Programming Assignment 1: A Naïve Bayes Classifier for Sentiment

Due: Wednesday February 13

The goal of this assignment is to apply the Naïve Bayes classifier we described in lecture 2 to a dataset of labeled textual movie reviews. The reviews originally included numerical scores (-4 to +4), but they have been partitioned into positive and negative sets, and matched in size. The dataset was created by Bo Pang and Lillian Lee at Cornell. You can find it here: http://www.cs.cornell.edu/People/pabo/movie-review-data/ and the dataset you need is “Polarity dataset v2.0”

To evaluate the quality of your classifier, you should do a 10-fold cross-validation and apply an accuracy measure such as F1 or AUC (lecture 4). You can try either Bernoulli or Multinomial models.

Although our goal here is to build and evaluate classifiers, the naïve Bayes classifier generates log likelihoods for both positive and negative class membership given a test document. The log likelihoods are linear functions of the term frequencies (or 0,1 values for Bernoulli) of the test document and the weights can be thought of as sentiment estimates for particular words. We’ll develop more accurate models in future, but for now those term weight vectors can be used to do sentiment analysis on other documents, such as twitter statuses.

Toolkit
We recommend that you use the BIDMat library (on github) and Scala for this assignment. There are some other options such as Matlab, SciPy etc, but BIDMat will support larger-scale problems later on. Start by tokenizing the text – most likely you will want to process it a line at a time, then build an Index (dictionary) of words, and then store the text as a sparse matrix with column index = doc, and row index = feature as described in lecture 3.

Extra Credit
You can often improve the accuracy of a text-processing algorithm by stemming (canonicalizing word suffixes like “swimming → swim”) or removing stopwords, like “the,” “a,” “of” etc.

You may get some significant gains by processing n-grams (consecutive sequences of n words) as well as words (which are “unigrams”). N-grams make negations and adjectives visible to the classifier, e.g. “no good” or “really entertaining” whereas “no” and “really” have little value by themselves. n should be small (say 2 to 4). On the other hand, using n-grams introduces very strong dependencies between the n-gram features and their subsequences, which NB is not built to handle. It will be interesting to see which way this goes.

You can also try a POS (Part-Of-Speech) tagger to distinguish adjectives and filter out other words. You may try to refine this using the noun phrase the adjective refers to, whether it was the movie, actor etc.
Writeup:

Please include the following in your write-up:

- Description of each step in your solution (i.e. whether you did stemming etc.)
- What kind of smoothing/backoff etc you did
- Effect on accuracy of any refinements you did – i.e. show F₁ for both the refined method and the basic one.
- Performance data: how long did the algorithm take to run? How many Gflops did it achieve?

Submission:

Please submit this assignment via Bspace (its listed as Assignment 1). Include your source code as an attachment.