the Ultimate Interface?

- In the early days of HCI, people assumed that speech/natural language would be the ultimate UI (Licklider’s OLIVER).

- There have been sophisticated attempts to duplicate such behavior (e.g. Extempo systems, Verbot) - But text seems to be the preferred communication medium.

- MS Agents are an open architecture (you can write new ones). They can do speech I/O.
Speech: the Ultimate Interface?

In the early days of HCI, people assumed that speech/natural language would be the ultimate UI (Licklider’s OLIVER).

Critique that assertion...
Advantages of GUIs

- Support menus (recognition over recall).
- Support scanning for keyword/icon.
- Faster information acquisition (cursory readings).
- Fewer affective cues.
- Quiet!
Advantages of speech?
Advantages of speech?

- Less effort and faster for output (vs. writing).
- Allows a natural repair process for error recovery (if computer’s knew how to deal with that..)
- Richer channel - speaker’s disposition and emotional state (if computer’s knew how to deal with that..)
Multimodal Interfaces

- Multi-modal refers to interfaces that support non-GUI interaction.

- Speech and pen input are two common examples - and are complementary.
Speech+pen Interfaces

- Speech is the preferred medium for subject, verb, object expression.

- Writing or gesture provide locative information (pointing etc).
Speech+pen Interfaces

Speech+pen for visual-spatial tasks (compared to speech only)

* 10% faster.
* 36% fewer task-critical errors.
* Shorter and simpler linguistic constructions.
* 90-100% user preference to interact this way.
Put-That-There

User points at object, and says “put that” (grab), then points to destination and says “there” (drop).

* Very good for deictic actions, (speak and point), but these are only 20% of actions. For the rest, need complex gestures.
Multimodal advantages

Advantages for error recovery:
* Users intuitively pick the mode that is less error-prone.
* Language is often simplified.
* Users intuitively switch modes after an error, so the same problem is not repeated.
Multimodal advantages

Other situations where mode choice helps:
* Users with disability.
* People with a strong accent or a cold.
* People with RSI.
* Young children or non-literate users.
Multimodal advantages

For collaborative work, multimodal interfaces can communicate a lot more than text:

* Speech contains prosodic information.
* Gesture communicates emotion.
* Writing has several expressive dimensions.
Multimodal challenges

Using multimodal input generally requires advanced recognition methods:
* For each mode.
* For combining redundant information.
* For combining non-redundant information: “open this file (pointing)”

Information is combined at two levels:
* Feature level (early fusion).
* Semantic level (late fusion).
Break
Final project presentations on Dec 6 and 8.

Presentations go by group number. Groups 6-10 on Monday 6, groups 1-5 on Friday 8.

Presentations are due on the Swiki on Weds Dec 8. Final reports due Friday Dec 3rd. Posters are due Mon Dec 13.
Early fusion

- Vision data
- Speech data
- Other sensor data

Feature recognizer

Action recognizer

Fusion data
Early fusion applies to combinations like speech+lip movement. It is difficult because:
* Of the need for MM training data.
* Because data need to be closely synchronized.
* Computational and training costs.
Late fusion

- Vision data
 - Feature recognizer
 - Action recognizer

- Speech data
 - Feature recognizer
 - Action recognizer

- Other sensor data
 - Feature recognizer
 - Action recognizer

Recognized Actions

Fusion data
Late fusion is appropriate for combinations of complementary information, like pen+speech.

- Recognizers are trained and used separately.
- Unimodal recognizers are available off-the-shelf.
- It's still important to accurately time-stamp all inputs: typical delays are known between e.g. gesture and speech.
Examples

Speech understanding:
* Feature recognizers = Phoneme, “Moveme,”
* Action recognizer = word recognizer

Gesture recognition:
* Feature recognizers = Movemes (from different cameras)
* Action recognizers = gesture (like stop, start, raise, lower)
Exercise

What method would be more appropriate for:

* Pen gesture recognition using a combination of pen motion and pen tip pressure?

* Destination selection from a map, where the user points at the map and says to the name of the destination?
Contrast between MM and GUIs

- GUI interfaces often restrict input to single non-overlapping events, while MM interfaces handle all inputs at once.

- GUI events are unambiguous, MM inputs are (usually) based on recognition and require a probabilistic approach.

- MM interfaces are often distributed on a network.
Agent architectures

- Allow parts of an MM system to be written separately, in the most appropriate language, and integrated easily.

- OAA: Open-Agent Architecture (Cohen et al) supports MM interfaces.

- Blackboards and message queues are often used to simplify inter-agent communication.
 * Jini, Javaspaces, Tspaces, JXTA, JMS, MSMQ...
Symbolic/statistical approaches

- Allow symbolic operations like unification (binding of terms like “this”) + probabilistic reasoning (possible interpretations of “this”).

- The MTC system is an example
 * Members are recognizers.
 * Teams cluster data from recognizers.
 * The committee weights results from various teams.
MTC architecture
Probabilistic Toolkits

- The “graphical models toolkit” U. Washington (Bilmes and Zweig).
 * Good for speech and time-series data.

- MSBNx Bayes Net toolkit from Microsoft (Kadie et al.)

- UCLA MUSE: middleware for sensor fusion (also using Bayes nets).
MM systems

Designers Outpost (Berkeley)
MM systems: Quickset (OGI)

Other QuickSet Users

ModSAF Simulations

3-D “cave” interaction

Spoken Language

Handheld Computers

Gesture
Crossweaver (Berkeley)
Crossweaver (Berkeley)

- Crossweaver is a prototyping system for multi-modal (primarily pen and speech) UIs.
- Also allows cross-platform development (for PDAs, Tablet-PCs, desktops.)
Summary

- Multi-modal systems provide several advantages.
- Speech and pointing are complementary.
- Challenges for multi-modal.
- Early vs. late fusion.
- MM architectures, fusion approaches.
- Examples of MM systems.