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How to do Research in AI Systems
Ø Manage Complexity

Ø seek parsimony in system design
Ø great systems research is often about what features are taken away
Ø Do a few things well and be composable

Ø Identify Tradeoffs
Ø With each design decision what do you gain and lose?
Ø What trade-offs are fundamental?

Ø Evaluate your System
Ø Positive: How fast and scalable is it and why?
Ø Negative: When does it fail and what are it’s limitations?



Hemingway*

Modeling Throughput and 
Convergence for ML Workloads

Ø What is the best algorithm and level of parallelism for an ML task?
Ø Trade-off: Parallelism, Coordination, & Convergence

Ø Research challenge: Can we model this trade-off explicitly?

*follow-up work to Shivaram’s Ernest System in NSDI’16
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Hemingway*

Modeling Throughput and 
Convergence for ML Workloads

Ø What is the best algorithm and level of parallelism for an ML task?
Ø Trade-off: Parallelism, Coordination, & Convergence

Ø Research challenge: Can we model this trade-off explicitly?
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Loss as a function of 
iterations i and cores pL(i, p)

I(p) Iterations per second as
a function of cores p

loss(t, p) = L (t⇤I (p), p)
• How long does it take to get to a given loss?
• Given a time budget and number of cores 

which algorithm will give the best result?

*follow-up work to Shivaram’s Ernest System in NSDI’16
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Take away …

try to decouple

System
Improvements

Algorithm
Improvements

use data collection + sparse modeling
to understand your system
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Often overlooked 
Timescale: ~10 milliseconds
Billions of Queries a Day à Costly



why is                        challenging?
Need to render low latency (< 10ms) predictions for complex

under heavy load with system failures.

Models Queries

To
p 

K

Features
SELECT * FROM
users JOIN items,
click_logs, pages
WHERE …

Inference



is moving beyond the cloud

Mobile
Assistants

Augmented Reality Home Security Home Automation

Self Driving Cars Personal Robotics

Inference



is moving beyond the cloud
Opportunities
Ø Reduce latency and improve privacy
Ø Address network partitions

Research Challenges
Ø Minimize power consumption
Ø Limited hardware & long life-cycles
Ø Develop new hybrid models to 

leverage the cloud and edge devices

Inference



Robust is critical
Self “Parking” Cars Self “Driving” Cars Chat AIs

Inference
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Timescale: hours to weeks
Often re-run training 
Sensitive to feedback loops



Why is                                       challenging?Closing the Loop 

Self Reinforcing
Feedback Loops

Implicit and Delayed
Feedback

d

dt
World Changes
at varying rates
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Augmented Reality Home Monitoring Voice Technologies Medical Imaging

Protect the data, the model, and the query

Intelligence in Sensitive Contexts



Data

High-Value Data is Sensitive
• Medical Info.
• Home video
• Finance

Models capture value in data 
• Core Asset 
• Sensitive

Queries can be as sensitive as the data

Protect the data, the model, and the query



Opaque: Analytics on Secure Enclaves
Exploit hardware support to 
enable computing on 
encrypted data
Ø Today: prototype system 

running in Apache Spark
Ø support SQL queries in 

untrusted cloud
Ø ~50% reduction in perf.

Ø Future: enable prediction 
serving on enc. queries

Opaque: A Data Analytics Platform with Strong Security

Abstract
An increasing number of organizations are moving

their analytics workloads into the cloud to take advan-
tage of the elasticity and cost savings. However, the risk
of data breaches is hampering this trend. While hard-
ware enclaves promise a much needed solution to data
confidentiality and secure execution of arbitrary compu-
tation, they still su↵er from a significant leakage vector:
access pattern leakage. We propose Opaque, a distributed
data analytics platform supporting a wide range of queries
while providing strong security guarantees for both access
patterns and integrity protection.

To achieve this, Opaque introduces new distributed
oblivious relational operators that hide access patterns,
and novel query planning techniques to optimize for these
operators. Opaque is implemented in Apache Spark using
the Catalyst optimizer with minimal changes. While the
strong security in Opaque comes at a cost, with queries
being between 12-200x slower than their insecure coun-
terpart, Opaque provides an improvement of three orders
of magnitude over state-of-the-art oblivious protocols.

1 Introduction
Cloud-based big data platforms collect and analyze vast
amounts of sensitive data such as user information (emails,
social interactions, shopping history), medical data, and
financial data. These systems extract value out of this data
through advanced SQL [7], machine learning [28, 17], or
graph analytics [16] queries. However, these information-
rich systems are also valuable targets for attacks [18, 35].

Ideally, we want to both protect data confidentiality
and maintain its value by supporting the existing rich
stack of analytics tools. Recent developments on secure
hardware enclaves (such as Intel SGX [27] and AMD
Memory Encryption [20]) promise support for arbitrary
computation at processor speeds while protecting the data.
Previous work such as Haven [9] and VC3 [37] have
shown that it is possible to run unmodified binaries and
MapReduce jobs using enclaves.

Unfortunately, enclaves still su↵er from an important
attack vector: access pattern leakage [41, 31]. These
attacks are of two kinds: at the memory level and at the
network level. Regarding the memory level, while a com-
promised OS is unable to decrypt the data, it can infer
information about the data by monitoring application page
accesses. Previous work [41] has shown that an attacker
can extract hundreds of kilobytes of data from confidential
documents during a single run of a spellcheck application,

Spark Execution
Catalyst

o-filter

query optimization

SQL ML Graph
Opaque

o-groupby o-join

Figure 1: Opaque e�ciently executes a wide range of distributed
data analytics tasks by introducing SGX enabled oblivious rela-
tional operators that mask data access patterns and new query
optimization techniques to reduce performance overhead.

as well as discernible outlines of jpeg images from an
image processing application running inside the enclave.
Regarding the network level, such access pattern leakage
is also dangerous in the distributed data processing set-
ting, as standard tasks (e.g., sorting or hash-partitioning)
produce network tra�c patterns that reveal information
about the data (e.g., key skew). Even if the messages
sent over the network are encrypted, Ohrimenko et al [31]
showed that an attacker who only observes a MapReduce
query’s network tra�c patterns (the source and destina-
tion of each message but not its content) can identify the
age group, marital status, and place of birth for specific
rows in a census database. Therefore, to truly secure
the data, we need to make the computation oblivious, i.e.
computation should not leak any access pattern.

In this paper, we introduce Opaque1, a distributed and
oblivious data analytics platform. Utilizing Intel SGX
hardware enclaves, Opaque provides strong security guar-
antees: obliviousness and computation integrity.

One key question when implementing the oblivious
functionality is: at what layer in the software stack should
we implement it? Implementing it at the application layer
will likely result in application-specific solutions that are
not widely applicable. Implementing it at the execution
layer, while very general, provides us little semantics
about application beyond the execution graph, which sig-
nificantly reduces our ability to optimize the implemen-
tation. Thus, neither of these two natural approaches
appears satisfactory.

Fortunately, recent developments and trends in big data
processing frameworks provide us with a compelling op-
portunity: the query optimization layer. Previous work
has shown that the relational model can express a wide
variety of big data workloads, including complex graph

1The name “Opaque” stands for Oblivious Platform for Analytic
QUEries, as well as opacity, meaning no sensitive information is visible.

Wenting et	al.	(NSDI’17)
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A Low-Latency Online Prediction 
Serving System

Clipper
NSDI’17
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Hybrid Offline + Online Learning

Update the user weights online:
• Simple to train + more robust model
• Address rapidly changing user statistics

Update “feature” functions offline using batch solvers
• Leverage high-throughput systems (Tensor Flow)
• Exploit slow change in population statistics

f(x; ✓)T wu



Common modeling structure
f(x; ✓)T wu
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Clipper Online Learning for Recommendations
(Simulated News Rec.)
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Partial Updates: 0.4 ms
Retraining: 7.1 seconds

>4 orders-of-
magnitude faster 
adaptation
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Clipper Serves Predictions across ML Frameworks

Clipper

Content
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Fraud
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Create VW
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Clipper
Create VWCaffeKey	Insight:

The	challenges	of	prediction	serving	can	be	addressed	between	
end-user	applications	and	machine	learning	frameworks

As a result, Clipper is able to:
Ø hide complexity by

Ø providing a common interface to applications
Ø bound latency and maximize throughput

Ø through caching, adaptive batching, model replication
Ø enable robust online learning and personalization

Ø through model selection and ensemble algorithms
without modifying machine learning frameworks or front-end applications



Clipper Architecture
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Clipper Architecture

Clipper
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Predict ObserveRPC/REST Interface
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Clipper Architecture

Clipper

Applications
Predict ObserveRPC/REST Interface

Model Abstraction Layer
Provide a common interface to models
while bounding latency and 
maximizing throughput.

Model Selection LayerImprove accuracy through bandit methods,
ensembles, online learning, and personalization

Caffe
Model Wrapper (MW) MW MW MW

RPC RPC RPC RPC



Clipper Architecture

Clipper

Applications
Predict ObserveRPC/REST Interface

Model Selection LayerAnytime Predictions

Model Abstraction Layer
Caching

Adaptive Batching

Caffe
Model Wrapper (MW) MW MW MW

RPC RPC RPC RPC
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Model Abstraction Layer

Provide a common interface to models while 
bounding latency and maximizing throughput.
Ø Models run in separate processes as Docker containers

Ø Resource isolation



Model Selection LayerAnytime Predictions

Model Abstraction Layer
Caching

Adaptive Batching
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RPC
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Model Abstraction Layer

Provide a common interface to models while 
bounding latency and maximizing throughput.
Ø Models run in separate processes as Docker containers

Ø Resource isolation

Problem: frameworks optimized for batch processing not latency
Ø Scaling under heavy load



A single 
page load 
may generate
many queries

Adaptive Batching to Improve Throughput
Ø Optimal batch depends on:

Ø hardware configuration
Ø model and framework
Ø system load

Clipper Solution:

be as slow as allowed…

Ø Application specifies latency objective
Ø Clipper uses TCP-like tuning algorithm 

to increase latency up to the objective

Ø Why batching helps:

Hardware
Acceleration

Helps amortize
system overhead
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of the predictions to render a final prediction and con-
fidence estimate and replies to the end-user application.
Any feedback the application collects about the quality of
the predictions is sent back to the model selection layer
through the same application-facing REST/RPC interface.
The model selection layer joins this feedback with the cor-
responding predictions in the prediction cache to improve
how it selects and combines future predictions.

We now present the model abstraction layer and the
model selection layer in greater detail.

4 Model Abstraction Layer
The Model Abstraction Layer provides a common in-
terface across machine learning frameworks. The model
abstraction layer (Figure 1) is composed of a prediction
cache, an adaptive query-batching component, and a set of
model containers connected to Clipper via a lightweight
RPC system. This modular architecture enables caching
and batching mechanisms to be shared across frameworks
while also improving scaling to more concurrent models
and simplifying the addition of new frameworks.

4.1 Overview
At the top of the model abstraction layer is the prediction
cache (Section 4.2). The prediction caches provides a par-
tial pre-materialization mechanism for frequent queries
and accelerates the adaptive model selection techniques
described in Section 5 by enabling efficient joins between
recent predictions and feedback.

The batching component (Section 4.3) sits below the
prediction cache and translates point queries into mini-
batches that are dynamically resized for each model con-
tainer to maximize throughput. Once a mini-batch is con-
structed for a given model it is dispatched via the RPC
system to the container for evaluation.

Models deployed in Clipper are each encapsulated
within their own lightweight container (Section 4.4), com-
municating with Clipper through an RPC mechanism to
provide uniform interface to Clipper and simplify the de-
ployment of new models. The lightweight RPC system
minimizes the overhead of the container-based architec-
ture and simplifies cross-language integration.

In the following sections we describe each of these
components in greater detail and discuss some of the key
algorithmic innovations associated with each.

4.2 Caching
For many applications (e.g., content recommendation),
predictions concerning popular items are requested fre-
quently. By maintaining a prediction cache, Clipper can
serve these frequent queries without evaluating the model.
This substantially reduces latency and system load by
eliminating the additional cost of model evaluation.

In addition, caching in Clipper serves an important role

Figure 4: Comparison of Dynamic Batching Strategies

in model selection (Section 5). To select models intelli-
gently Clipper needs to join the original predictions with
any feedback it receives. Since feedback is likely to return
soon after predictions are rendered [39], even infrequent
queries can benefit from caching. For example, even with
a small ensemble of four models (a random forest, logistic
regression model, and linear SVM trained in Scikit-Learn
and a linear SVM trained in Spark), prediction caching
increased feedback processing throughput in Clipper by
1.6x from 6707 to 10928 observations per second.

The prediction cache acts as a function cache for the
generic prediction function:

Predict(m: ModelId, x: X) -> y: Y

that takes a model id m along with the query x and com-
putes the corresponding model prediction y. The cache
exposes a simple non-blocking request and fetch API.
When a prediction is needed, the request function is in-
voked which notifies the cache to compute the prediction
if it is not already present and returns a boolean indicat-
ing whether the entry is in the cache. The fetch function
checks the cache and returns the query result if present.

Clipper employs an LRU eviction policy for the pre-
diction cache, using the standard CLOCK [16] cache
eviction algorithm. With an adequately sized cache, fre-
quent queries will not be evicted and the cache serves
as a partial pre-materialization mechanism for hot items.
However, because adaptive model selection occurs above
the cache in Clipper, changes in predictions due to model
selection do not invalidate cache entries.

4.3 Batching
The Clipper batching component transforms the stream
of prediction queries received by Clipper into batches of
queries that more closely match the workload assump-
tions made by machine learning frameworks while simul-
taneusly amortizing RPC and system overhead. Batching
improves throughput, but it does so at the expense of in-
creased latency by requiring all queries in the batch to
complete before returning a single prediction.
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of the predictions to render a final prediction and con-
fidence estimate and replies to the end-user application.
Any feedback the application collects about the quality of
the predictions is sent back to the model selection layer
through the same application-facing REST/RPC interface.
The model selection layer joins this feedback with the cor-
responding predictions in the prediction cache to improve
how it selects and combines future predictions.

We now present the model abstraction layer and the
model selection layer in greater detail.

4 Model Abstraction Layer
The Model Abstraction Layer provides a common in-
terface across machine learning frameworks. The model
abstraction layer (Figure 1) is composed of a prediction
cache, an adaptive query-batching component, and a set of
model containers connected to Clipper via a lightweight
RPC system. This modular architecture enables caching
and batching mechanisms to be shared across frameworks
while also improving scaling to more concurrent models
and simplifying the addition of new frameworks.

4.1 Overview
At the top of the model abstraction layer is the prediction
cache (Section 4.2). The prediction caches provides a par-
tial pre-materialization mechanism for frequent queries
and accelerates the adaptive model selection techniques
described in Section 5 by enabling efficient joins between
recent predictions and feedback.

The batching component (Section 4.3) sits below the
prediction cache and translates point queries into mini-
batches that are dynamically resized for each model con-
tainer to maximize throughput. Once a mini-batch is con-
structed for a given model it is dispatched via the RPC
system to the container for evaluation.

Models deployed in Clipper are each encapsulated
within their own lightweight container (Section 4.4), com-
municating with Clipper through an RPC mechanism to
provide uniform interface to Clipper and simplify the de-
ployment of new models. The lightweight RPC system
minimizes the overhead of the container-based architec-
ture and simplifies cross-language integration.

In the following sections we describe each of these
components in greater detail and discuss some of the key
algorithmic innovations associated with each.

4.2 Caching
For many applications (e.g., content recommendation),
predictions concerning popular items are requested fre-
quently. By maintaining a prediction cache, Clipper can
serve these frequent queries without evaluating the model.
This substantially reduces latency and system load by
eliminating the additional cost of model evaluation.

In addition, caching in Clipper serves an important role
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in model selection (Section 5). To select models intelli-
gently Clipper needs to join the original predictions with
any feedback it receives. Since feedback is likely to return
soon after predictions are rendered [39], even infrequent
queries can benefit from caching. For example, even with
a small ensemble of four models (a random forest, logistic
regression model, and linear SVM trained in Scikit-Learn
and a linear SVM trained in Spark), prediction caching
increased feedback processing throughput in Clipper by
1.6x from 6707 to 10928 observations per second.

The prediction cache acts as a function cache for the
generic prediction function:

Predict(m: ModelId, x: X) -> y: Y

that takes a model id m along with the query x and com-
putes the corresponding model prediction y. The cache
exposes a simple non-blocking request and fetch API.
When a prediction is needed, the request function is in-
voked which notifies the cache to compute the prediction
if it is not already present and returns a boolean indicat-
ing whether the entry is in the cache. The fetch function
checks the cache and returns the query result if present.

Clipper employs an LRU eviction policy for the pre-
diction cache, using the standard CLOCK [16] cache
eviction algorithm. With an adequately sized cache, fre-
quent queries will not be evicted and the cache serves
as a partial pre-materialization mechanism for hot items.
However, because adaptive model selection occurs above
the cache in Clipper, changes in predictions due to model
selection do not invalidate cache entries.

4.3 Batching
The Clipper batching component transforms the stream
of prediction queries received by Clipper into batches of
queries that more closely match the workload assump-
tions made by machine learning frameworks while simul-
taneusly amortizing RPC and system overhead. Batching
improves throughput, but it does so at the expense of in-
creased latency by requiring all queries in the batch to
complete before returning a single prediction.
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Overhead of modularity?

The	decoupled	Clipper	architecture	
can	be	as	fast	as	the

in-process	approach	adopted	by	
TensorFlow-Serving

Better

Better

40000 is
Good Enough



Approximate Caching to Reduce Latency
Clipper Solution: Approximate Caching

apply locality sensitive hash functions

Ø Opportunity for caching

Ø Need for approximation

Popular items may 
be evaluated
frequently

High Dimensional and continuous valued 
queries have low cache hit rate.
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Clipper Architecture
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Predict ObserveRPC/REST Interface

Model Selection LayerSelection Policy

Model Abstraction Layer
Caching

Adaptive Batching
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Goal:
Maximize accuracy through bandits, ensembles, online 
learning, and personalization

Incorporate feedback in real-time to achieve:
Ø robust predictions by adaptively combining predictions 

from multiple models and frameworks
Ø online learning and personalization by selecting and 

personalizing predictions in response to feedback

Clipper
Model Selection LayerSelection Policy
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Clipper

Model Selection Policy
Improves prediction accuracy by:
Ø Combining predictions from 

multiple frameworks
Ø Ensemble methods

Ø Incorporate real-time feedback
Ø Personalized ensembles
Ø Bandit algorithms

Ø Estimates confidence of 
predictions
Ø Agreement between models

Model 
Selection 

Layer

Selection Policy



Ensemble Prediction Accuracy (ImageNet)
System Model Error Rate #Errors
Caffe VGG 13.05% 6525
Caffe LeNet 11.52% 5760
Caffe ResNet 9.02% 4512

TensorFlow Inception v3 6.18% 3088

sequence of pre-trained models 



Ensemble Prediction Accuracy (ImageNet)
System Model Error Rate #Errors
Caffe VGG 13.05% 6525
Caffe LeNet 11.52% 5760
Caffe ResNet 9.02% 4512

TensorFlow Inception v3 6.18% 3088

Clipper Ensemble 5.86% 2930

5.2% relative improvement 
in prediction accuracy!
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(a) Latency (b) Missing Predictions (c) Accuracy

Figure 9: Increase in stragglers from bigger ensembles: The (a) latency and (b) missing predictions when using the ensemble
model selection policy on SK-Learn Random Forrest models applied to MNIST. (c) The prediction accuracy of the TIMIT speech
recognition benchmark as a function of the number of stragglers. As the size of an ensemble grows, the cost of blocking a response
to the application until all predictions are available grows substantially. Instead, Clipper enforces bounded latency predictions and
transforms the latency cost of waiting for stragglers into a reduction in accuracy from using a smaller ensemble.

high variance or are trained on random samples from the
training data (e.g., bagging [44]), agreement in model
predictions is an indicator of prediction confidence. When
evaluating the combine function in the ensemble selec-
tion policy we compute a measure of confidence by cal-
culating the number of models that agree with the final
prediction. End user applications can use this confidence
score to decide whether to rely on the prediction. If we
only consider predictions where multiple models agree,
we can substantially reduce the error rate (see Figure 7)
while declining to predict a small fraction of queries.

5.2.2 Straggler Mitigation

While the ensemble model selection policy can improve
prediction accuracy and help quantify uncertainty, it intro-
duces additional system costs. As we increase the size of
the ensemble the cost of rendering a prediction increases.
Fortunately, we can compensate for the increased pre-
diction cost by scaling-out the model abstraction layer.
Unfortunately, as we add model containers we increase
the chance of stragglers adversely affecting tail latencies.

To evaluate the cost of stragglers, we deployed ensem-
bles of increasing size and measured the resulting predic-
tion latency (Figure 9a) under moderate query load. Even
with small ensembles we observe the effect of stragglers
on the P99 tail latency, which rise sharply to well beyond
the 20ms latency objective. As the size of the ensemble in-
creases beyond 10 and the system becomes more heavily
loaded, stragglers begin to affect the mean latency.

To address stragglers, Clipper introduces a simple best-
effort straggler-mitigation strategy. For each query the
model selection layer maintains a latency deadline de-
termined by the latency SLO. At the latency deadline
the combine function of the model selection policy is in-
voked with the subset of the predictions that are available.
The model selection policy must render a final predic-
tion using only the available base model predictions and
communicate the potential loss in accuracy in its confi-
dence rating. Currently, we substitute missing predictions

Figure 10: Personalized Corrections Accuracy of the ensem-
ble correction policy on the speech recognition benchmark.

with their average value and define the confidence as the
fraction of models that agree on the prediction.

The best-effort straggler-mitigation strategy prevents
model container tail latencies from propagating to front-
end applications by maintaining the latency objective as
additional models are deployed. However, the straggler
mitigation strategy reduces the size of the ensemble. In
Figure 9b we plot the reduction in ensemble size and find
that, up to the capacity of the machine (roughly 10), the
most of the predictions arrive by the latency deadline. In
Figure 9c we plot the consequence of stragglers on the
prediction accuracy for TIMIT speech recognition task.
Notably, the loss of three predictions at random results in
less than a 5% decrease in accuracy.

5.3 Contextualization
In many prediction tasks the accuracy of a particular
model may depend heavily on context. For example, in
speech recognition a model trained for one dialect may
perform well for some users and poorly for others. How-
ever, selecting the right model or composition of models
can be difficult and is best accomplished in the model
selection layer through feedback. To support context spe-
cific model selection, the model selection layer can be
configured to instantiate a unique model selection state
for each user, context, or session. The context specific
session state is managed in an external database system.
In our current implementation we use Redis.

To demonstrate the potential gains from personalized

10

Anytime Predictions
Ø Tolerates some loss of models
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Figure 9: Increase in stragglers from bigger ensembles: The (a) latency and (b) missing predictions when using the ensemble
model selection policy on SK-Learn Random Forrest models applied to MNIST. (c) The prediction accuracy of the TIMIT speech
recognition benchmark as a function of the number of stragglers. As the size of an ensemble grows, the cost of blocking a response
to the application until all predictions are available grows substantially. Instead, Clipper enforces bounded latency predictions and
transforms the latency cost of waiting for stragglers into a reduction in accuracy from using a smaller ensemble.

high variance or are trained on random samples from the
training data (e.g., bagging [44]), agreement in model
predictions is an indicator of prediction confidence. When
evaluating the combine function in the ensemble selec-
tion policy we compute a measure of confidence by cal-
culating the number of models that agree with the final
prediction. End user applications can use this confidence
score to decide whether to rely on the prediction. If we
only consider predictions where multiple models agree,
we can substantially reduce the error rate (see Figure 7)
while declining to predict a small fraction of queries.

5.2.2 Straggler Mitigation

While the ensemble model selection policy can improve
prediction accuracy and help quantify uncertainty, it intro-
duces additional system costs. As we increase the size of
the ensemble the cost of rendering a prediction increases.
Fortunately, we can compensate for the increased pre-
diction cost by scaling-out the model abstraction layer.
Unfortunately, as we add model containers we increase
the chance of stragglers adversely affecting tail latencies.

To evaluate the cost of stragglers, we deployed ensem-
bles of increasing size and measured the resulting predic-
tion latency (Figure 9a) under moderate query load. Even
with small ensembles we observe the effect of stragglers
on the P99 tail latency, which rise sharply to well beyond
the 20ms latency objective. As the size of the ensemble in-
creases beyond 10 and the system becomes more heavily
loaded, stragglers begin to affect the mean latency.

To address stragglers, Clipper introduces a simple best-
effort straggler-mitigation strategy. For each query the
model selection layer maintains a latency deadline de-
termined by the latency SLO. At the latency deadline
the combine function of the model selection policy is in-
voked with the subset of the predictions that are available.
The model selection policy must render a final predic-
tion using only the available base model predictions and
communicate the potential loss in accuracy in its confi-
dence rating. Currently, we substitute missing predictions

Figure 10: Personalized Corrections Accuracy of the ensem-
ble correction policy on the speech recognition benchmark.
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The best-effort straggler-mitigation strategy prevents
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additional models are deployed. However, the straggler
mitigation strategy reduces the size of the ensemble. In
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that, up to the capacity of the machine (roughly 10), the
most of the predictions arrive by the latency deadline. In
Figure 9c we plot the consequence of stragglers on the
prediction accuracy for TIMIT speech recognition task.
Notably, the loss of three predictions at random results in
less than a 5% decrease in accuracy.

5.3 Contextualization
In many prediction tasks the accuracy of a particular
model may depend heavily on context. For example, in
speech recognition a model trained for one dialect may
perform well for some users and poorly for others. How-
ever, selecting the right model or composition of models
can be difficult and is best accomplished in the model
selection layer through feedback. To support context spe-
cific model selection, the model selection layer can be
configured to instantiate a unique model selection state
for each user, context, or session. The context specific
session state is managed in an external database system.
In our current implementation we use Redis.

To demonstrate the potential gains from personalized
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Ensemble’s to Estimate Confidence

Framework Model Size (Layers)
Caffe VGG [53] 13 Conv. and 3 FC
Caffe GoogLeNet [56] 96 Conv. and 5 FC
Caffe ResNet [29] 151 Conv. and 1 FC
Caffe CaffeNet [21] 5 Conv. and 3 FC
TensorFlow Inception [57] 6 Conv, 1 FC, & 3 Incept.

Table 2: Deep Learning Models: The set of deep learning
models used to evaluate the ImageNet ensemble selection policy.

Figure 7: Ensemble Prediction Accuracy: The linear ensem-
bles are composed of five computer vision models (Table 2)
applied to the CIFAR and ImageNet benchmarks. The 4-agree
and 5-agree groups correspond to ensemble predictions in which
the queries have been separated by the ensemble prediction con-
fidence (four or five models agree) and the width of each bar
defines the proportion of examples in that category.

weight, si si exp(�hL(y, ŷ)/pi), corresponding to the
selected model i. The constant h determines how quickly
Clipper responds to feedback.

The Exp3 algorithm provides several benefits over man-
ual experimentation and A/B testing, two common ways
of performing model-selection in practice. Exp3 is both
simple and robust, scaling well to model selection over
a large number of models. It is a lightweight algorithm
that requires only a single model evaluation for each pre-
diction and thus performs well under heavy loads. And
Exp3 has strong theoretical guarantees that ensure it will
quickly converge to an optimal solution.

5.2 Ensemble Model Selection Policies
It is a well-known result in machine learning [8,11,30,44]
that prediction accuracy can be improved by combining
predictions from multiple models. Rather than select in-
dividual models, the ensemble model selection policies
adaptively combine the predictions from all available
models to improve accuracy.

In Clipper we use linear ensemble methods which com-
pute a weighted average of the base model predictions.
In Figure 7, we show the prediction error rate of linear
ensembles on two benchmarks. In both cases linear en-
sembles are able to marginally reduce the overall error

Figure 8: Behavior of Exp3 and Exp4 Under Model Failure:
After 5K queries the lowest-error model suffers a failure, and
after 10k queries recovers. Exp3 and Exp4 quickly compensate
for the failure and achieve lower error than any static model
selection.

rate. In the ImageNet benchmark, the ensemble formula-
tion achieves a 5.2% relative reduction in the error rate
simply by combining off-the-shelf models (Table 2).

There are many methods for estimating the ensemble
weights including linear regression, boosting [44], and
bandit formulations. We adopt the bandits approach and
use the Exp4 algorithm [6] to learn the weights. Exp4
confers many of the same guarantees as Exp3 while im-
proving prediction accuracy as the number of models
increases. Unlike Exp3, Exp4 constructs a weighted com-
bination of all of base model predictions and updates
weights based on the individual model prediction error.

To evaluate how the model selection policies perform
in the presence of changes in deployed model accuracy
we simulated a model failure while receiving real-time
prediction feedback. Using the CIFAR dataset we trained
five different Caffe models with varying levels of accuracy.
Using a simulated run of 20K sequential queries with
immediate feedback, we injected a model failure in the
best-performing model (model 5) after 5K queries and
then allow model 5 to recover after 10K queries.

In Figure 8 we plot the cumulative average error rate
for each of the five base models as well as the single
(Exp3) and ensemble (Exp4) model selection policies. In
the first 5K queries the model selection policies quickly
converge to an error rate near the best performing model
(model 5). When we degrade the predictions from model
5 its cumulative error rate spikes. The model selection
policies are able to quickly mitigate the consequences
of the spike in errors by learning to divert queries to the
other models. When model 5 recovers after 10K queries
the model selection policies also begin to improve by
gradually sending queries back to model 5.

5.2.1 Robust Predictions

By evaluating predictions from multiple competing mod-
els concurrently we can obtain an estimator of the confi-
dence in our predictions. In settings where models have
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Clipper
Create VWCaffe

Ø to simplifying model serving
Øbound latency and increase throughput
Ø and enable real-time learning and personalization
across machine learning frameworks

Clipper is a prediction serving system that spans 
multiple ML Frameworks and is designed to

“Clipper: A Low-Latency Online Prediction Serving System”
https://github.com/ucbrise/clipper (open source)



Ongoing Clipper Subprojects
Ø Adaptive Batching for Prediction

Ø Leverage internal data-parallelism and hardware acceleration
Ø Approximate Caching

Ø Detect “similar” queries and re-use cached predictions
Ø Prediction Cascades

Ø Automatically deriving cascades of increasingly GPU intensive models
Ø RL/Control

Ø Serving and updating RL policies based on feedback
Ø Scheduling and resource allocation

Ø Reduce the need to over-provision for bursty workloads



riselab
UC Berkeley

We are developing new technologies that will enables 
applications to make low-latency intelligent decision on 

live data with strong security guarantees.
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