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1 Introduction

Most visions of ubiquitous computing including Weiser’s argue that it should be
“calm”: almost invisible except during direct (focal) interaction. The interaction
should also be well “fit” to the environment it supports. This is a particular
challenge when a user wants to control an unfamiliar environment: whatever
modality is used, user and computer must share conventions about the effects
of the user’s action. There is often no “direct manipulation” scheme and no ob-
vious affordance for room control. In the worst case, this may lead to eccentric
command conventions (“restaurant 2.0,” “kitchen 3.1” etc.). We argue that an
ideal environment should respond to users’ own natural forms of expression. For
open-plan room control, we believe speech interfaces are a very good option .
With distributed microphone technology the physical interface all but disap-
pears, but jumps fluidly to the foreground when the system responds to spoken
input. Speech is also the most natural form of human expression. The challenge
remains how to interpret natural speech, and how to align users’ situated under-
standing of the world with the system’s.

We are exploring natural interaction for a room lighting application. The
target environment is a 2,300 sq ft workspace which is semi-structured: it in-
cludes both dedicated space (cubicles, sofas, kitchen area, workshop) and a large
amount of multi-use space for seminars, group and individual meetings etc. The
room’s lighting is very flexible: there are 79 independently-dimmable compact
fluorescent downlights. The lights can be individually adjusted using a simple
web interface. But this is difficult in the multi-use space (which contains no fixed
furniture). As a practical matter, users often find it more convenient to turn all
the room lights on rather than a small subset. Like many open-plan office spaces,
the result is that many lights are left on for hours and energy consumption is

1 Weiser explicitly critiqued speech-based agent interfaces in one of his well-known
papers. However, his specific criticisms related to many aspects of design that we
avoid: agent personality, knowledge, an “identity” you interact with and impart
human-like traits to. By contrast, our use of speech is highly situated, in a shared
context, and in short focal interactions followed by return to invisibility.



needlessly high. We have experimented with various types of remote control but
ultimately, speech input seems the best option for calm lighting control in this
space. The space is equipped with a large array of microphones in the ceiling
to support speech input from any location, although this functionality is not
supported yet. The present paper therefore concentrates on (natural language)
text input from users.

The lighting control problem although simple, nevertheless raises two of the
generic challenges for natural human-machine interaction: (i) discovering how
users give commands and (ii) discovering the configurations named by those
commands. That is, it is not just a problem of building a language model or
grammar for user input, but in discovering the semantics of those inputs. Users
name particular parts of the room (“kitchen area,” “soft space” etc.), but these
names must be matched to settings of groups of lights. We believe this theme
occurs in many ubicomp environments: e.g. mapping the “semantic gap” from
a configuration command like “presentation” to control of lights, projector, and
sound devices in a workplace, or from a request like “high priority calls only”
on a mobile device to a specific subset of the user’s contacts who are important
enough to trigger a ring response. We will call this problem the “SNAC prob-
lem,” for “Simultaneous Naming And Configuration”. Since users may have their
own preferences, SNAC should be personalized when individual user history is
available. On the other hand, SNAC systems should still do something reason-
able for irregular users of a space (visitors), such as choosing a most popular
configuration from previous user data.

For my thesis, I plan to propose and evaluate an approach to SNAC for
the lighting control application. The approach uses a WoZ (Wizard of Oz) who
receives natural language text requests from users, and who manually adjusts the
lights according to his understanding of the user’s command. Users occasionally
enter further text if they are not happy with the Wizard’s configuration, and
the wizard tries to correct it. The final configuration, along with the user’s input
command, is recorded. The command-response pairs are then used to train a
pattern recognizer which attempts to find the most common lighting patterns
with command keywords used to invoke them.

We have run an initial wizard-of-Oz study, collecting a few hundred command-
response pairs over several weeks and explored two different pattern recognizers
(SVD and NMF) on two different feature sets. We found promising results from
the NMF pattern recognizer on a feature set with difference data (differences
in the intensity of the lights) and frequency vectors (unigrams) of the messages
that resulted in the change in intensities.

Building on the initial results, I plan to address four main challenges in my
thesis. 1) T will iterate on the pattern recognizer for lighting patterns. 2) In
addition to a pattern-recognizer for names sets of objects, I will also train a
pattern recognizer for the actions performed on the named sets of objects. 3)
Given a message, I will need to figure out how to use the pattern-recognizers
to interpret the message as to what action should be taken. 4) I will build an



instant message bot that will allow members of the lab to manipulate the stat
of the lights through natural language instant messages.

I will evaluate the approach before implementing the instant message bot
with a wizard-of-Oz study similar to the initial study. Instead of having the
wizard interpret the messages, the wizard will rely on the interpretation from
the pattern-recognizers to decide what action to take. This will allow an n situ
evaluation of the approach to SNAC for the lighting control application based
on users’ reactions and feedback.

The rest of the proposal is organized as follows. Section 2 situates the thesis
contribution in the related work. Section 3 describes the proposed method. Sec-
tion 4 describes the initial wizard-of-Oz study. Section 5 describes the methods
(SVD and non-negative matrix factorization) for discovering text/configurations.
I present the initial results in Sec. 6. I describe the four challenges I plan to ad-
dress in my thesis in Sec. 7, I describe the proposed evaluation in Sec. 8 and
conclude in Sec. 9.

2 Related Work

Below I describe the work related to designing natural speech interfaces, previous
applications of factorization algorithms such as SVD and NMF, and existing
smart home and home IT projects.

2.1 Natural Speech Interface Design

Whether a speech interface is: (a) grammar-based as many successful commercial
systems are (HeyAnita now Kirusa [Kir07], BeVocal [Nua07], Tellme [Net07]);
(b) uses a robust method such as a statistical language model [BCDP90], (c)
or uses a combination of both [RBH*04], most speech interfaces map a term to
one concept, action or object. For example, in the RoomLine room reservation
system [Boh07] , the user says the time of the day, the date, and the size of the
room they would like to reserve, and the system replies with which rooms are
available. A tool like Regulus [RHBO04] can help figure out a collection of terms
that map to one concept, such as the size of a room or a date, but the designer
has to know what the objects or actions are that a user might refer to. We
propose a method to figure out what collection of objects, actions or concepts
the user may want to refer to with one phrase. For example, the user may want
to turn on four lights together, and refer to those four lights as “the lights over
the public PCs.”

It is common practice to use a wizard-of-Oz study [DJ93,FG02] to collect a
corpus of speech data on which to train a statistical language model for a speech
interface. You might also run a wizard-of-Oz study with a simulated automatic
speech recognition channel to get more realistic data about the interaction with
the user [SWYO04]. Our approach uses these practices, but also collects command
response to build a SNAC model, which is novel.



2.2 Applications of Matrix Factorization

Singular value decomposition (SVD) is a commonly used tool for extracting
patterns in various signals. While the SVD approach assumes the patterns are
orthogonal, it is often applied with reasonable outcomes even when this does
not hold: e.g. LSA (Latent Semantic Analysis) is an SVD of the document-term
frequency matrix for a corpus, and has been widely used for text analysis. SVD
analysis is closely related to eigenvalue analysis, and in fact the “eigen” prefix
is often used to describe an SVD as in “eigen-faces” (SVD for face recognition),
“eigen-taste” (SVD for collaborative filtering) or “eigen-behaviors” work [EP06]
for space-time patterns of user movement.

In recent years, alternative factorization methods such as least-squares NMF
(Non-negative Matrix Factorization) have found favor over SVD in cases where
patterns are not orthogonal. This is especially true when the patterns appear
“non-negatively.” This is indeed the case for both light intensities and for word
frequencies the user commands. So NMF seems like a natural candidate for
SNAC analysis. Furthermore, NMF has been shown to be superior to SVD for
pure text clustering [LS99], or for image segmentation [L.S99] which is similar to
our light grouping problem. Barnard et al. match words and pictures [BDAF 03]
using an “aspect” probabilistic model, which is another type of factor model.
Other candidate factor models include Latent Dirichlet Analysis (LDA) [BNJ02]
and GaP [Can04]. These methods add prior probabilities to the factors and
use likelihood measures (rather than least squares) to fit the original data. We
did not use these methods because: (i) when there is enough training data,
the factor priors have little or no effect and (ii) least-squares NMF has been
shown to produce better (more independent) factors compared to KL-divergence
(likelihood) fitting methods [LS99]

2.3 Smart Homes and Home IT

Predictive light automation has been studied in [Moz05]. The authors of that
work acknowledge that conventional light control interfaces have drawbacks even
in the home (e.g. users often don’t turn things off) and use a learning system to
automate the lights. Quesada et.al. address the interface challenge in the home
machine environment [QGST01] with a speech interface for lighting control in
the home. Juster and Roy use situated speech and gestures to control a robotic
chandelier, Elvis [JR04]. Their work focuses on how to move the chandelier arms
to achieve a given lighting scene. They use keyword spotting and hand selected
keywords to analyze the semantic content of the speech. Instead of focusing on
how to achieve a given lighting scene, we focus on analyzing the semantic content
of the messages.

3 Proposed Method

We would like our natural interface to allow users to refer to and manipulate
the set of lights of their choice, with a vocabulary that makes the most sense to



them. To that end we want to find the sets of lights commonly manipulated by
our participants, and the terms they use to refer to those sets of lights.

As is common when designing a speech interface, we ran a wizard-of-Oz
study to better understand the interaction with the user as well as collecting
vocabulary data so that the system will understand the vocabulary the users
tend to use. In addition to the traditionally collected data, we also collected
data about the state of the lights. We recorded all of the changes to the state of
the lights with timestamps, and we recorded all of the messages the users sent
asking the state of some lights to be changed. At the end of the study we had
co-occurrence state change data and messages requesting the state change. In
the next two sections, we describe the study and the data analysis in detail.

4 Wizard-of-Oz Study

4.1 Description of the Workspace

The initial study took place in the 2300 square foot semi-structured workspace
that currently has sixteen residents (researchers). Six graded-awareness cubicles
occupy half the room, the other half is a multi-use space for meetings, presenta-
tions, ad-hoc teaming or individual work. The multi-use space has a presentation
screen, a “soft space” with a couch and chairs, and a set of four computers for
visitors to the lab to use. There is also a tool shop in one corner of the room. Fig-
ure 1 shows the floor plan of the room. The room has 79 individually-controllable
compact fluorescent lights mounted overhead. The intensity of each of the lights
can be controlled over the network via a web interface. All occupants of the lab
have access to the web interface. They can access it from their personal com-
puters, or they can access it on one of the public machines. One of the public
machines always had the web interface open.

4.2 Study Details

We ran a wizard-of-Oz study with ten researchers who regularly work in the
room diagrammed in Fig 1. Nine of the participants have desks in the room, and
one of the participants sits in the adjacent room, but makes heavy use of the
multi-use area and the tool shop. There were six researchers who have desks in
the room that did not participate in the study. Two of them were out of town
while the study was run, three did not volunteer to participate, and the last
one was the wizard. The researchers not participating in the study used the web
interface to control their own lights.

The study participants were asked to send the wizard an instant message each
time they wanted to change the state of the lights in the room. For example, the
participant might write “turn on the two lights over my desk” or “turn off the
lights over the public machines.” The wizard asked any necessary clarification
questions (via instant messages), and then used the web interface to make the
requested change to the state of the lights.
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Fig. 1. Map of the room that was used for the wizard-of-Oz study. Each of the 79
individually-controllable lights are shown as light bulbs. Each of the 16 researchers’
desks are shown, as well as the desks for the public computers. (names are anonymized)

If the wizard was not available to change the state of the lights, the partic-
ipants were asked to type the message they would have sent to the wizard into
the web interface, and then make the changes themselves with the web interface.
This way data was still able to be collected if the wizard was not at his desk.

4.3 Data Collected

We collected twenty three days of data, including over 230 light state changes,
and 306 messages, with 175 different words (not including stop words). Fig-
ure 2 shows the number of messages each person sent (not including messages
confirming the change in the lights was correct).

Light State Changes A light state is a set of intensity values, one for each
of the 79 lights. A light state change is the difference between two light states,
where at least one of the values is non zero. Each message is tagged with the
participant’s name. From here on, we will refer to a light state change vector
simply as a change vector.

Messages The users used a variety of different ways to request changes in the
lighting scene. The different kinds of messages collected include: messages that
refer to two sets of lights; messages that use direction phrases such as southeast;



messages referring to the amount of light in the room; messages asking all the
lights to be turned on or off; messages that refer to the person speaking; messages
with timing information as to when the change should take place; and messages
that excluded lights in the description of which lights to change. Figure 3 shows
the different kinds of messages collected and some examples of each kind of
message.

In terms of Speech Acts [Seadc], the messages are directives, or illocutionary
acts where the goal is to get the addressee to do something. Austin introduced
perlocutionary acts and illocutionary acts [Aus62] and Searle described five types
of illocutionary acts. Perlocutionary acts are acts which result in an action. II-
locutionary acts are the act of getting the audience to recognize the speaker’s
meaning. Searle’s five illocutinary acts are: assertives — the act to get the ad-
dressee to form or attend to a belief; directives — the act to get the addressee to
do something; commissives — the act to commit the speaker to doing something;
expressives — the act to express a feeling toward the addressee; declarations —
these rely on organized convention of institutions. 2 Directive illocutionary acts
can be requests for action as with most commands and suggestions, or requests
for information as with most questions. Some of the messages are phrased as
commands, such as “Turn up the lights near the sink.” The other messages are
phrased as questions, such as “Can I get the lights on in the design research
cubicle?” The latter message is literally asking a yes or no question, not giving
a command. Searle calls the literal illocutionary act the secondary illocution-
ary act [Sea69] and the intended illocutionary act the primary illocutionary act.
From the messages themselves its hard to tell what the primary illocutionary
act is, but from the context in which the message is received (the interface to
the lighting control system), we can safely assume the messages are commands
to the system (or the wizard in the initial data).

5 Methods: SVD and NMF

Given a set of state change vectors and corresponding messages that “caused”
the state change, we would like to find groups of lights that commonly change
together, and a set of terms that refer to those changes. We assume the 79 lights
fall into k (possibly overlapping) groups each of which corresponds to a set of
lights that are commonly manipulated at the same time. Each state change
(a set of 79 values representing the change in intensity of each light) either
completely belongs to a particular group, or covers multiple groups. We project
the set of state changes into a k-dimensional semantic space in which each axis
corresponds to a particular group of lights. Each state change can be represented
as a linear combination of the k group. Our approach is a factorization rather
than a clustering approach. While similar, factorization is more general because
it allows overlapping groups, and graded membership in each group.

The values in the state change vector range between -255 and 255 because
the range of possible intensities range between 0 and 255 and the change in

% The descriptions of Searle’s illocutionary acts are from [Cla96].



60

50 -

40 |

30

20

10

dan wally ron tony carol gina joe lisa alan kirk dana mike ashley

Fig. 2. The number of message sent per person (not including messages confirming
a change in the state of the lights was correct). Gina and Matt did not send any
messages because they did not participate in the study, but their names still show up
in the results because participants in the study referred to lights in their cubicles by
using their names.

intensity can be positive or negative. At first glance, the range of the values
in the state change vector seems to lend itself to an eigenvector solution using
singular value decomposition (SVD), but SVD assumes the factors are orthogonal
and this often turns out not to be the case. For example, if two researchers share
a cubicle, both of them may turn on all the lights in the cubicle, and each
researcher may sometimes only use the lights over their desk, depending on the
amount of ambient light in the room from the window. This would result in a
set of factors that are not orthogonal.

Values in the state change vector range from -255 to 255, but NMF only
deals with positive factors. On the other hand, when looking for sets of lights
that are manipulated together, it doesn’t matter if the intensity of the lights is
increased or decreased, it only matters what has changed. So we use absolute
values of change vectors for NMF analysis. For SVD, we tried both signed or
absolute value of changes. It did not seem to matter much to the resulting factors,
and the data shown are for absolute values for easier comparison to NMF. As
discussed earlier, both SVD and NMF have been applied to text analysis and
image segmentation tasks. So it is natural to apply them to combined datasets
comprising text terms and the light state changes.

5.1 Data Representation

Since we want to find the groups of lights that are commonly manipulated at
the same time, we want to represent the changes to the state of the lights in
our matrix. We would also like to find the terms that are most commonly used
to refer to a group of lights, so we represent the messages that lead to a state
change in our matrix. For each state change, we have a change vector of intensity
difference values, one for each of the p lights. Each state change vector has



Messages referring to two sets of lights.

Joe: Can I get my desk light on pretty bright and the other cubicle lights,
light but a little dimmer than normal.

Joe: Design research lights up please, and my light a little more than the
others.

Messages that use direction phrases to refer to lights.
Wally: Middle two lights in the southeast cubicle on full.
Wally:  Four westmost lights in the southeast cubicle off.
Wally: All east side lights off.
Messages referring to the amount of light in the room.
Dana:  hey ana it’s dark.
Lisa: Could you brighten up my cube this morning?
Messages referring to object in the room
Dana: can you brighten the lights in the aisle by the cabinets?
Joe: can i get the lights up a little just over the strip of tables in the meeting
area?
Jack: Turn up the lights near the sink.
Wally:  Could I get the row of lights next to the window on about 2/3 of the
way?
Wally:  Window lights off please!
Lisa: Could you turn on the lights overhead the couch/chair in the soft
space?
Messages that use names for spaces in the room.
Jack: can you turn up the lights in the tool shop - we’ll be going back and
forth
Joe: Can i get the lights on in the design research cubicle.
Carol:  Turn lights on in the MechE cube.
Dana:  could you turn on the lights in Alan’s cube?
Lisa: Hey, could you turn up the lights over here in the soft space corner?
All on or all off messages.
Lisa: could you turn off all the lights?

Ron: all off.
Wally: all lights off.
Joe: I’'m the only one here. can i get all the lights off now. I'm leaving.

Messages that make reference to the person speaking.
Wally:  Could I please have the four lights overhead on to about half brightness?
Dan: lights over my head.
Jack: turn up the light nearest (and in front, so that i don’t cast a shadow
over my work) a bit.
Messages with timing information.
Joe: Hi ana can i get my cubicle lights out in 5 minutes.
Joe: Can i get my lights on and the rest of the BID lights off please. in that
order, so I'm not left in the dark. thanks!
Messages that exclude lights.
Wally:  All lights except the westmost four in the southeast cubicle off.
Joe: Can i get my lights on and the rest of the BID lights off please. in that
order, so I'm not left in the dark. thanks!

Fig. 3. Sample messages from Wizard-of-Oz study.



a corresponding term-frequency vector that represents the terms used in the
message that resulted in the state change. We represent our data set in an m xn
matrix where m is the number of state change vectors, and n is the number of
lights (p) plus the length of the term-frequency vector (¢). Each row of the matrix
has a state change vector, followed by the term-frequency vector for the message
that resulted in the state change. Not all state changes have a message associated
with them because not all of the researchers in the lab participated in the study.
Let L = {i1,ls,...,1l,} be the set of lights in the room and W = {w1,wa, ..., wq}
be the complete vocabulary used in the messages after stop words are removed,
and the stemming operation is performed. The vector X; of state change ¢; is
defined as

Xi = [dviydaiy . - dpistii, tog, .. Lgi

where dj; is the difference in intensity of light [; after state change c;, t;; is the
number of times vocabulary word w; appeared in the message that triggered
state change ¢;. (Since each message is tagged with the user’s name, the user’s
name is included in the vector X;. ) With the vector X; as the it row, we
construct the n x m matrix X. We use non-negative matrix factorization with
this matrix, and the light group weights and group terms are directly obtained
from the results. See Fig. 4.

5.2 Computing a Non-Negative Matrix Factorization

Non-negative matrix factorization (NMF) is an algorithm that finds a positive
factorization of the given matrix [LS00,L.S99]. NMF requires we know the number
of factors in the data, which we will call k. We explain shortly how we chose
k for the experiment. We want to factorize the matrix X into the non-negative
m x k matrix U and the non-negative k& x n matrix V such that X ~ UV7.
Each element u;; of matrix U represents the degree to which the state change c;
is associated with factor j. Each element v;; of matrix V represents the degree
to which light [; belongs to factor j if 0 < i < p, and v;; represents the degree
to which term w; belongs to factor j if p < ¢ < ¢ where p is the number of lights
and ¢ is the number of terms in the complete vocabulary. See Figure 4. Our
visualization of the results (on the far right side of the figure) has three parts.
On the left, we show the degree to which each of the lights is part of the group
with the size of the square over the light on the map of the lab. These values
are scaled with respect to the strength of the group. In the middle, we show the
strength of the group with a single black bar. The strength of two groups can
be compared by comparing the middle black bar on the visualizations of two
groups. On the very right hand side we plot each term along the y-axis based
on the degree to which the term belongs to this group.

We used the NMF algorithm described in [XLGO03] for document clustering.
The algorithm minimizes the following objective function:

1
7= |x-vv
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Fig. 4. We factorize matrix X into matrix U and matrix V such that X ~ UVT.

where ||-|| denotes the squared sum of all the elements in the matrix. The algo-
rithm starts with random values in the matrices U and V. In each iteration, it
updates U and V based on the update rules below. It iterates until the result
of the objective function J stops decreasing.

(XV)i; (XTU)yy

Vij = Vij g

Uz] — Uz]( VUTU)U

UBTU);;

Normalization The matrices U and V are not unique: multiplying the i*"
column of U by s and the i*" column of V by 1/s produces the same product
UV, To get a unique solution, we need to normalize one and adjust the other.
In our case, we normalize matrix V by scaling column j so that the maximum
value of the column vy, vaj,...,v,; is 255, i.e. we assume that some light in
group j has “full” membership in the group, and the others full or less. Thus all
elements of V are in the range [0, 255]. We then scale the corresponding columns
of U so that the product UV7 is preserved. The normalization has two roles:
one is to make the factorization unique, the other is to allow us to measure the
“strength” of a particular factor. The strength of factor i is the sum of the i*"
column of U after normalization. This measures roughly the number of times
that light group contributes to a state change, times the contribution of the
factor to that change.

The normalization does not affect the visualization of of the vector V; in Fig. 8
because the values in the vector V; are scaled by the strength of the group. The
subjective evaluation of each of the groups shown by the color of each of the bars
in Fig. 7 shows the normalization we selected makes sense for our data since the
unexpected groups (white in the figure) have the lowest strength measures. The
rate at which the strengths of light groups decays in this plot is a measure of
how “good” the factorization is. A good factorization should “explain” the data
with the smallest number of factors. From the plot it can be seen that group
strength drops almost to zero for 40 light groups. The first 20 groups “explain”
more than 90 % of the data variation. This plot further shows that increasing



the number of groups beyond 40 will have little or no effect on the factorization
that results (it will produce only further almost-zero-strength factors).

Intuitively, we would expect 15-30 strong groups. There are 10 users most
of whom set personal light configurations over their desks. There are about 5
clearly distinct areas in the public space, and then various ad-hoc areas that
people use. The NMF factorization is right in the ball park with its own analysis
of the strong light groups.

6 Results

We found light groups with matching terms both over participants’ desks and in
the public space. The groups over participants’ desks are not necessarily labeled
with the participant’s name. If the participant used unique words to refer to his
lights, those terms are the strongest (because users’ names will also be present
in their commands to public light groups). If participants tended to use more
generic terms to refer to their light, the strongest associated terms include their
name.

In Fig. 5 we show two of the groups in Wally’s cubicle. He tends to refer to his
lights by describing where they are in the room, and which lights he would like on
within his cubicle. Wally tends to refer to his lights by describing their location
in the room, and by describing which lights he would like within his cubicle. His
cubicle is the southeast cubicle, and he likes to turn on the westmost lights in
his cubicle. See Fig. 4 for a description of the visualization. On the very right
hand side of the visualization, we provide a zoomed in version of the plot with
the terms.
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Fig. 5. Two light groups in user Wally’s cubicle.
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Figure 6 shows two examples of groups in the public space. The first is the
row of lights next to the windows. The second is the set of lights over the fridge



in the kitchen area. Multiple participants referred to these lights so the strongest
associated terms are not participant’s names, rather they are terms used to refer
to the set of lights. The lights next to the window are on the east wall of the
room, and are in a row. Notice the terms window, row and east are among the
strongest terms in this group. The strongest terms in the group for the lights
over the fridge include area, kitchen, all, near, ron, dan, jack. Ron, Dan and
Jack often turn these lights on, and refer to them as the lights near the kitchen
area, or some subset of those terms.

window

kitchen

east

near

o o hei wai =
- - - - ° ® o) fow " = - - " ° "
"dan
window jack |
i , i @ i - il ron i . " i i . of(f 2523 en It Joe jock leay .y
east al cabinet
. : e | | S 3 . . i »

Fig. 6. Two examples of groups in the public space. The left visualization shows the
group of lights commonly used next to the window once it gets dark outside. Notice
among the strongest terms describe are descriptive words for the light group (window,
east, row). The right visualization shows the group over the fridge. Here the descriptive
words among the strongest terms include area, kitchen, near, and Ron, Dan and Jack
all tend to turn on these lights.

In the next two sections we present the results from the NMF analysis. We
also present results from the SVD analysis as a contrast to the NMF results.

6.1 Non-negative Matrix Factorization

For NMF, we selected k = 40 factors so that we would make sure to see all of
the meaningful groups of lights. We also tried smaller values of k such as k = 10.
This resulted in some factors with lights in just one cubicle, and other factors
having lights in two cubicles, which we interpret as the selected value for k£ being
too small. Figure 8 shows a visualization for each of the twelve strongest factors
from the NMF analysis with & = 40. Each visualization has three parts: on the
left, there is a small map of the room; in the middle there is a single black bar; on
the right there is a collection of words. The map shows the degree to which each
of the lights belongs to that group, and is scaled by the strength of that group.



The single black bar shows the strength of the group. The strongest group is the
top left-most visualization. The collection of words on the right side shows all of
the terms in the complete vocabulary. They are arranged along the x-axis based
on the degree to which they belong to the group (scaled by the strength of the
group). Figure 4 shows how the visualization is constructed from the matrices U
and V. Figure 1 shows where each of the researchers sits in the room. Figure 7
shows the strengths of the forty groups found using NMF and our subjective
evaluation of each of the groups.

To help the reader interpret the visualizations shown in Fig. 8 we describe
each of the twelve visualizations shown. The first group shows Dana’s desk,
and although weak, the term dana is the strongest term. The second group
shows Ashley’s desk. Ashley was the wizard, so not only did her messages about
her lights have her name on them, many of the other messages sent to her to
change other lights also had her name in them, making it difficult to separate
out her desk with her name. The third group shows a light over the bookshelf
in Carol, Lisa and Joe’s cube. Since each of them often manipulated that light,
it is not labeled with any of their names. The fourth group shows the the lights
around Joe’s desk, and is labeled with Joe’s name. He is the primary person to
manipulate the light directly over his desk, but the other two are not as strongly
part of this group since he is not the only one who manipulates them. The fifth
group shows the two lights over Carol’s desk, and is labeled with her name. The
sixth group shows the two westmost lights in Wally’s cubicle. He often refers to
the lights in his cubicle based on directions. The seventh group shows the two
lights over Wally’s desk, which is in the southeast cubicle, and is labeled as such.
The eighth group shows the lights Lisa likes to use. She refers to her cubicle as
the “team design” cubicle. Only the term “team” came out in the NMF analysis
for her lights. The ninth group shows the light over the sink in the toolshop that
Jack often turns on. The three lights over Gina’s desk are strongest in the tenth
group, and the term Gina is the strongest term. The two lights over Dan’s desk
are strongest in the eleventh group, and again, the strongest term in the group
matches. The twelfth group shows the lights Dana likes to turn on around her
desk. She often turns on the lights over her desk and then decides she would
also like the light on around her desk, including the two closest to her in Alan’s
cubicle.

6.2 Singular Value Decomposition

Figure 10 shows the strengths of the factors from the SVD analysis. Note that
there is substantial strength in the 40th factor and beyond, indicating that many
more factors are needed to explain the data as compared with NMF.

Figure 9 shows the strongest factors and corresponding terms from the SVD
factorization. It can be shown that the first SVD factor is an average of all of
the light intensities. Multiple groups of light from the NMF analysis show up
in one factor from the SVD analysis. The second through fifth SVD factors in
Fig 9 demonstrate this. The second SVD factor appears to include the nineteen
strongest NMF group. The third SVD factor appears to include the strongest
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Fig. 7. The strengths and our subjective evaluation of the forty groups found using
NMF.

ten NMF groups and the seventeenth NMF group (not show in the figure). These
results suggest in order to effectively separate the light groups using SVD analy-
sis, we need to apply a second clustering analysis, such as a K-means analysis.
We leave this to future work.

7 Proposed Challenges to Address in the Thesis

In my thesis I plan to address four main challenges to the SNAC problem for
lighting control. 1) I will iterate on the pattern recognizer for lighting patterns.
2) In addition to a pattern-recognizer for names sets of objects, I will also train
a pattern recognizer for the actions performed on the named sets of objects. 3)
Given a message, I will need to figure out how to use the pattern-recognizers
to interpret the message as to what action should be taken. 4) I will build an
instant message bot that will allow members of the lab to manipulate the state
of the lights through natural language via instant messages.

The initial pattern-recognizer appears to do a good job of finding meaningful
groups of lights for our lighting application. It also produces keywords which in
many cases are good names for the groups. However, the names of many other
groups are less effective (e.g. “space”). In most of these cases, ordered groups of
terms (bigrams and trigrams) would provide much better names (e.g. “kitchen
space, “public PCs”). I plan to extend the initial pattern-recognizer to compute
factors from n-grams instead of only using unigrams. The resulting factors will
contain n-grams of various orders which can act as fully-functional language
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Fig. 10. The strengths of the factors from the SVD analysis.

models (n-grams with backoff and smoothing) for modeling the command utter-
ances for each group.

In the design of the initial pattern-recognizer, we intentionally removed signs
from the change data, arguing we would look at actions separately. I plan to train
a pattern-recognizer on the kind of changes in the light data and the actions in
the messages. In the initial pattern-recognizer, we did not explicitly extract only
group names and participant names, they came out in the factors naturally. 1
expect to find a similar effect with the actions and the kinds of changes to the
lights.

In order to interpret the semantic content of the messages, I will need to
make use of both of the pattern-recognizers. The state of the lights at the time
of the message together with the action should help resolve any ambiguity in the
group of lights referred to in the message.

Finally, after evaluating and iterating on the approach, I will implement an
instant message bot to handle the lighting control in our lab. The bot will allow
residents and visitors of the lab to control the lights through natural language
in text messages. In addition to users using instant message clients on their
computers in the cubicle area, at least one computer in the public space will
have an instant message client running to allow users to control the lights from
the public space. Users will also be able to control the lights from laptops in the
public space via an instant message client.



8 Evaluation

The proposed method aims to enable a more natural interface to the lighting
system discussed, and more broadly to complex home IT systems. I plan to
evaluate the proposed method with a wizard-of-Oz study. Similar to the initial
wizard-of-Oz study, the wizard will change the state of the lights based on in-
stant text messages from members of the lab, but the wizard will use the trained
pattern-recognizers to decide how to change the lighting scene. This way the
proposed method can be evaluated in situ. A lighting scene change will be eval-
uated based on the reaction of the user. In the initial wizard-of-Oz study, users
wrote clarification messages when the change to the lights was not what he/she
expected. If a user responds to a change in the lights with a clarification message,
we will record the change in the lighting scene as incorrect.

9 Conclusions

For my thesis I plan to propose and evaluate an approach to SNAC for the
lighting control application in our lab. We conducted an initial wizard-of-Oz
study of the usage of the lighting in a semi-structured workspace. In the wizard-
of-Oz study, participants controlled the lights by asking the wizard to change
the state of a particular set of lights via instant messages. The text command,
along with the final configuration produced by the wizard is used to derive the
name/configuration pairs.

I plan to address four main challenges in my thesis. 1) I will iterate on the
initial NMF based pattern recognizer for lighting patterns. 2) In addition to a
pattern-recognizer for names sets of objects, I will also train a pattern recognizer
for the actions performed on the named sets of objects. 3) Given a message, I will
need to figure out how to use the pattern-recognizers to interpret the message as
to what action should be taken. 4) I will build an instant message bot that will
allow members of the lab to manipulate the stat of the lights through natural
language instant messages.

I will evaluate the approach before implementing the instant message bot
with a wizard-of-Oz study similar to the initial study. Instead of having the
wizard interpret the messages, the wizard will rely on the interpretation from
the pattern-recognizers to decide what action to take. This will allow an in situ
evaluation of the approach to SNAC for the lighting control application based
on users’ reactions and feedback.

Designing natural language human-machine interfaces present many chal-
lenges including (i) discovering how users give commands and (ii) discovering
the configurations named by those commands. It is not only a problem of build-
ing a language model or grammar for user input, but in discovering the semantics
of those inputs. In an effort to align users’ situated understanding of the world
with the system’s and interpret their natural speech, I present an approach to
the problem of simultaneous naming and configuration for natural language in-
terfaces.
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