
Illuminac: Simultaneous Naming and Configuration
for Workspace Lighting Control

Author 1 Affiliation
Affiliation

author@a.com

Author 2 Affiliation
Affiliation

author2@b.com

ABSTRACT
This paper explores “natural speech” interfaces in an ubiqui-
tous computing environment, specifically, the invocation of
custom lighting patterns in an “open-plan” workplace. The
workspace contains a large array of individually-dimmable
lights which is very flexible but expensive to configure for
common tasks. We argue speech is a good solution for this
task, but there is a challenge in supporting natural interaction
which is shared with other ubicomp environments: discover-
ing the lighting scene names, light configurations and, map-
pings between them. We describe the Simultaneous Naming
And Configuration (SNAC) approach to address this prob-
lem and demonstrate its applicability to our system, Illu-
minac.

Author Keywords
Natural Speech Interfaces, Non-negative Matrix Factoriza-
tion

ACM Classification Keywords
H.5.2 User Interfaces:{Voice I/O, Natural language}

INTRODUCTION
The number of electronic devices that control our environ-
ment is ever increasing. While this trend brings greater flex-
ibility and control over our environment, configuring each
individual device to achieve the desired environmental state
becomes ever more tedious and often burdensome. For ex-
ample, in the home, to prepare the environmental state for
cooking, one might want to turn the radio on and turn it
to the news, turn the volume of the speakers up since the
kitchen will be noisy, and make the kitchen lights bright.
Then, to prepare the environmental state for eating dinner,
one might dim the lights in the dining room, turn on the mp3
player to play a dinner music playlist, turn the volume of the
speakers down, and close the blinds. Controlling all of these
devices—the lights, the radio, the speaker volume, the mp3
player, and the blinds—to achieve a desired environmental
state is quite tedious.

Submitted to UBICOMP 2008

As with any interface, an interface for controlling the envi-
ronmental state in the home should match the user’s mental
model instead of that of the underlying devices. That is, the
user should only need to specify thenameof the environ-
mental state rather than theconfigurationof each individual
device needed to achieve the desired state. In the home ex-
ample, the user should be able to say “set cooking mode” or
“apply dinner mode” rather than specifying the configura-
tion of the radio, speakers and lights to achieve the cooking
or dinner environmental state.

The challenge in designing such an interface that matches
the user’s mental model is not only in discovering thenames
for the environmental states, but also discovering the config-
urations of devices necessary to achieve a named environ-
mental state.

In other words, we are only given the set of devices that
can be controlled and how to control them, but we do not
know the names of the desired environmental states, the con-
figuration of devices to achieve each environmental state,
nor the mapping from environment names to device config-
urations. We call this issue the name-configuration map-
ping problem. To provide an ideal natural interface, the
users should be able to customize the environment names
and the corresponding configurations of devices. Therefore,
the name-configuration mapping problem cannot be solved
a priori, but must be solved for each individual set of users
and domains.

In addition to matching the user’s mental model, we want the
interface to be “calm.” That is, the interface in a ubicomp en-
vironment, like environment control, should be almost invis-
ible except during direct (focal) interaction (as advocated by
Weiser [22]). In this context, a speech-based interface seems
like a good option1. With distributed microphone technol-
ogy, the physical interface all but disappears, but jumps flu-
idly to the foreground when the system responds to spoken
input. Furthermore, speech is often considered the most nat-
ural form of human expression, and has the potential to ad-
dress certain accessibility concerns.

1Weiser explicitly critiqued speech-based agent interfaces in one
of his well-known papers. However, his specific criticisms related
to many aspects of design that we avoid: agent personality, knowl-
edge, an “identity” you interact with and impart human-like traits
to. By contrast, our use of speech is highly situated, in a shared
context, and in short focal interactions followed by return to invis-
ibility.

1



Such natural language-based interfaces only exacerbate the
name-configuration mapping problem, as it adds a level of
uncertainty to the system: either from imprecision in hu-
man input or uncertainty in the capturing of human input.
For speech interfaces, users have to recall their commands
which may result in slight variants. For example, one may
say “set mode for cooking” or “please change the environ-
ment for cooking” instead of “set cooking mode.” The au-
tomatic speech recognizer will inevitably have recognition
errors, such as recognizing “set cooking mode” as “set cook
in low.”

We believe this theme occurs in many ubicomp environ-
ments. For example, in the workspace the name-configuration
mapping problem arises in mapping the “semantic gap” from
a configuration command like “presentation” to control the
lights, projector, and sound devices. In a workspace with
an array of individually controllable lights instead of a bank
of lighting all controlled by one light switch, mapping from
a configuration command like “Joe’s lights on” to turn on
the lights over Joe’s desk presents the same challenge. This
challenge would also be present in mapping a request like
“high priority calls only” to a specific subset of the user’s
contacts who are important enough to trigger a ring response
on a mobile device.

In this paper, we look at designing a natural speech interface
for workspace lighting control in order to understand and
fully address the name-configuration mapping problem. In
this case study there are 79 devices (individually controllable
lights) and 25 users who have both their own and shared en-
vironment names and configurations. We make the follow-
ing contributions:

• We identify the distinction (semantic gap) between the
name of a desired environmental state and the configu-
ration of devices to achieve that environmental state (the
name-configuration mapping problem). The name-con-
figuration mapping problem in the presence of uncertainty
is the key challenge in designing natural speech interfaces
for environment and device control.

• We describe the Simultaneous Naming And Configuration
(SNAC) approach to address the name-configuration map-
ping problem with uncertainty. The key idea is a learning
system simultaneously trained on two kinds of data pro-
vided directly by the users’ names of environments and
configurations of devices. (SNAC Approach section)

• We identify an appropriate learning algorithm for simul-
taneous naming and configuration: non-negative matrix
factorization (NMF). (SNAC Approach Learning Model
section)

• We show the applicability of our SNAC approach for nat-
ural speech interfaces for workspace lighting control by
implementing and deploying a SNAC-based system, Illu-
minac. With Illuminac we see that one or two training
points is often sufficient to produce environmental states
with mostly correct configurations, thereby providing good
accuracy with little training. (Illuminac section)

names | commands

Chris: turn on my lights

Pristine: all on

configurations

Pristine: all on please

Figure 1. The name-configuration mapping problem for workspace
lighting control. The dotted lines indicate the concepts that must be
discovered by the system to provide a natural speech-based interface
for workspace lighting control.

OVERVIEW OF WORKSPACE LIGHTING CONTROL
Before we present the SNAC approach to the name-configuration
mapping problem we first introduce the workspace lighting
control domain for which Illuminac is designed.

Many large open plan-workspaces have extensive banks of
lights controlled by just one light switch. Therefore, the
lighting control is not flexible enough to respond to occu-
pancy or daylighting. Many lights are turned on for just a
few occupants, and lights next to a window cannot be turned
off without turning off the lights away from the window.
More granular control over the lighting in large workspaces
could enable a reduction in energy consumption by allowing
unnecessary lights to be turned off.

Low-cost granular lighting control systems appropriate for
both retrofit and new construction are being developed to
enable more flexible lighting control and, as a result, en-
ergy savings. One such system developed at the University
of California at Berkeley Center for the Built Environment
has been licensed to Adura Technologies [21] and is now
commercially available. Given this type of technology, more
flexible lighting control is possible in many workspaces with
large arrays of light fixtures.

Intelligent systems for controlling workspace lights that adapt
to daylight from windows and occupancy levels are being
developed using flexible lighting control. At the same time,
there is still a need for user interfaces that allow users to
directly control flexible workspace lights and override such
intelligent systems when appropriate.

We propose a speech-based interface for lighting control in
shared workspaces, as they are natural and allow for a calm
interface. To do so, users should be able to customize the
system to work with names of lighting scenes that are natural
to them. Based on our experience with Illuminac, we found
that one user says “turn on my lights” to turn on the two
lights over her desk, while another user says “all on” to turn
on the four lights around her desk.

As alluded to earlier, to support customized speech com-
mands for personalized lighting configuration, we must ad-
dress the name-configuration mapping problem in the pres-

2



ence of uncertainty. Specifically, we need to discover the
names of lighting scenes, the configurations of lights needed
to create the lighting scenes, and the mapping between the
names and configurations. In Figure 1, we depict the name-
configuration mapping problem in the context of workspace
lighting control. On the left, we show names of lighting
scenes (i.e., user-defined commands for changing the light-
ing scene), while on the right, we show lighting scene con-
figurations. A lighting scene configuration is depicted as
a schematic view of our workspace setup with 6 cubicles
where the black squares show the lights that are turned on.
The lines show the desired mapping from commands to con-
figurations. For example, we need to discover that Chris says
“turn on my lights” to instruct the system to turn on the two
lights above his desk, and Pristine says “all on” to turn on
the four lights above her desk. More precisely, the system
must be made aware of the following:

1. The commands “turn on my lights” and “all on”;
2. The configuration with two lights in the top-right cubicle

and the configuration with four lights in the middle-left;
and

3. That the command “turn on my lights” refers to the con-
figuration with two lights in the top-left cubicle and “all
on” refers to the configuration with four lights on in the
middle-left cubicle.

Moreover, we would like the system to perform a reasonable
scene change (i.e., be robust) even with slight variants of
the expected commands. For example, if Pristine says “all
on please” instead of “all on”, the system should still turn
on the four lights above her desk. This variant is shown in
Figure 1 as the gray command.

The Simultaneous Naming And Configuration (SNAC) ap-
proach that we propose is targeted to address these chal-
lenges. To be robust in the presence of human imprecision
or imprecision in the capturing of human input, we use a
learning-based system. To address the name-configuration
mapping problem, we train the system on two kinds of data
from the users simultaneously: the commands and the con-
figurations. While the details of the design and evaluation
of Illuminac are discussed in the subsequent sections, in the
remainder of this section we sketch how the user interacts
with our system.

To add a command to Illuminac, users train the system by
first recording their command. Then, the user demonstrates
the desired lighting configuration and identifies herself. The
novel aspect of our system is that rather than simply stor-
ing this mapping from command to configuration, we com-
bine the recorded speech command and lighting configura-
tion into a common representation to provide as input for
a standard machine learning algorithm. Intuitively, the sys-
tem uses the learning algorithm to identify structure across
the space of command-configuration pairs, not just the space
of commands. Once the user has trained the system on a
few examples, the user can say her command into any of
the microphones in the room, and the system changes the
lighting scene by applying the trained model to the user’s

command. Because the model is trained on commands and
configurations specific to the workspace, we expect to be
able to perform reasonable lighting actions with less com-
mand training. For example, when a visitor who has never
provided training input to the system comes into the lab, she
can try her command and potentially get reasonable behavior
because regular users may have already trained the system
on similar commands. Of course, if the resulting behavior
is undesired, she can manually change the lighting scene,
thereby giving the system another training data point suited
to her.

SNAC APPROACH
As we described above, the challenge in supporting cus-
tomized commands for configuration tasks is not only dis-
covering how users give commands. The challenge is in si-
multaneously discovering (i) the commands natural to the
users, (ii) the configurations naturally used in the domain
and (iii) the mapping between the commands and configura-
tions.

Traditional Approach to Designing Speech Interfaces
Discovering the names naturally used by users is a common
problem in the design of speech interfaces. Speech inter-
face designers commonly use the wizard-of-Oz data collec-
tion technique [6] to gather formative data including sample
utterances which helps inform the design of the speech in-
terface toward supporting more natural speech input. The
wizard-of-Oz data collection technique allows more realis-
tic sample usage data to be collected before a prototype of
the system is ready. A human (called the wizard) acts as the
speech interface, responding to the user’s commands. The
wizard often communicates with the user through a speech
synthesizer to make the user think she is using a working
system and invoke more realistic responses.

Simultaneously Discovering Naming and Configuration
For workspace lighting control, we not only need to dis-
cover the names users use to refer to lighting scenes, but also
the configurations of lights that achieve the named lighting
scene. Thus, in addition to collecting sample utterances from
users, we also collect sample configurations.

Since the configurations are not knowna priori, a wizard is
not able to accurately respond to a user’s commands. In fact,
if a wizard is used, the users will alter their commands so
that the wizard will understand the configurations they are
referring to. We discovered this effect during an early phase
of data collection in which users sent messages to a wizard
asking her to change the lighting scene. Thus, in the SNAC
approach, users train the system directly by demonstrating
their configurations in addition to recording their commands.

In order to allow for some speech recognition errors, or to
be able to make a reasonable guess at a command from a
guest to the space, we need an approach that is more for-
giving than simply programming a fixed mapping between
commands and configurations. In the SNAC approach, a su-
pervised learning algorithm is trained on data provided by

3



the users. The training data includes both the users’ cus-
tomized commands and their customized configurations.

This approach also allows an interface to support more nat-
ural interaction through customized commands and configu-
rations in a new workspace or with a new set of users without
having to have a designer do the customization.

SNAC APPROACH LEARNING MODEL
We select a learning algorithm that allows factors to overlap.
This is important in our problem because both configurations
and commands can overlap. In the home example, a cook-
ing environmental state and a breakfast environmental state
could both set the radio to the news station. For workspace
lighting, the space is shared and users who sit next to each
other often have overlapping sets of lights in their lighting
scenes. The names of the configurations can also overlap.
In the workspace lighting control example, many users refer
to their lights as “my lights.” We disambiguate such similar
names with the speaker’s identification.

NMF finds non-orthogonal or possibly overlapping, factors
in the training data. Each data point (a name / configurations
pair) can be explained by an additive combination of the fac-
tors. NMF is more appropriate than a clustering learning al-
gorithm such ask-means which would assign a light to one
cluster, not allowing it to be part of multiple clusters.

Since we need to learn the commands, configurations, and
the mapping, we train our model on command-configuration
pairs. That is, we train the learning model on two kinds of
data simultaneously: the commands and the light configura-
tions. To record a new training point, users provide both the
command and the configuration — they:

1. record their command using a microphone
2. demonstrate the lighting scene named by their command

by manually changing the lighting scene (using a web-
based graphical user interface).

By collecting both kinds of data simultaneously, we are col-
lecting data about the commands that are natural to users,
the configurations that naturally occur in the target domain,
and the ground truth mapping between the two.

ILLUMINAC
We designed and deployed a SNAC-based natural speech in-
terface for workspace lighting control, Illuminac, to show
the applicability of our SNAC approach for workspace light-
ing control. In this section we describe the workspace for
which Illuminac was designed, outline the iterative design
steps used in the design process, describe the design of the
system, describe the evaluation of the system, and present
the results from the evaluation.

Workspace details
Illuminac was designed for and is deployed in, a 2300 square
foot open plan shared workspace with about twenty-five reg-
ular occupants (nineteen of whom have permanent desks in

W
in

do
w

Public
Machines

Screen

Sink
Main
Public

Machine

Tool Shop

Soft
Space

Figure 2. Picture and floor plan of the workspace for which we have
implemented a natural speech interface for the lighting control. Each of
the 79 individually-controllable lights as well as the eight microphones
are shown.

the workspace, the rest have permanent desks in the adja-
cent room). The workspace has six graded-awareness cubi-
cles (cubicles with walls of varying heights from full height
to desk height) that occupy half the room. The other half is
a multi-use space for meetings, presentations, ad-hoc team
meetings or individual work.

The multi-use space has a presentation screen, a “soft space”
with a couch and chairs, and a set of four computers for vis-
itors to the lab to use. There is also a tool shop in one corner
of the room. Figure 2 shows a picture and the floor plan of
the room. The room has 79 individually-controllable com-
pact fluorescent lights mounted overhead. The intensity of
each of the lights can be controlled over the network via a
web interface. All occupants of the lab have access to the
web interface (Figure 3). They can access it from their per-
sonal computers, or from one of the public machines.

The public machine next to the entrance (labeled“Main pub-
lic machine” in Figure 2) always has the web interface open.
There are eight desk microphones throughout the room to
allow easier access to the lighting control system. There is
one microphone in each cubicle, one at the desk in the cor-
ner, and one at the main public machine where the graphical
interface to the lights is always open in a browser window.
Each microphone has a clearly labeled on/off switch so that
residents may control what is and is not recorded.

Iterative Design Steps
In the design of our natural speech lighting control system
we followed an iterative design process beginning with a
text based wizard-of-Oz study, followed by a training data

4



Figure 3. Web-based graphical user interface used to manually config-
ure the array of lights in the workspace.

collection study and finally a deployment of the live system.

Text Based Wizard-of-Oz Study
We began our design of Illuminac with a low-fidelity wizard-
of-Oz study to better understand the lighting control domain
including the kinds of lighting scenes used in the space and
the types of commands used to refer to the lighting scenes.
By low-fidelity we mean natural language text input instead
of speech input. Participants were asked to send the wiz-
ard (a researcher in the lab) an instant message whenever
they wanted to change the lighting scene. The wizard would
change the lighting scene using the web interface based on
the participant’s message. If the wizard was not available
to change the lighting scene, the participants were asked to
type the message they would have sent to the wizard into the
web interface and then change the lighting scene themselves
with the web interface. This way data was still able to be
collected if the wizard was not at his desk. The GUI inter-
face was similar to the one in Figure 3, but it included a text
box for entering the messages.

We collected three weeks of data including 230 command /
configuration pairs from ten participants who were regular
occupants of the space.

This study confirmed our hypothesis that the lighting config-
urations are sometimes overlapping and are not all disjoint
sets of lights. After the formal study concluded, some partic-
ipants expressed the desire to continue being able to ask the
wizard to change the lighting scene. But instead of sending
instant messages they wanted to ask the wizard with a spo-
ken command. This provided anecdotal evidence that speech
would be a good fit for lighting control in the space.

Formative Training Data Collection

After the low-fidelity wizard-of-Oz study we collected two
weeks of high fidelity training data to design and tune the
learning algorithm for estimating lighting scenes given a spo-
ken command. The study included sixteen participants who
were regular occupants of the space. Each participant was
asked to record a command and demonstrate the desired sys-
tem response as if they were training the system to under-
stand their personalized commands. They were asked to
complete the following three steps each time they wanted
to change the lighting scene:

1. Say their command to change the lighting scene
2. Type their name into the text box on the web page
3. Change the lighting scene with the web interface

We did not tell them when or how to change the lighting
scene in the lab. The participants could use any of the eight
microphones throughout the space to record their command.
Then they used the web interface to demonstrate their de-
sired change in the lighting scene. We followed the data
collection with individual interviews, and asked the partici-
pants to reflect on their lighting control preferences and their
experience with the study.

We collected 120 command/configuration pairs. For each
pair we collected the user’s name, the audio clip of the com-
mand and the intensity values before and after the command.
Each audio clip was transcribed manually as well as with an
automatic speech recognizer. The complete vocabulary in-
cluded about 350 unigrams and bigrams.

This high-fidelity formative training data once again demon-
strated both the configurations and commands are overlap-
ping, validating the selection of NMF as the basis for the
learning algorithm. This data directly informed the design
of the learning algorithm which in turn enabled us to build
and deploy the live system.

System Design
Illuminac has two modes, a training mode where users train
the system on their personalized lighting configurations and
a running mode where users can use their personalized com-
mands to change the lighting scene. The system is in running
mode most of the time, ready to process a command and
change the lighting scene. To switch to the training mode,
the user uses the “Start Training” button on the web-based
graphical user interface (shown in Figure 3).

Training Mode
In the training mode, users complete the following four steps
to add a training point. Figure 4 shows the four steps.

1. Record her command using one of the microphones around
the room.

2. Correct any recognition errors in the automatic speech
recognition transcript using the web-based graphical user
interface.

3. Demonstrate her desired lighting scene using the web-
based graphical user interface to manually set the lighting
configuration.

5



2

3 41

Figure 4. The four steps users follow in the training mode to train the
system on their personalized command and lighting scene.

4. Verify the command and configuration are correct before
saving the training point.

After the user adds a new training point, the system retrains
the model on the old training data plus the new data point. It
also adds the command to the speech recognition language
model to increase the recognition accuracy for the command
the next time it is used. The new model is trained and ready
to be used in the running mode in just a few seconds. Even
though we are not using an online training algorithm, we can
retrain the model fast enough when we get a new training
point that users can think of the system as an online training
system.

Running Mode

Figure 5. An LED next to
each microphone lights up
when the system is process-
ing an audio command to
let users know the system
“heard” them.

In running mode, a user can
use one of her speech com-
mands to change the lighting
scene. To do so the user says
her command into any one
of the microphones around
the room. The system tran-
scribes the command, applies
the trained model to the tran-
script and changes the light-
ing scene according to the es-
timates lighting scene.

If the estimated lighting scene
is incorrect, the user can say
“undo,” “cancel,” or “wrong”
withing three minutes to undo the last lighting scene change.

While the system is transcribing a command, the text “process-
ing ...” is displayed in the GUI and an LED next to each mi-
crophone lights up (see Figures 3 and 5). This lets the user
know the system “heard” them and is processing the com-

mand.

Learning Model
The system uses a learning algorithm, namely least-squares
non-negative matrix factorization (NMF) to estimate the new
lighting scene given a command.

NMF has been shown to work well for pure text clustering
as well as image segmentation [10]. In our problem, we have
both text (the commands), as well as an image (the grid of
lights).

As the name suggests, NMF imposes a non-negative con-
straint on the data. The commands are naturally represented
with non-negative values in a term-frequency vector. The
lighting scene is also naturally represented with non-negative
values for the intensity of each light.

The NMF algorithm is fast enough to allow us to retrain the
model between uses. The algorithm runs in 0.89 seconds on
two weeks of training data.

Given the similarity of our data with text and images, the
non-orthogonal factors in our data, and the naturally non-
negative values in our data representation, we selected NMF
to learn which lights should change given a new command
and the current lighting scene.

Data Representation

Commands
We represent the commands (tagged with the user’s name)
with a term-frequency vector. Each word (unigram) or pair
of consecutive words (bigram) that appears in any of the
commands is represented with an entry in the vector, thus
the length of the vector is the number of unique unigrams
or bigrams in all of the commands. The value of each entry
in the vector is the number of times the unigram or bigram
appears in the command. We include bigrams to capture
phrases such as “soft space,” “kitchen area,” or “public ma-
chines.”

Lighting Scene
We represent the lighting scene as a vector of intensity val-
ues, one for each light. The intensity values that did not
change when the user demonstrated the new lighting scene
are set to zero to allow the algorithm to learn which lights a
command refers to as well as what intensity to set the lights
to.

The reader may notice the value zero in the intensity vector
could mean a light is not in the set of lights named by the
command, or the command is an “off” command which sets
the intensity values to zero. Instead of overloading the mean-
ing on zeros, we treat “off” commands differently. When in-
terpreting an “off” command we use the trained model to tell
us which lights to turn off. In contrast, when we interpret an
“on” command we use the model to tell us which intensity
values to change and what values to change them to.

With this special treatment of “off” commands, we can either

6



leave the off commands out of the training data or “translate”
an off command to an on command by using the difference
in intensity values instead of the intensity values in the final
lighting scene because these values would be zero since it is
an off command. The former requires throwing away some
of the training data and results in users needing to provide
more training points. The latter solution allows us to use all
the training data, we use this solution.

Application of NMF
Our trained model is a set of orthogonal, possibly overlap-
ping factors. To get the factors that describe our training
data, we use NMF to factorize our data into two matrices,
one of which describes the factors in our data.

NMF is an algorithm that finds a positive factorization of the
given matrix [11, 10]:

X ≈ UVT

whereX represents the training data,VT represents the fac-
tors in our data, andU tells the strength of each factor in
each of the data points.

Each row inX is a training point (command / configuration
pair). Thus each row vector is comprised of the command
term frequency vector concatenated with the lighting config-
uration vector. The matrixX has dimensionsm × n where
m is the number of training points in the model andn is the
length of the term-frequency vectors (q) plus the number of
lights (p). The matrixVT has dimensionsk × n wherek is
the number of factors. We explain shortly how we chosek
in the system. Each row inVT represents one of the factors.
The matrixU has dimensionsm×k. Theith row inU gives
the coefficients to the additive sum of the factors to describe
theith training point.

Selecting k
A good factorization should explain the data with the small-
est number of factors. We used the formative training data to
calculate the accuracy rate for a large range ofk values and
select the smallestk among the values ofk with the highest
accuracy rates. Based on a plot of the accuracy as a function
of k we selectk to be 32.

Lighting Configuration Estimation
To estimate a lighting configuration given a new command,
we use NMF again to find the factors from our training data
that are present in the new command. Figure 6 depicts how
to apply the trained model to a new command. As descried
above, our trained model is a matrix which represents the
factors in the training data,VT . Each factor has a “com-
mand” component, and a “configuration” component. The
command components are in the left half ofVT (columns 1
to q in VT ), the configuration components are in the right
half of VT (columnsq + 1 to n in VT ). We will call these
matricesVT

cmd andVT
config respectively.

VT =
[
VT

cmd ,VT
config

]
The matrix we need to factorize contains the term-frequency

Train Model: 
Factorize training data (X) into matrices U and V using NMF

×≈configurationscommands

X

m × n

U

m × k

VT

configurationscommands

k × n

Calculate factor coefficients (Urun):
Given a new command (xcmd)
Use NMF, holding Vcmd and xcmd constant

≈ ×command

xcmd

1 × q

Urun

1 × k
command

VT
cmd

k × q

Estimate new lighting scene (xconfig):
Multiply factor coefficients (Urun) by factors (Vconfig)

= ×

Urun

1 × k
configuration

VT
config

k × p

configuration

xconfig

1 × p

Figure 6. Given a new command, we use the factors matrix from our
training data and NMF to estimate the new lighting configuration. In
each step, matrices which are given are in black, matrices which we are
calculating are in gray.

vector for the new command and is only one row. We run
NMF on the command term-frequency vector

xcmd ≈ urun ×VT
cmd

(xcmd has dimensions1 × q, urun has dimensions1 × k),
holdingVT

cmd constant to geturun which tells us which fac-
tors are present in the new command. We can multiplyurun

by the contributions component of the factors to get the light-
ing configuration vector:

xconfig = urun ×VT
config

The final step in estimating the new lighting configuration
is to estimate which intensity values to change and what
value to change them to. We use two NMF models to do
so. To estimate which intensity values to change, we train
a model on a data matrix where the values in the configura-
tion vectors are boolean values that indicate which lights are
part of a lighting configuration. To estimate what intensity
value to set a light to, we use the original data matrix de-
scribed above. When we apply these two models to a new
command, we get two parts of the lighting configuration es-
timate,xconfigbool andxconfig . xconfigbool is a vector with
values between 0 and 1. We perform cross validation on the
formative training data to select a threshold value to convert
the values to boolean values. We change the intensity value
for each light that has a one inxconfigbool to the estimated
intensity value for that light inxconfig . In other words, we
only change the intensities of the lights involved in the light-
ing scene referred to in the new command.

7



Automatic Speech Recognition
We are using Carnegie Mellon’s Sphinx 3 speech recognizer
[16] to transcribe the commands. Sphinx 3 is a state-of-
the-art fully-continuous acoustic model recognizer which is
open for experimental use.

We trained an acoustic model on the ICSI Meeting Cor-
pus [8] which features all the imperfections of natural speech:
pauses, um’s and ah’s, truncated words, grammar errors, sen-
tence and phrase restarts, etc. It also features a variety of na-
tionalities and accents. We feel this acoustic model is a better
match for our user base than the publicly available acoustic
models (HUB4, WSJ, RM1) which feature artificially clean
speech being read from transcripts.

The language model is trained on the commands from the
training data. The recognizer runs fast enough to transcribe
the commands almost in real-time (it runs in 1.2x real time
on a 3 GHz dual processor machine with 1.5 MB of ram).
As described above, we use a status LED to let users know
the system “heard” them while the recognizer is processing
the command.

Evaluation

Study Description
We deployed Iluminac with ten of the twenty five regular
occupants of the lab for one week. We started with no train-
ing data and asked the participants to train the system on
their commands again (many of the participants in this study
also participated in previous studies and had already pro-
vided training points). Participants were instructed to use the
system whenever they wanted to change the lighting scene.
The first time they used the system for a particular command
they were asked to record a training data point. Subsequent
times they were asked to test their commands, recording
more training points if the system did not respond as ex-
pected. When the participants tested a new command they
recorded the accuracy of the results on a paper log next to
the microphone. They recorded the accuracy of the system
response by circling one of the following options:

4 3 2 1 0
Correct Partially

Correct
Some Correct,
Some Wrong

Nothing
Happened

Wrong

At the end of the study the participants were asked to com-
plete an anonymous web questionnaire about their experi-
ences with the system.

Data Collected
We collected 43 training points and 81 test points from ten
participants. For each training point we collected the state
of the lighting scene before and after the training session
as well as the command (transcribed using the automatic
speech recognizer and corrected by the participant). For
each test point we collected the state of the lighting scene
before and after the system changed the lighting scene, the
command the participant spoke into one of the microphones
and the participant’s evaluation of the system’s response.

Training and Test Data Per Command Type

0 2 4 6 8 10 12 14 16

Kevin: dim my desk lamp
Chris: window lights off

Chris: checkers
Joe: presentation mode

Link: turn on marcus's lights
Link: turn on the lights over the

Wendy: cube and gertrude on
Link: turn on all of Chris's lights

Chris: south east cubicle lights on
Link: turn on all the lights
Joe: experiment lights on

Jaime: team design research on
Link: turn on my lights please

Marcus: turn on my lights
Pristine: all on

Chris: all on
Jack: my lights on

Brian: turn my lights on

Number of Data Points

training
testing

Figure 7. The number of training and test data points collected for
each group of similar commands. The command group labels are a
representative command recorded by the participants.

Figure 7 shows the number of data points collected for each
group of similar commands.

Study Results and Discussion
To analyze the results we manually assigned each training
and testing point to a group of similar commands. For ex-
ample all of the commands Jack used to refer to the lights
over his desk were put into one group. Figure 7 lists a repre-
sentative command for each group of similar commands.

The average testing score plateaued between “correct” and
“partially correct” when commands were tested with 1, 2
and 3 training points (see Figure 8). We believe these results
could be improved by changing the training GUI to alleviate
a common confusion about which lights were being saved
as a lighting scene. The interface only recorded the inten-
sity values that changed during the training mode, but users
thought it was saving the intensity values for each light se-
lected. As a result some of the training data was not correct,
which we believe impacted the accuracy results negatively.

Although the average score is closer to “partially correct”
than correct, when asked in the post questionnaire “After the
study is over, would you like to continue using the system?”
8 out 10 participants respondedYes, and two respondedMaybe
(the options wereYes, MaybeandNo). One of the partici-
pants who respondedmaybesays the microphone was to far
away and he was lazy. Right now each cubicle with three
people shares one microphone, this could be remedied by
giving each user a microphone at their desk, making the mi-
crophone convenient to access. The other participant who
respondedmaybetends to sit in the public area most of the
time where the furniture moves around quite a bit and he
doesn’t often use the same set of lights. In such an open
space, a location based speech approach would work much
better, where users could say “lights on here.” Such a loca-
tion based approach can be implemented with distributed ar-
ray technology overhead. Such technology would not be de-
sirable in the cubicle area for privacy reasons. With overhead
microphones, users cannot control what is being recorded,

8



Average Lighting Scene Change Score vs. Training Length

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3

Number of Training Points

L
ig

ht
in

g 
Sc

en
e 

C
ha

ng
e 

Sc
or

e correct

partially
correct

some correct,
some wrong

nothing 
happened

wrong

Figure 8. The average test point score as reported by the participants
versus the training length for the specific type of command when the
test point was recorded

but with desk microphones, users have the power to turn the
microphone on their desk off.

When asked “How many training data points would you be
willing to provide to be able to use speech to control the
lights” participants responded with an average of 3.9 (min 2,
max 5). On average participants recorded 1.9 training points
per command group during the study. Since the average
number of training points participants would be willing to
provide is higher than the average number they recorded dur-
ing a formal study we believe the performance of the system
outside a formal study would be similar to the performance
during the study.

RELATED WORK
Below we situate our work in the work related to designing
natural speech interfaces, existing smart home and home IT
projects, multimodal interfaces, and previous applications of
factorization algorithms such as NMF.

Natural Speech Interface Design
In speech interfaces where all of the objects that can be re-
ferred to are knowna priori, the designer can use the wizard-
of-Oz technique [6] to support names for those objects that
are natural to the users. For example, in the RoomLine [3]
system, a speech interface which allows users to reserve rooms
over the phone, all of the rooms, the sizes of the room, and
the equipment available in the rooms is known at the time the
speech interface was designed. Such speech interfaces can
be grammar-based like many successful commercial systems
(BeVocal [15], Tellme [14]), they can be statistical language
model - based [4], or they can use a combination of both [18].
In our system, we don’t know the objects (configurations)a
priori , but we still want to be able to support names that are
natural to the users, we train a model on both the names for
the objects and the objects.

Smart Homes and Home IT
Controlling lighting and other devices in the home is not
new, nor is using speech to do so, but we believe using speech

to control configurations of devices is novel. Quesada et al.
address the interface challenge in the home machine envi-
ronment [17] with a speech interface for lighting control in
the home, but each light is controlled with individual com-
mands, and the speech interface is designed specifically for
the particular set of lights. Mozer et. al. [13] have stud-
ied predictive light automation, which as mentioned above,
could be combined with a speech interface for situations
when the predictive light automation does not do a good
job with the prediction. Juster and Roy use situated speech
and gestures to control a robotic chandelier, Elvis [9]. Their
work focuses on how to move the chandelier arms to achieve
a desired lighting scene given input from photo sensors. They
focus less on the speech interface to the chandelier. It is de-
signed to support a static set of lighting configurations. We
focus is on the speech interface, and supporting customized
commands and configurations for each new set of devices
without having to have a designer do the customization.

Multimodal Interfaces
It is well established that speech and gesture work well to-
gether [12] and many of our users mentioned they would like
to be able to point at the lights they would like to turn on.
Wilson’s work on the XWand [23] demonstrates such a sys-
tem. The user can control different devices by pointing at the
device and saying a predetermined utterance. The position
of the wand is determined with the use of at least two cali-
brated cameras and a blinking LED at the end of the wand.
The speech recognition system uses a simple command and
control style grammar. Wilson acknowledges “while speech
clearly has enough expressive power to make the wanted un-
necessary, relying on speech alone can be difficult in prac-
tice.” We aim to address this difficulty. Wilson also acknowl-
edges “the acceptance of the XWand or a related device is
limited by the limitations imposed by the installation and
calibration of the cameras.” The authors address this limita-
tion by trying a wand with audio feedback to aid in pointing
tasks without cameras available to track the position of the
wand. They find it is possible without the cameras, but the
pointing takes more thought on the part of the user, and re-
quires the targets be more widely spaced, which is not the
case in our workspace. Our proposed approach could be
combined with the XWand to develop a multimodal gesture
and speech interface for configuration tasks where the con-
figurations are not able to be predetermined and can also be
used in cases where the calibration and installation of cam-
eras is not possible.

Applications of Matrix Factorization
In recent years, alternative factorization methods such as
least-squares NMF (Non-negative Matrix Factorization) have
found favor over SVD in cases where patterns are not or-
thogonal. This is especially true when the patterns appear
“non-negatively.” This is indeed the case for both light inten-
sities and for word frequencies in user commands. So NMF
seems like a natural candidate for SNAC analysis. Further-
more, NMF has been shown to be superior to SVD for pure
text clustering [10], or for image segmentation [10] which is
similar to our light grouping problem. Barnard et al. match
words and pictures [1] using an “aspect” probabilistic model,

9



which is another type of factor model. Other candidate fac-
tor models include Latent Dirichlet Analysis (LDA) [2] and
GaP [5]. These methods add prior probabilities to the factors
and use likelihood measures (rather than least squares) to fit
the original data. We did not use these methods because: (i)
when there is enough training data, the factor priors have lit-
tle or no effect and (ii) least-squares NMF has been shown
to produce better (more independent) factors compared to
KL-divergence (likelihood) fitting methods [10].

CONCLUSION AND FUTURE WORK
This paper introduced an approach to the challenge of si-
multaneously learning names and the configurations named
in natural speech interfaces for environment and device con-
trol. We demonstrated this challenge and introduced a so-
lution in the domain of workspace lighting control. Our
system allows users to have customized “light switches” for
their lighting scene configurations through the use of natural
language speech commands. The users train the system not
only on their personalized commands but also on the config-
urations their commands refer to.

Results from the live deployment of our natural speech in-
terface for workspace lighting control are promising and we
look forward to seeing how well our approach works in other
workspaces, especially ones where the authors don’t know
all of the occupants. In addition to other workspaces we
would like to evaluate our approach with other devices in the
workspace in addition to lights such as projectors, speakers,
etc, and other ubicomp domains such as home environment
control and mobile device configuration.

ACKNOWLEDGMENTS
Omitted for blind review

REFERENCES
1. K. Barnard, P. Duygulu, N. de Freitas, D. Forsyth,

D. Blei, and M. I. Jordan. Matching words and pictures.
Journal of Machine Learning Research, 3:1107–1135,
2003.

2. D. Blei, A. Ng, and M. Jordan. Latent Dirichlet
Allocation. In T. G. Dietterich, S. Becker, and
Z. Ghahramani, editors,Advances in Neural
Information Processing Systems 14. MIT Press, 2002.

3. D. Bohus. Roomline: a spoken dialog system that
provides assistance for conference room reservation
and scheduling, as of 19 Sept 2007.
http://www.ravenclaw-olympus.org/roomline.html.

4. P. F. Brown, J. Cocke, S. A. Della Pietra, V. J.
Della Pietra, F. Jelinek, J. D. Lafferty, R. L. Mercer,
and P. S. Roossin. A statistical approach to machine
translation.Comput. Linguist., 16(2):79–85, June 1990.

5. J. Canny. GAP: a factor model for discrete data. In
SIGIR, pages 122–129. ACM Press, 2004.

6. N. Dahlb̈ack and A. J̈onsson. Wizard of oz studies –
why and how. InIUI , pages 193–200, 1993.

7. A. Fiedler and M. Gabsdil. Supporting progressive
refinement of wizard-of-oz experiments. In
Proceedings of the ITS 2002 - Workshop on Empirical
Methods for Tutorial Dialogue Systems, pages 62–69,
2002.

8. A. Janin, D. Baron, J. Edwards, D. Ellis, D. Gelbart,
N. Morgan, B. Peskin, T. Pfau, E. Shriberg, E. Shriberg,
A. Stolcke, A10, C. Wooters, and A11. The icsi
meeting corpus. InICASSP, volume 1, pages
I–364–I–367 vol.1, 2003.

9. J. Juster and D. Roy. Elvis: situated speech and gesture
understanding for a robotic chandelier. In R. Sharma,
T. Darrell, M. P. Harper, G. Lazzari, and M. Turk,
editors,ICMI, pages 90–96. ACM, 2004.

10. D. D. Lee and S. H. Seung. Learning the parts of
objects by non-negative matrix factorization.Nature,
401(6755):788–791, October 1999.

11. D. D. Lee and S. H. Seung. Algorithms for
non-negative matrix factorization. InNIPS, volume 13,
pages 556–562, 2000.

12. D. Mcneill.Hand and mind: What gestures reveal
about thought. University of Chicago Press., 1992.

13. M. C. Mozer. Lessons from an adaptive house. In
D. Cook and R. Das, editors,Smart environments:
Technologies, protocols, and applications, pages
273–294. Wiley & Sons, 2005.

14. T. Networks. Fundamentally improving how people
and business use the phone, as of 19 Sept 2007.
http://www.tellme.com.

15. Nuance. Formerly bevocal, a leading provider of hosted
application systems for customer self-service, as of 19
Sept 2007. http://www.bevocal.com.

16. P. Placeway, S. Chen, M. Eskenazi, U. Jain, V. Parikh,
B. Raj, M. Ravishankar, R. Rosenfeld, K. Seymore,
M. Siegler, R. Stern, and Thayer. The 1996 hub-4
sphinx-3 system. InIn DARPA Speech Recognition
Workshop, Chantilly, VA, February 1997.

17. J. F. Quesada, F. Garcia, E. Sena, J. A. Bernal, and
G. Amores. Dialogue management in a home machine
environment: Linguistic components over an agent
architecture. InSpanish Society for Natural Language
Processing, volume 27, pages 89–98, September 2001.

18. M. Rayner, P. Bouillon, B. A. Hockey,
N. Chatzichrisafis, and M. Starlander. Comparing
rule-based and statistical approaches to speech
understanding in a limited domain speech translation
system. InTMI, 2004.

19. M. Rayner, B. A. Hockey, and P. Bouillon. Building
linguistically motivated speech recognisers with
regulus. InTutorial presented ACL, Barcelona, Spain,
2004.

10



20. M. Stuttle, J. D. Williams, and S. Young. A framework
for dialogue data collection with a simulated asr
channel. InINTERSPEECH, October 2004.

21. A. Technologies, as of March 2008.
http://www.aduratech.com.

22. M. Weiser and J. S. Brown. The coming age of calm
technolgy. InBeyond calculation: the next fifty years,
pages 75–85. Copernicus, New York, NY, USA, 1997.

23. A. Wilson and S. Shafer. Xwand: Ui for intelligent
spaces. InCHI, pages 545–552, New York, NY, USA,
2003. ACM Press.

11


