The **RISE** Lab: Real-time Intelligent Secure Execution

Krste Asanovic, Ali Ghodsi, Ken Goldberg, **Joey Gonzalez**, **Joe Hellerstein**, Michael Jordan, Randy Katz, Dave Patterson, **Raluca Ada Popa**, **Ion Stoica**, ...

Berkeley's lab tradition

- Working for 5-6 years on a new major problem
- Bringing faculty from different areas

AMPLab (2010-2016)

Created popular open-source big data analytics: Spark, Mesos, Tachyon..

AMPLab is coming to an end (December 2016)

What is the next vision?

RISE Lab

From live data to real-time decisions

AMP Lab

From batch data to advanced analytics

why is **Inference** challenging?

Need to render **low latency** (< 10ms) predictions for **complex**

under heavy load with system failures.

Inference is moving beyond the cloud

Inference is moving beyond the cloud

Opportunities

- Reduce latency and improve privacy
- Address network partitions

Research Challenges

- Minimize power consumption
- Limited hardware & long life-cycles
- Develop new hybrid models to leverage cloud and devices

Robust Inference is critical

Self "Parking" Cars

Self "Driving" Cars

Chat Als

Why is **Closing the Loop** challenging?

Implicit and Delayed Feedback Self Reinforcing Feedback Loops World Changes at varying rates

Secure

Intelligence in Sensitive Contexts

AR/VR Systems

Home Monitoring

Voice Technologies

What, again?

Medical Imaging

Protect the data, the model, and the query

Protect the **data**, the **model**, and the **query**

High-Value **Data** is **Sensitive**

Data

- Medical Info.
 Core Asset
 - Home video
 - Finance

Models capture value in data

- Sensitive

Queries can be as sensitive as the data

Goal

Real-time decisions decide in ms

on live data

with strong security

Goal

Real-time decisions

decide in ms

on live data

the current state of the environment

with strong security

Goal

Real-time decisions

decide in ms

on live data

the current state of the environment

with strong security

privacy, confidentiality, integrity

Challenges

Automated decisions on live data are hard

Poor security: exploits are daily occurrences

One-off solutions, expensive and slow to build

RISE Lab

Real-time, sophisticated decisions that guarantee worst-case behavior on noisy and unforseen live data

Ensure privacy and integrity without impacting functionality

General platform: Secure Real-time Decision Stack

Example: Zero-time defense

Problem: zero-day attacks can compromise millions of sites in seconds

Solution: analyze network flows to detect attacks and patch sites/software in real-time

- Intermediate data: create attack model
- **Decision**: detect attack, patch

Quality	sophisticated, accurate, robust	
Latency	sec (decision) / sec (update)	
Security	privacy (encourage users to share logs), integrity	

Example: "Fleet" driving

Problem: suboptimal driving decisions **Solution**: collect & leverage info from other cars and drivers in real-time

- Intermediate data: automatically annotate maps, actions of other drivers
- Decision: avoid obstacles, congestions

Quality	sophisticated, accurate, noise tolerant
Performance	sec (decision) / sec (update)
Security	privacy, data integrity

Example: Infectious disease discovery

Problem: infectious diseases spread quickly (Zika), may need quarantine (Ebola)

Solutions: real-time DNA seq. & analysis to identify pathogens

- Rapid analysis to trace evolution, source
- 100x faster \rightarrow 100x people tested
 - Intermediate data: evolution, spread, symptoms
 - **Decision**: quarantine or not, diagnosis

Quality	sophisticated, accurate
Latency	min (decision) / hour (update)
Security	privacy, integrity

MinION Nanopore (Dr. Charles Chiu UCSF using it to identify Zika virus)

Applications	Quality	Latency		
		Decision	Update	Security
Zero-time defense	sophisticated, accurate, robust	sec	Sec	privacy/confidentiality, integrity
Parking assistant	sophisticated, robust	sec	Sec	
Disease discovery	sophisticated, accurate	sec/min	hours	
IoT (smart buildings)	sophisticated, robust	sec	min/hour	
Earthquake warning	sophisticated, accurate, robust	ms	min	
Chip manufacturing	sophisticated, accurate, robust	sec/min	min	
Fraud detection	sophisticated, accurate	ms	min	
"Fleet" driving	sophisticated, accurate, robust	sec	Sec	
Virtual companion	sophisticated, robust	sec	min/hour	
Video QoS at scale	sophisticated	ms /sec	min	

Challenges

Automated decisions on live data are hard

Poor security: exploits are daily occurrences

One-off solutions, expensive and slow to build

RISE Lab

Real-time, sophisticated decisions that guarantee worst-case behavior on noisy and unforseen live data

Ensure privacy and integrity without impacting functionality

General platform: Secure Real-time Decision Stack

What exists today?

Pull decisions

Example: recommendation system

Solution scorecard

Solution	Decision Quality	Latency		Coourity.
		Decision	Update	Security
Pull decisions	simple	ms	min/day	weak

Pull decisions: contextual decisions

Solution scorecard

Solution	Decision Quality	Latency		Coourity
Solution		Decision	Update	Security
Pull decisions	simple	ms	min/day	weak
Pull decisions: prediction service	sophisticated , specialized	ms	min*	weak

*light-weight, ensemble + correction models, policies

Push Decisions

Example: anomaly detection

Push Decisions

Example: anomaly detection

Solution scorecard

Solution	Decision Quality	Latency		Security
Solution		Decision	Update	Security
Pull decisions	simple	ms	min/day	weak
Push decisions	simple	ms/sec	hour	weak

*light-weight, ensemble + correction models, policies

Security tools

- Computation on encrypted data
- Hardware enclaves

State-of-the-art security solutions: Computation on encrypted data

State-of-the-art security solutions: Computation on encrypted data

50

State-of-the-art security solutions: Hardware enclaves

Solution scorecard

Solution	Decision Quality	Latency		Coourity
Solution		Decision	Update	Security
Pull decisions	simple	ms	min/day	weak
Push decisions	simple	ms/sec	hour	weak
State-of-the-art security	simple	ms	min/hour	strong

*light-weight, ensemble + correction models, policies

Solution scorecard: RISE

Solution	Decision Quality	Latency		Coourity
		Decision	Update	Security
Pull decisions	simple	ms	min/day	weak
Push decisions	simple	ms/sec	hour	weak
Security	simple	ms	min/hour	strong
RISE	sophisticated, accurate, robust	ms	Sec	strong

*light-weight, ensemble + correction models, policies

Research areas

Systems: Spark-like functionality with 100x lower response time, and 1000x higher job throughput

Machine Learning:

- On-line ML algorithms
- Robust algorithms: handle noisy data, guarantee worst-case behavior

Security: achieve privacy, confidentiality, and integrity without impacting performance

Research area: Systems

on-going work Apache Lattice Ray Clipper Spark Flow unified model shim layer shim layer shim layer (rich experience w/ both models) shim laver RISE IndexedRDDs scheduler optimizer ukernel GPU/ASICs algos in-momory obi Support task-graph & BSP execution models Drizzle Support fine grain updates sharded driver, Support heterogeneous hardware in-memory processing, Millisecond level parallel jobs per-core NIC, HBM Handle 10K-100K jobs/sec Ability to faithfully replay jobs 56 system-state store

THE MEANING AND VALUE OF DATA DEPENDS ON CONTEXT

Application context

Multiple data models

because truth is subjective

Behavioral context

Logs and Lineage

because behavior determines meaning

Historical context

Immutable versions for code and data

because things change

LatticeFlow and Bedrock (working names)

Driving Hypotheses for LatticeFlow

- A core programming API for both real-time and scale
- Everything is (async) data: event dispatch, real-time data streams
- Coordination Avoidance: lattices + async dataflow = no locks/barriers

Initial proof point this fall: LatticeKVS

MultiScale, MultiConsistency key-value store

- Same system beats Redis on one node, Cassandra on scale-out...
- ...while providing family of rich consistency and transactional isolation options
- ...with lean codebase, derived from a core LatticeFlow library in C++

Prototype toward "Project Bedrock"

• Immutable, never-forget versioned storage under ground

Research area: Systems & ML

Research area: ML

Robust optimization methods:

noise tolerant and parallelizable

Handle uncertainty:

• robust control techniques to handle unforseen real world situations

Quantify decision accuracy:

• confidence and credible intervals on outputs of ML systems

On-line ML algorithms

• handle time-varying models with high performance and reliability

End-to-end system

Research area: Security

Research area: Security

Summary

Goal: develop Secure Real-time Decision Stack, an open source platform, tools and algorithms for real-time decisions on live data with strong security

Five year project, similar to AMPLab We are uniquely positioned to tackle this challenge

Looking to partner with companies