Computational Advertising and Recommendation

Ye Chen (yec@microsoft.com)

CS294-1, Behavioral Data Mining, Berkeley
Outline

Introduction
- Computational advertising: Definition
- Computational advertising: Landscape
- Recommendation: An alternate view
- A general methodology

Behavioral Targeting (BT)
- Problem definition
- Linear Poisson regression
- Large-scale implementation

Factor Modeling for Ad Targeting
- Problem definition
- The GaP factorization
- The GaP application for sponsored search

Recommendation
- Problem definition
- A latent product model
- Naïve Bayes recommender

Summary
Computational advertising: Definition

▶ show the best ads to a user under a context;
▶ to optimize some utilities of publishers, advertisers, users, and intermediaries;
▶ an emerging subdiscipline that involves:
 ▶ machine learning: clustering, classification and regression.
 ▶ optimization: linear, integer, convex optimization.
 ▶ information retrieval: query-ad selection, learning-to-rank.
 ▶ economics: game theory, mechanism design, auction theory.
 ▶ large-scale computing: hadoop, distributed computing.
 ▶ recommender systems: content and collaborative filtering.
Computational advertising: Sponsored search

- sponsored search;
 - context: a user issues a query.
 - publishers: Google (AdWords), Bing (AdCenter), Yahoo!
 - max: publisher revenue, s.t. advertiser campaign goal, budget, user satisfaction.
- marketplace: keyword-based GSP with cost-per-click (CPC) pricing.
- system sketch: query analysis \rightarrow ad selection and relevance \rightarrow click prediction \rightarrow GSP.
Computational advertising: Contextual ads

- contextual ads: an extension of sponsored search;
 - context: page content and user behavior.
 - publishers: content providers, and major search engines operate the marketplace.
 - system sketch: starts with keyword extraction in absence of user query.
Computational advertising: Display ads

- display ads;
 - context: page, application and user behavior.
 - publishers: content providers in display ad-networks operated by Google (doubleclick), Microsoft (aquantive), and Yahoo! (rightmedia).
 - two types of display ads:
 1. reserved: delivery guaranteed, contracts negotiated upfront, pricing based on CPM (cost-per-(k)impression), e.g., brand ads, direct response.
 2. performance-based: max publisher revenue, s.t. advertiser budget, real-time bidding on exchange, pricing based on CPC/CPA (cost-per-action)/CPM.
Computational advertising: Emerging formats

- emerging formats;
 - social targeting: Facebook, Twitter, and LinkedIn have user profiles and social graphs.
 - mobile ads: ads in apps, real-time location.
 - local ads and deals: Groupon.
Recommendation: An alternate view

- show the best items to a user under a context;
- a classic problem in e-commerce domain, e.g., Amazon, eBay.
- some based on explicit feedbacks, e.g., the popular Netflix problem or rating-based recommender.
- many more rely on implicit feedbacks, e.g., clicks, purchases, dwell-time, social graphs.
A general methodology

- formulate the learning problem;
 - objective function: min quadratic or hinge loss; max precision/recall, AUC, log-likelihood, clicks, or revenue.
 - it is critical yet nontrivial to align with real business goals, e.g., revenue, long-term ROI, user engagement.
 - the gap usually reflects the challenges of non-objectively-measurable, e.g., CTR vs. brand recognition.

- feature representation for users, ads (advertisers), context (publishers).
 - mostly counts or categorical.
 - highly sparse.
 - very rare positive feedbacks.
 - right level of granularity vs. concept drifts.

- solve the optimization problem at large scale (offline) and real-time (online).

- experiments: offline evaluation (due diligence) vs. online A/B testing (true test).
Behavioral targeting: Problem definition
(Chen, Pavlov, and Canny, KDD’09, TKDD’10)

- Behavioral targeting (BT)
 - leverages historical user behavior to select the most relevant ads.
 - y: predicts and maximizes click-through rate (CTR).
 - x: ad clicks and views, page views, search queries and clicks.

- Challenges:
 - large scale, e.g., Y! logged 9TB ad data with 500B entries on Aug’08.
 - sparse, e.g., the CTR of automotive display ads is 0.05%.
 - dynamic, i.e., user behavior changes over time.
Non-negative linear Poisson regression

- Poisson distribution for counts:
 \[
 p(y) = \frac{\lambda^y \exp(-\lambda)}{y!}, \text{ where } \lambda = w^\top x.
 \]

- MLE by multiplicative recurrence:
 \[
 w'_j \leftarrow w_j \frac{\sum_i y_i x_{ij}}{\sum_i x_{ij}}, \text{ where } \lambda_i = w^\top x_i.
 \]

- CTR prediction:
 \[
 \hat{\text{CTR}}_{ik} = \frac{\lambda_{\text{click}}}{\lambda_{\text{view}}} + \alpha.
 \]

- Notation:
 - \(y, \lambda \) the observed and expected counts.
 - \(w, x \) the weight and bag-of-words feature vector.
 - \(i, j, k \) the indices of user, feature, and ad category.
 - \(\alpha, \beta \) the smoothing constants for clicks and views.
Large-scale implementation: Data reduction and information loss

- Many practical learning algorithms are IO-bound and scan-bound.
- For BT, one needs to preprocess 20-30TB raw data feeds of ads and searches.
- Reduce data size at the earliest, by projection, aggregation and merging, e.g., on (cookie, time).
- Data prep should have minimum information loss and redundancy, e.g., time resolution.
- Data prep should be loosely coupled with specific modeling logics for data reusability, e.g., neither decays counts nor categorizes ads.
- After preprocessing, the data size is reduced to 2-3TB.
A data-driven approach is to use granular events as features.

Frequency-based feature selection works almost best in practice for sparse data.

Frequency is counted in cookie rather than event occurrence (robot filtering).

Thresholding immediately after summing Mapper, locally and in-memory, thus cut the long tail of the power-law like sparse data.

Output of feature selection is three dictionaries (ads, pages, queries), which collectively define an indexing of the feature space.
Large-scale implementation: Feature vector generation in $O(1n)$

- Linear time algorithms are of great interest for large-scale learning.
- The scalar c of a linear complexity $O(cn)$ should be seriously taken into account when n is easily in the order of billion.
- To generate $D = \{(x_i, y_i)\}_{i=1}^n$ in $O(1n)$ time:

![Diagram showing feature/target vectors](image-url)
To exploit the sparseness, one shall use some data-driven approaches.

1. feature-specific normalization (the idea of tf-idf):

\[w_{kj} \leftarrow \frac{\sum_i y_{ik} x_{ij}}{\sum_i x_{ij}}. \]

2. target-specific normalization (respect the highly skewed distribution of traffic over categories):

\[w_{kj} \leftarrow \frac{\sum_i (y_{ik} x_{ij}) \sum_i y_{ik}}{\sum_{j'} [\sum_i (y_{ik} x_{ij'}) \sum_i x_{ij'}]}. \]
Large-scale implementation: Parallel multiplicative recurrence

- Given $D = [Y \ X]$, solve $W^* = \text{argmax}_W \log p(Y^\top | WX^\top)$.
- An NMF problem $Y^\top \approx WX^\top$ where the quality of factorization is measured by log likelihood.
- Multiplicative update:
 \[
 w'_j \leftarrow w_j \frac{\sum_i y_i x_{ij}}{\sum_i x_{ij}}, \text{where } \lambda_i = w^\top x_i.
 \]

- Computational bottleneck: $\sum_i y_i x_{ij}$.
- Parallel iterative algorithms typically suffer from synchronizing model parameters after each iteration.
- For BT, the final multiplicative update of w_k has to be carried out in a single node.
Large-scale implementation: “Fine-grained parallelization”

- Scalable data structures: \((x_i, y_i)\) sparse vectors, \(w_k\) dense vectors.
- Distribute counting co-occurrences by \((k, j)\) which defines an entry in \(W\).
- In-memory cache input examples (not weights), and retrieve relevant weight vectors on demand.

![Diagram showing data and weight matrices, map and reduce operations, and PoissonMultBigram and PoissonMultWeight functions.]

Legend:
1. Variables: \(x\) for feature counts, \(y\) for target counts, \(\lambda\) for expected target counts, \(w\) for model weights;
2. Indices: \(i\) for example, \(j\) for feature, \(k\) for target;
3. \(<\text{key}>:\) distributing by a single key;
Factor modeling for CTR prediction: Problem definition
(Chen, Kapralov, Pavlov, and Canny, NIPS’09)

- Ad targeting $ad^* = \arg \max_{ad} f(ad, user, x)$
 - To select the ads most relevant to a user.
 - $y = f(ad, user, x)$: typically click-through rate (CTR).
 - x: query, page content, user behavior, ad clicks and views.
 - The count data can be formed as a feature-by-user matrix F.

- Sponsored search (SS)
 - To place textual ads alongside algorithmic search results.
 - $y = p(\text{click}|ad, user, query)$.

- Behavioral targeting (BT)
 - To select display ads based on historical user behavior.
 - $y = p(\text{click}|ad, user, behavior)$.
The GaP factorization

- **Notation**
 - F is an $n \times m$ matrix of observed counts.
 - Y is an $n \times m$ matrix of expected counts, $F \sim \text{Poisson}(Y)$ element-wise.
 - X is a $d \times m$ matrix where the column x_j is a low-dimensional representation of user j, i.e., unnormalized $p(k|j)$.
 - Λ is an $n \times d$ matrix where the column Λ_k represents the kth topic as a vector of event probabilities $p(i|k)$, thus $Y = \Lambda X$.

- **The graphical model**

$$f_{ij} \sim \text{Poisson}(y_{ij}) \leftarrow y_{ij} \sim \text{mixture of Multinomial}(p(i|k)) \leftarrow x_{kj} \sim \text{Gamma}(\alpha_k, \beta_k)$$
The generative model

To generate an observed event-user count f_{ij}:

1. Generate $x_{kj} \sim \text{Gamma}(\alpha_k, \beta_k), \forall k$.
2. Generate y_{ij} occurrences of event i from a mixture of Multinomial $(p(i|k))$ with outcome i, i.e., $y_{ij} = \Lambda_i x_j$ where Λ_i is the ith row vector of Λ.
3. Generate $f_{ij} \sim \text{Poisson}(y_{ij})$.

x_{kj} is given a Gamma as an empirical prior, with pdf

$$p(x) = \frac{x^{\alpha-1} \exp(-x/\beta)}{\beta^\alpha \Gamma(\alpha)} \quad \text{for } x > 0 \text{ and } \alpha, \beta > 0.$$

- Given a latent vector x_j, derive the expected count vector y_j

$$y_j = \Lambda x_j.$$

- The observed count f_{ij} follows a Poisson with the mean y_{ij}

$$p(f) = \frac{y^f \exp(-y)}{f!} \quad \text{for } f \geq 0.$$
Parameter estimation

- The likelihood of a user count vector \mathbf{f}

$$
p(\mathbf{f}|\Lambda, \mathbf{x}, \alpha, \beta) = \frac{\prod_{i=1}^n y_i^{f_i} \exp(-y_i)}{f_i!} \prod_{k=1}^d x_k^{\alpha_k-1} \exp(-x_k/\beta_k) / \beta_k^{\alpha_k} \Gamma(\alpha_k), \text{ where } y_i = \Lambda_i \mathbf{x}.
$$

- The log likelihood

$$
\ell = \sum_i (f_i \log y_i - y_i - \log f_i!)
+ \sum_k ((\alpha_k - 1) \log x_k - x_k/\beta_k - \alpha_k \log(\beta_k) - \log \Gamma(\alpha_k)).
$$

- Given $F = (\mathbf{f}_1, \ldots, \mathbf{f}_m)$, we wish to find the MLE of the model parameters (Λ, X).

E-step:

$$
x'_{kj} \leftarrow x_{kj} \frac{\sum_i (f_{ij} \Lambda_{ik}/y_{ij}) + (\alpha_k - 1)/x_k}{\sum_i \Lambda_{ik} + 1/\beta_k};
$$

M-step:

$$
\Lambda'_{ik} \leftarrow \Lambda_{ik} \frac{\sum_j (f_{ij} \bar{x}_{kj}/\bar{y}_{ij})}{\sum_j \bar{x}_{kj}}.
$$
Rationale for GaP model

- GaP and LDA are very similar, except for one key difference.
 - In LDA, the choice of latent factor is made independently word-by-word.
 - In GaP, several items are chosen from each latent factor, i.e., that topics are locally related.
 - If x_k are independently distributed $\text{gamma}(\alpha_k, \beta)$ respectively, then the vector $(x_1/s, \ldots, x_d/s)$, where $s = \sum_k x_k$, follows a $\text{Dirichlet}(\alpha_1, \ldots, \alpha_d)$.

- Another reason for our preference for GaP is its simplicity.
 - LDA requires transcendental functions, e.g., the Ψ function in Eq.(8) in (Blei et al., 2003).
 - GaP requires only basic arithmetic.
Two variants for CTR prediction

- The standard GaP model fits discrete count data.
- We derive two variants for predicting CTR.
 1. To predict clicks and views independently, and then to construct the unbiased estimator of CTR, typically with Laplace smoothing:

\[
F \approx Y = \Lambda X; \\
\hat{CTR}_{ad(i)j} = \frac{\Lambda_{\text{click}(i)}x_j + \delta}{\Lambda_{\text{view}(i)}x_j + \eta}.
\]

2. To consider the relative frequency of counts in the GaP factorization. Let \(F\) be observed clicks, \(V\) be observed views, and \(Z\) be expected CTRs:

\[
F \approx Y = V.Z = V.(\Lambda X); \\
\hat{CTR}_{ad(i)j} = z_{ij} = \Lambda_i x_j.
\]
The GaP deployment for sponsored search

- **Offline training.** Given the observed F and V obtained from a corpus of historical user data, we derive Λ and X using the CTR-based GaP.
- **Offline user profile updating.** Given the global Λ and the user-local F and V, we update the user profiles X in a distributed and data-local manner, using E-step recurrence only.
- **Online CTR prediction.** Given a query issued by user j, the global Λ and the local x_j, the predicted CTRs are obtained by a matrix-vector multiplication $z_{ij}^{\text{match}} = \Lambda^{\text{match}} x_j$.

```
<table>
<thead>
<tr>
<th>cookie:</th>
<th>query-ad:</th>
</tr>
</thead>
<tbody>
<tr>
<td>'4qb2cg939usaj'</td>
<td>'machine+learning+8532948011'</td>
</tr>
</tbody>
</table>

$\Lambda_i$ (42497th row) = \Lambda (9869th column)

$z_{ij} = \Lambda^{\text{match}} x_j$

```

Figure: GaP graphical model
Positional normalization

- The observed CTR represents a conditional $p(\text{click}|\text{position})$, while we wish to learn a CTR normalized by position $p_{\text{rel}}(\text{click}|\text{examine})$.
- We assume an examination model with the Markov process:

$$p(\text{click}|\text{position}) = p_{\text{rel}}(\text{click}|\text{examine})p_{\text{pos}}(\text{examine}|\text{position}).$$

- Apply a GaP factorization with one inner dimension to feature-by-position F and V.
- Simple and empirically motivated.
 - Not dependent on the content of ads higher up, as with the cascade or DBN models.
 - For ads, the probability of clicking any ad link is extremely low.
 - In this case, the DBN positional prior degrades to a negative exponential function.
Large-scale implementation

- Recall the multiplicative recurrence

 E-step: $x'_{kj} \leftarrow x_{kj} \frac{\sum_i (f_{ij} \Lambda_{ik}/z_{ij}) + (\alpha_k - 1)/x_{kj}}{\sum_i v_{ij} \Lambda_{ik} + 1/\beta_k};$

 M-step: $\Lambda'_{ik} \leftarrow \Lambda_{ik} \frac{\sum_j (f_{ij} x_{kj}/z_{ij})}{\sum_j v_{ij} x_{kj}}$.

- Data locality
 - Updating X in a distributed and data-local manner.
 - Training Λ by alternating 10 successive E-steps with one M-step.
 - For M-step summing over all users ($f_{ij} x_{kj}/z_{ij}$ and $v_{ij} x_{kj}$) incrementally.

- Data sparsity
 - Only computing z when the corresponding f is non-zero (f_{ij}/z_{ij}).
 - Let N_c be the total number of non-zero f's, N_v be the total number of non-zero v's, and r be the number of EM iterations. Typically $N_v \gg N_c \gg m > n \gg d$, the complexity of offline training is $O(N_v dr)$.

- Scalability
 - Assuming $O(N_v dr) \approx 4N_v dr, m = 10M, d = 10, N_v = 100 \times m, r = 15, \ldots, 20$.
 - We have achieved 100 Mflops by a single-machine implementation with sparse matrix arithmetics.
 - Thus it takes 1.6-2.2 hours to train a model.
Remarks on scaling

- We observed that the running time on a 250-node cluster is no less than a single-node yet highly efficient implementation, after accounting for the different factors of users $4 \times$ and latent dimension $2 \times$, with a similar 100 Mflops.

- To deal with scaling, implementation issues (such as cache efficiency, number of references, data encapsulation) still cause orders-of-magnitude differences in performance and can more than overwhelm the additional nodes.

- The right principle of scaling up should start with a single node and achieve above 100 Mflops with sparse arithmetic operations.
Recommendation at long tail: Problem definition
(Chen and Canny, SIGIR’11)

- Recommendation for online marketplaces (e.g., eBay)
 - Items are ad-hoc listings, without product or catalog taxonomy.
 - Transactional data is very sparse (30-fold sparser than the Netflix data).
 - No user-item ratings, and transactional counts do not follow Gaussian.

- From items to products
 - Most items are unique, no links between user behaviors.
 - Map items to products, a clustering problem.
 - Topic models are not suitable.
 1. An item has 10 terms, little can be learned by projecting to lower-dim
 (e.g., Apple iPhone 4 - 32GB - Black (Unlocked) Smartphone).
 2. Item title terms are highly independent.
 3. The remaining term dependencies are entirely local (e.g., red iPhone?).
Generative clustering

An item \mathbf{x} is a 3-tuple of vectors: $\mathbf{x} = (\mathbf{b}, \mathbf{c}, \mathbf{g})$.

1. For binary variables: $b_v \sim \text{Binom}(p_v), \forall v \in \{1, \ldots, V\}$;
2. For categorical variables: $c_u \sim \text{Mult}(\theta_u), \forall u \in \{1, \ldots, U\}$;
3. For continuous variables: $g_s \sim \mathcal{N}(\mu_s, \sigma^2), \forall s \in \{1, \ldots, S\}$.

Given a latent product \mathbf{z}_k, the likelihood of an item \mathbf{x}_i is:

$$
p(\mathbf{x}_i|\mathbf{z}_k) = \prod_{v:b_{iv}=1} p_{kv} \prod_{v:b_{iv}=0} (1 - p_{kv}) \prod_u \theta_{ku} \times \prod_s \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(g_{is} - \mu_{ks})^2}{2\sigma^2}\right).$$
Parameter estimation

- Given a set of items $I = \{x_i\}_{i=1}^n$, we wish to learn a smaller set of latent products $P = \{z_k\}_{k=1}^m$.

\[
(z_1^*, \ldots, z_m^*) = \arg\max_{(z_1, \ldots, z_m)} \sum_k \sum_i \gamma_{ik} \ell(x_i|z_k),
\]

where γ_{ik} is an indicator variable for item-product membership.

- We thus derive the following EM algorithm:

 E-step:
 \[
 \gamma_{ik} \left\{ \begin{array}{ll}
 1 & k = \arg\max_{k'} \ell(x_i|z_{k'}) \\
 0 & \text{otherwise}
 \end{array} \right.
 \]

 M-step:
 \[
 z_k \leftarrow \mathbb{E}(x_i|\gamma_{ik} = 1).
 \]

- Smooth the local parameters z_k by the background probabilities q:

 \[
 z_k \leftarrow (1 - \lambda)z_k + \lambda q.
 \]
Efficient inference

- The inferential task given a model trained:

\[k^* = \arg\max_k \ell(x'|z_k). \]

- Let us define \(p_a = (1 - \lambda)p_{kv} + \lambda q_v \) and \(p_b = \lambda q_v \),

\[
\ell(x_i|z_k) = \sum_{v:p_{kv}>0, b_{iv}=1} \log \left(\frac{p_a(1 - p_b)}{(1 - p_a)p_b} \right) + \sum_{v:p_{kv}>0} \log \left(\frac{1 - p_a}{1 - p_b} \right) + \sum_v \log (1 - p_b) + \sum_{v:b_{iv}=1} \log \left(\frac{p_b}{1 - p_b} \right). \]
Naïve Bayes: Product-level recommendation model

- Recommendation can be made by naïve Bayes for ranking:

\[y^* = \arg\max_y p(y|x) \propto \arg\max_y p(x, y). \]

- The product-to-product preference probability:

\[p(y|x) = \frac{\alpha_1 C_{y|x}^{bb} + \alpha_2 C_{y|x}^{pp} + \alpha_3 C_{y|x}^{cb} + \zeta}{C_{y|x}^{vb} + \zeta / p(y)}, \]

where the baseline popularity:

\[p(y) = \frac{\beta_1 C_{y}^{p} + \beta_2 C_{y}^{b} + \beta_3 C_{y}^{c}}{\max (C_{y}^{v}, \epsilon)}. \]

Here \(C \) denotes co-occurrences, e.g., \(C_{y|x}^{vb} \) is the number of users who bid on \(x \) and viewed \(y \). We consider four types of co-occurrence patterns: (1) bid-bid (bb), (2) purchase-purchase (pp), (3) click-bid (cb), and (4) view-bid (vb).
Counting co-occurrences

- Implement as matrix multiplication, and exploit sparseness:
 \[C^{vb} = D_v D_b^\top, \forall (x, y) \text{ where } C^{cb}_{yx} > 0. \]

- Use a \(t \times w \) sliding window to count co-occurrences.
- Impose a empirical positional prior to normalize (multiply) view count:

 \[p(r; \eta, \phi) = \frac{1}{Z_1} r^{-\eta}, r = 1, 2, \ldots, \phi. \]

Here \(\eta \) is a positive real number implying the rate at which a prior decreases as the positional rank \(r \) moves down in a search result page, \(\phi \) is the lowest rank the prior covers, and \(Z_1 = \sum_{r=1}^{\phi} r^{-\eta} \) is a normalizing constant.
Item-level ranking model

- We wish to have a probabilistic scoring function:

 \[j^* = \arg\max_j p(j|i), \]

 where \(i \) and \(j \) are seed and candidate items, respectively.

- The item-to-item recommendation score can be factorized as:

 \[p(j|i) = \sum_{x,y} p(j|y) p(y|x) p(x|i) \]

 where \(x \) and \(y \) denote latent products, correspondingly.

- Incorporate auction end time:

 \[p(j, \Delta h(j)|i) = p(j|y) p(y|x) p(\Delta h(j)), \]

 where \(\Delta h(j) \) is the remaining auction time, and \(p(\Delta h(j)) \) is a smoothed and normalized exponential decay function.
Objective functions

- Ranking recommendations directly in purchase probability shall optimize number of purchases.
- But the probabilistic co-preference score can be extended to maximize other utilities.

\[\mathbb{E}(f(u_j)) = f(u_j)p(j, \Delta h(j)|i), \]

where \(u_j \) is the unit price of the target item \(j \).
- To optimize revenue,

\[f_{\text{rev}}(u) = a_1 \min(u, b_1) + a_2 \max(0, (\min(u, b_2) - b_1)) + a_3 \max(0, (u - b_2)). \]

- To optimize user satisfaction,

\[f_{\text{usr}}(u) = 1 + \log(\max(1, u)). \]
Summary

- Computational advertising is an emerging scientific subdiscipline that matters substantially to Internet monetization today.
- Recommendation system is a classic problem, yet becomes active as a formulation for ad targeting, and generally matching items to users.
- Industrial problems are rich, yet challenging in data scale, sparsity, real-time response time, and temporal dynamics.
- Often times, the deployment success relies as much on engineering excellence as algorithmic elegance.