132
= 5 BASIC INTERACTION

Chip
A Chip is a simple object that consists of the following:
CenterPoint
Center of the chip in the layout.
Name
Name of the chip.

In this simple application, the class Chip has no methods of its own. The
entire functional behavior is captured in the Circuit class. In general, this
would not be true. Circuits would consist of a variety of classes of circuit
objects, each of which would have its own behavior. We will discuss more
complex models in later chapters when we have more powerful geometric and
architectural tools to handle them.

Wire
Wires are also quite simple and contain only their relevant data, as follows:
Chipl
Chip index to which the wired is connected.
Connectorl
Connector index in Chip1 to which the wire is connected. All Chips
have exactly 8 connectors.
Chip2
Chip index for the other end of the wire.
Connector2
Connector index from Chip?2 for the other end of the wire.

5.2 Model-View-Controller Architecture

The Smalltalk system was developed as a language and an environment for
building interactive applications.! As part of that development, an architec-
ture for interactive applications was designed. This object-oriented approach
was called the model-view-controller (MVC) architecture.2 A schematic of
this architecture is shown in Figure 5-2. -

The model is the information that the application is trying to manipulate.
This is the data representation of the real-world objects in which the user is
interested. In our logic diagrams, the model would consist of the Circuit,
Chip, and Wire classes.

The view implements a visual display of the model. In our application,
there are two views, the circuit view and the part list view. Anytime the

133
5.2 MODEL-VIEW-CONTROLLER ARCHITECTURE =

Figure 5-2 Model-view-controller

model is changed, each view of that model must be notified so that it can
change the visual presentation of the model on the screen. A region of the
screen that is no longer consistent with the model information is called dam-
aged. When notified of a change, the view will identify the changed parts of
the display and report those regions as damaged to the windowing system. In
some systems, such regions are called invalid or out of date. In this text, we
will use the term damaged. Reporting of damaged regions is fundamental to
maintaining views on the screen.

A model, like ours, may have multiple views. In such a case, all views must
be notified of the changes and the windowing system will collect them all.
Later, when the main event loop looks for a new event to process, there will
be redraw events waiting for any views that were affected by damage reporting
and by any windowing operations. Each view must redraw the damaged areas
based on information in the model. In addition to drawing the display, a view
is also the location for all display geometry as will be discussed later.

The controller receives all of the input events from the user and decides
what they mean and what should be done. In the circuit view of our example,
the controller would receive a mouse-down event and must determine from
the currently selected menu item whether wires or chips are to be manipu-
lated. The controller must communicate with the view to determine what
objects are being selected. For example, since the circuit view is responsible
for positioning all of the chips in the window, the controller must be able to
pass a mouse point to the view to determine if that mouse point is over.a chip,
a wire, or in empty space. Once the controller has all of the information that it
needs, it will make calls on the objects in the model to make the appropriate
changes. These calls by the controller on the model will cause the model to
notify the views, and the displays will be updated.

Because the functionality of the controller and the view are so tightly inter-
twined and also because controllers and views almost always occur in pairs,
many architectures combine the two functions into a single class. Recall from
Chapter 4 the WinEventHandler class, which had several methods for

134
= 5 BASIC INTERACTION

responding to events. The Redraw method would implement the majority of
the view. (The methods to handle notification from the model and object
selection for the controller must be added.) The mouse and keyboard methods
would implement the controller functionality. The model is implemented
based on our functional design as described in Chapter 2.

5.2.1 The Problem with Multiple Parts

In simple applications, it is tempting to combine the model, view, and con-
troller into a single class or into global variables. Such an approach will not
scale up to large applications. The model classes must be separated out for
two reasons. The first is that there may be multiple models that a user is
working with. In our example, the user may have an old version of the circuit
on the screen and may be using it as a guide to design a new version in a sepa-
rate window. This scenario would require multiple models and multiple
views. The implementations would be the same but different information is
being manipulated in each case.

A second problem, which is frequently ignored by those building simple
applications, is the fact that a model may have more than one view. In our
example, the model has at least two views, the circuit view and the parts list
view. Each view is very different but each must be updated when a chip is
added to the circuit. There may also be multiple, similar views of the same
model. Our example application does not support scrolling of the circuit view,
but let us suppose that it did. Let us also suppose that the circuit was very
large and the user had need to work in two separate areas of the circuit at
once. An additional circuit view of the same circuit could be created at run
time. Each view could be scrolled to a different part of the circuit. In such an
application, there can be any number of views of the same model, depending
on what the user is trying to do. Each of these views must be kept consistent
with the model and the user must be able to interact with the model through
the controllers of each of those views. The support for multiple views is the
Primary reason for the separation between the model and the view-controller.

There are also software maintenance reasons for the separation. Suppose,
for example, that our users look at our first implementation and decide that it
is important to have a wiring list view that shows all of the wires and that
names their connections. We could implement the new view and its con-
troller and add it to the list of views that need to be notified whenever the
model changes. The existing views would not need to be _changed and the
model would be unaffected. With the addition of a new view, new model
information may be needed; however, the old views would still respond in the
same way. - L

Suppose that our graphics designers and marketing people decide that chips
should be drawn with a 3D look rather than a flat schematic look. Only the

135
5.2 MODEL-VIEW-CONTROLLER ARCHITECTURE =

Figure 5-3 Shapes to be manipulated

view would need to be changed to draw the chips in a different way. The view
would also need to be changed to select chips and contact pins in a different
way, because the positions of the pins relative to the chips would be different.
That is why selection tasks are handled by the view as a service to the con-
troller. That is also why we think of the controller as conceptually different.
The pattern of behavior in response to user events (controller issues) is inde-
pendent of visual geometry (view issues).

5.2.2 Changing the Display

In most of our applications, any interactive work by the user will cause the
model to change. In response to this change in the model, the views will need
to update what is drawn on the screen. Before we go through the event flow
between models, views, and controllers, we first need to work through the
relationship between a view and the windowing system in handling updates
to the display.

Let us consider the problem in Figure 5-3. In this example, our model con-
sists of a list of the shapes that we want to draw, along with their colors and
geometric information. We want to interact with this model by moving
shapes around. The problem that our view code must solve is to change the
display in such a way that the polygon stays in front of the background and
vertical line as well as behind the horizontal line and the black rectangle.

One simple-minded way to solve this problem is to draw the shape being
moved using the color of the background. Drawing in the background color
will erase the shape in its old position. We can then draw the shape in the new
position. This will work just fine in the case where we move the circle as
shown in Figure 5-4.

It will not work, however, if we want to move the white polygon. The
results of such an approach are shown in Figure 5-5. In this case, the drawing

136
= 5 BASIC INTERACTION

Figure 5-5 Erasing and redrawing the polygon

of the old polygon using background color has wiped out parts of the lines and
the black rectangle. In addition, the drawing of the new polygon is now in
front of the horizontal line, which is not correct.

An alternative to this strategy is to move the polygon in the model to its
new position and then to redraw the entire picture from the model in the fol-
lowing order: 1) background, 2) circle, 3) vertical line, 4) polygon, 5) horizontal
line, and 6) black rectangle.

By drawing the shapes in this prescribed order, the objects that are in front
are drawn last and will thus overlay any objects that are behind. Such a back-
to-front drawing technique will guarantee the correct drawing. In fact, in most
drawing systems, the model will maintain the list of shapes in back-to-front
order so as to simplify this technique. Menu actions such as “Move to Back”
or “Move to Front” found in most drawing packages simply involve changing
the position of the selected shapes in the list of shapes and then redrawing.

137
5.2 MODEL-VIEW-CONTROLLER ARCHITECTURE =

One of the problems with this complete redraw strategy is that it is too
slow for large or complex drawings. The changes required to the display are
frequently very localized and redrawing the entire display is a waste. In addi-
tion, complete redrawing of the entire display can cause annoying flashes each
time the redraw is done because the frontmost items are momentarily erased
by the background before being redrawn. This is very bothersome to users
because the human visual system is tuned to pay attention when it perceives
motion.

The Damage/Redraw Technique

The common technique for handling the problem of correctly updating the
display uses a pair of operations that we will call Damage and Redraw. All
modern windowing systems support a variant of the damage/redraw tech-
nique. Using this technique, a view can inform the windowing system when a
region of a window needs to be updated. The windowing system will then
batch these updates, clip them to the portions of the window that are actually
visible, and then invoke the Redraw method for the window. The Redraw
method is passed the window region that needs to be redrawn. This Redraw
method was discussed in Chapter 4 as part of the WinEventHandler class.

In order to accommodate this technique, we need to add the Damage
method to our abstract Canvas class:

void Canvas::Damage(UpdateRegion)

When a view invokes Damage on a canvas, the windowing system will save
the UpdateRegion for later. One of the reasons for saving the damaged regions
is that many times a model change will cause a variety of changes to the
screen, which may or may not overlap. For this reason, a windowing system
will save them all until the event handler requests the next input event. At
that time, the Redraw methods for all windows that have changes can be
invoked.

Using this technique, we can reconsider our problem of moving the poly-
gon. When the polygon is moved, we first damage the region where the poly-
gon used to be, so that the area can be correctly redrawn without the polygon.
We then change the polygon’s position in the model and then damage the
region around the polygon’s new position so that the new area will be
redrawn.

Before any input events are handled, the windowing system will invoke the
Redraw method for this window, which will redraw the damaged regions in
back-to-front order. Figure 5-6 shows the damaged regions as dotted rectan-
gles.

In our simple set of shapes, the Redraw method may just redraw the entire
model in front-to-back order because the numbers are so small. The window-
ing system will clip to the damaged region. This clipping prevents the circle

= 5 BASIC INTERACTION

Figure 5-6 Damage/Redraw method showing damaged regions

and most of the background from actually being drawn on the screen. If, how-
ever, there were a large number of shapes in the model, the Redraw method
could check groups of shapes or separate areas of the drawing against the dam-
aged area to avoid even considering parts of the model that would not affect
the damaged area. This would be much more efficient with large models.

5.2.3 General Event Flow

Having discussed the relationship between a view and the windowing system,
we need to consider the entire process of handling input events, including
changing the model and updating the screen. To get this overall view of the
MVC architecture, we will work through a couple of interactive tasks in our
example application.

Creating a New Chip

Let us first consider the creation of a new chip. We will assume that the
user has already selected the chip icon on the screen and that the circuit con-
troller has a field that remembers that the chip icon is selected. (Note that the
view and the controller must share this field so that the view can highlight
the currently selected icon.) The process involves the following steps:

1. To create the new chip, the user will place the mouse over the tentative
position where the new chip is to go and then press the mouse button.

2. When the mouse button is pressed, the windowing system will identify
which window should receive the event and locate the WinEvent-
Handler that should receive the event. The WinEventHandler that
implements our circuit view and controller will have its MouseDown
method invoked. This is part of the controller.

139
5.2 MODEL-VIEW-CONTROLLER ARCHITECTURE @

. The controller determines that it is in chip mode (based on the selected
icon) and inquires of the view as to whether the mouse is over an exist-
ing chip. If the mouse is not over an existing chip, the controller decides
that a new chip is to be created. It requests the view to start echoing a
rubber band rectangle where the new chip will be placed and saves the
fact that it is creating a new chip. The MouseDown method then
returns.

. The user can then adjust where the chip will be placed by moving the
mouse while holding down the mouse button. Each time the mouse
moves, the windowing system will invoke the controller’s MouseMove
method. The controller will then have the view move the echoing rec-
tangle to the new position.

. When the user finally decides that the chip is in the right position, the
mouse button is released and the windowing system will invoke the
MouseUp method on the view-controller. The controller will have the
view remove the echoing rectangle from the screen, take itself out of
chip-positioning mode, and invoke the AddChip method on the circuit
model, passing in the new location.

. When the model has its AddChip method invoked, it will add the new
chip to its array of chips and will then go to the list of views that have
been registered with this model. For each of these views, the model will
invoke the appropriate methods to notify them that a new chip has been
added. '

. When the part list view receives notification that there is a new chip, it
will inform the windowing system that the space at the bottom of the
list is damaged and needs to be updated. Note that the part list view does
not draw the new chip into the window at this point.

. When the circuit view receives notification of the new chip, it will also
inform the windowing system that the region where the new chip is to
go is damaged. Note that even though the circuit view’s controller initi-
ated the request to create a new chip, the view still waits for notifica-
tion from the model. Suppose, for example, that the model was enforcing
some design constraints that would not allow chips to overlap each
other. The original position from the user might violate those con-
straints. The model may then move the chip slightly to accommodate
the constraints. In such a case, the view must accurately reflect what is
in the model, even if it is different from what the view’s own controller
specified. Also note that the circuit view must respond to notifications
of new chips, no matter where such changes originate. By placing code
to damage the window inside of the controller, such code would be
duplicated. :

140

9.

10.

5 BASIC INTERACTION

When all views have been notified and have performed their damage pro-
cessing, the model returns from its AddChip method to the controller,
which then returns from its MouseDown method, leaving the window-
ing system in control again. The windowing system determines that
there are damage requests pending and will respond to them. The first
damage request is from the part list view. The windowing system deter-
mines, however, that this portion of the part list window is completely
obscured by some other window. In this case, the damage request is dis-
carded because the damaged region is not visible. This is why the part
list view or any other view only damages the changed area in response to
notification of a model change, rather than drawing the changed infor-
mation immediately. The other damage request found by the windowing
system is for the circuit view window. This area is not obscured, so the
windowing system invokes the circuit view’s Redraw method with the
damaged area.

When the circuit view receives its Redraw message, it will look through
all of the chips in the model and draw any chip that overlaps the dam-
aged area. It will then look through all of the wires and draw any wire
that appears in the damaged area. Because the windowing system sets
the clip region to the damaged area, the circuit view may for simplicity
draw all chips and all wires, leaving the clipping logic to discard any-
thing outside of the damage area. Either strategy will work, although in
very large circuits, the “redraw everything” approach may be too slow
for interactive use. Let us suppose that our new chip has been placed
over existing wires. In our application, we always want wires on top so
that we can see them. If the circuit view had simply drawn the new chip
when it received the notification from the model, the chip would have
appeared over the top of the wires, which is not desired. By having the
notification only report a damaged region, and then letting Redraw han-
dle the rest, a correct presentation will always occur.

Moving a Chip

To further illustrate the issues of how the MVC and damage/redraw mecha-
nisms work, let’s look at a second example. In this case, we want to move the
XOR chip to a new location. Remember that in our application, when we
move a chip, the wires stay connected. We will start from Figure 5-7 where
the chip icon has been selected. The process involves the following steps:

1.

2.

When the mouse button goes down over the XOR chip, the windowing
system invokes the controller’s MouseDown event.

The controller requests the view to select a chip and the view returns the
index of the XOR chip as the one selected. The controller then notifies
the model of the selection by calling the model’s SelectChip method.

141
5.2 MODEL-VIEW-CONTROLLER ARCHITECTURE =

=

>
Z
lw)

Figure 5-7 Dragging a chip

3. The model’s SelectChip method notifies all views registered with that
model that the XOR chip has been selected. Each view then damages its
presentation of the XOR chip. In the layout view, the rectangular region
around the chip is damaged; in the part list view, the chip’s name region
is damaged.

4. The controller then stores the fact that it is waiting to drag the chip to a
new location and returns to the windowing system.

5. The windowing system locates the entries for the damaged entries and
invokes Redraw methods on the appropriate views. These Redraw meth-
ods will draw the presentation of the XOR chip to show that it has been
selected.

6. The windowing system then waits for more input events. Since we are
dragging the chip, the next input event will be a movement of the
mouse. When each mouse movement is received by the windowing sys-
tem, the system calls the MouseMove method on the circuit layout
view. This method must echo the new location of the chip on the screen.
The normal notify/damage/redraw cycle is frequently too slow for this
type of echo. Later in this chapter we will discuss faster echoing mecha-
nisms that the controller can use without involving the model or the
view. :

7. When the mouse button is released, the windowing system will send a
MouseUp message to the controller. The controller remembers that it is
dragging a chip to a new location and invokes the model’s MoveChip
method.

8. The model will notify each view that the XOR chip has moved to a new
location. The part list view will ignore this notice because its display
does not involve the chip location.

5 BASIC INTERACTION

Figure 5-8 Damage regions to move a chip

9.

10.

11.

The circuit layout view, however, has some work to do. The circuit lay-
out view must not only move the chip but also the wires connected to it
as well. When moving an object, we must damage both the old location
and the new location. Because wires are moving, the areas around the
wires must also be damaged. Figure 5-8 shows the chip and wires in their
new locations. The gray rectangles show all of the regions that must be
damaged to correctly redraw the view.

After the model has notified all of its views and has changed itself, it
returns to the controller. The controller takes itself out of dragging mode
and returns to the windowing system.

The windowing system locates the damaged entries and invokes the cor-
rect Redraw methods. When region 1 (see Figure 5-8) is redrawn, the
view checks the model and detects that there is nothing in that region.
The area is drawn in background color. When region 2 is redrawn, the
view detects that a portion of the wire from the OR chip to the AND
chip must be redrawn. The rest is background. These two redraws will
cause the XOR chip and its wires to disappear from their old positions.
When region 3 is redrawn, the wire in the new position is drawn; region
4 draws the chip in its new position. .-

In some windowing systems, the Redraw method would be called four
times, once for each rectangle. In other systems, the process might be batched
together into one large rectangle that encloses all four damaged regions. The
Redraw method is then invoked only once with the large rectangle. In other
windowing systems, the four rectangles would be assembled into a single
complex region that exactly bounds the area specified by the four rectangles.

\

143
5.3 MODEL IMPLEMENTATION s

The Redraw method is then invoked once with this complex region. As long
as the view’s Redraw method can correctly redraw any region and as long as
the windowing system clips to that region, the screen updates will be correct
no matter what redraw/region technique is used by the windowing system.

5.3 Model Implementation

The preceding discussion focused on the various components of the MVC
architecture and on the messages that flow back and forth between those
components. It is now time to look at the actual implementation of those
components. This example approach is not the only implementation strategy.
At the end of this chapter, we will discuss variations on the theme in various

commercial tool kits.

We will start our implementation discussion with the model. There are
two aspects that need to be considered. The first is the interface that the
model will present to the views and controllers. The second is the mechanism
for the model to notify all views of changes to the model.

5.3.1 Circuit Class

As described earlier, the heart of our model is the Circuit class which, in con-
junction with the Chip and Wire classes, represents everything that our appli-
cation needs to know about circuits.

The methods are

void Circuit::AddChip(CenterPoint)

void Circuit::AddWire(Chipl, Connectorl, Chip2, Connector2)

void Circuit::SelectChip(ChipNum)

void Circuit::MoveChip(ChipNum, NewCenterPoint)

void Circuit::ChangeChipName(ChipNum, NewName)

void Circuit::DeleteChip(ChipNum)

void Circuit::SelectWire(WireNum)

void Circuit::DeleteWire(WireNum)

and the fields are
Chips
Wires
SelectedChip
SelectedWire

