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How to do Research in Al Systems

» Manage Complexity
» seek parsimony in system design
» Qgreat systems research is often about what features are taken away
» Do a few things well and be composable

» |dentify Tradeoffs

» With each design decision what do you gain and lose?
» What trade-offs are fundamental?

» Evaluate your System
» Positive: How fast and scalable is it and why?
> Negative: When does it fail and what are it’s limitations?



Hemingway
Modeling Throughput and
Convergence for ML Workloads

Shivaram Xinghao Zi
Venkataraman Pan Zheng

» What is the best algorithm and level of parallelism for an ML task?
» Trade-off: Parallelism, Coordination, & Convergence

» Research challenge: Can we model this trade-off explicitly?

O4 A .

g We can estimate I from
~ § b data on many systems
[ . - .

= | Systems Metric ) Py We can estimate . from

v Cores R lteration data for our problem
lterations per second as ’
I(p) a function of cores p L(27 p)

*follow-up work to Shivaram’s Ernest System in NSDI’16



Hemingway 70N
Modeling Throughput and T\: |
Convergence for ML Workloads Shvaram  Xinghao 7
Venkataraman Pan Zheng
» What is the best algorithm and level of parallelism for an ML task?
» Trade-off: Parallelism, Coordination, & Convergence
» Research challenge: Can we model this trade-off explicitly?
L(i, p) - loss(t,p) = L (t+1 (p),p)
T (p) terations persecondas| « How long does it take to get to a given loss?
a function of cores p

— » Given a time budget and number of cores
which algorithm will give the best result?

*follow-up work to Shivaram’s Ernest System in NSDI’16
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Take away ...

try tfo decouple

System Algorithm
Improvements Improvements

use data collection + sparse modeling
to understand your system
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Big Model Dashboards and
Reports
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Learning Inference
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Inference
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Big Model "

Often overlooked
Timescale: ~10 milliseconds

Billions of Queries a Day 2> Costly

Application



why is Inference challenging?

Need to render low latency (< 10ms) predictions for complex

Models Queries Features

SELECT * FROM
users JOIN items,
click_logs, pages
WHERE ...

under heavy load with system failures.



Inference is moving beyond the cloud

Augmented Reahty ]
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Inference is moving beyond the cloud

Opportunities
» Reduce latency and improve privacy
» Address network partitions

Research Challenges
» Minimize power consumption
» Limited hardware & long life-cycles

» Develop new hybrid models to
leverage the cloud and edge devices




Robust Inference is critical

Self “Parking” Cars Self “Driving” Cars Chat Als

\ -

@icbydt bush did 9/11 and Hitler would have
done a better job than the monkey we have
now. donald trump is the only hope we've got.

HWHRER o~ EHN
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Learning Inference

Big

Timescale: hours to weeks
Often re-run training

Sensitive to feedback loops Application
‘ Feedback '




Why is Closing the Loop challenging?

Implicit and Delayed Self Reinforcing World Changes
Feedback Feedback Loops  at varying rates



Learning Inference

Responsive
(~10ms)

Adaptive

(~1 seconds)




Learning Inference

Adaptive Responsive
(~1 seconds) (~10ms)




Learning Inference

Adaptive Responsive
(~1 seconds) (~10ms)

Secure



Intelligence in Sensitive Contexts

Home Monitoring Voice Technologies Medical Imaging

Augmented Reality

7 % 100% 4

“What's a good place to hide a
body”

tap to edit

What, again?

Protect the data, the model, and the query



Protect the data, the model, and the query

High-Value Data is Sensitive Models capture value in data
«al» ° Medical Info.  Core Asset

 Home video « Sensitive

* Finance

Queries can be as sensitive as the data




Opaque: Analytics on Secure Enclaves

Exploit hardware support to
enable computing on
encrypted data

» Today: prototype system
running in Apache Spark

» support SQL queries in
untrusted cloud

» ~b0% reduction in pert.

» Future: enable prediction
serving on enc. gqueries

SQL ML | | Graph

Opaque

query optimization

(o-filter ) C o-groupby ) (o-join )

Catalyst

Spark Execution

Wenting et al. (NSDI’17)
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Clipper

A Low-Latency Online Prediction
Serving System

NSDI'17

Daniel Crankshaw

Xin Wang

- Givlio Zhou

Michael J. Franklin
Joseph E. Gonzalez

) lon Stoica
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Learning Inference

Slow Changing Fast Changing

Parameters Parameters w

; S Application
Feedback 5 Zback




Hybrid Offline + Online Learning

Update “feature” functions offliﬁe using batch solvers
* Leverage high-throughput systems (Tensor Flow)
» Exploit slow change in population statistics

Wy

Update the user weights on:iine:
» Simple to train + more robust model
» Address rapidly changing user statistics



Common modeling structure

Matrix Deep Ensemble
Factorization Learning Methods




Clipper Online Learning for Recommendations
(Simulated News Rec.)

06 Partial Updates: 0.4 ms
Retraining: 7.7 seconds

S 0.4 >4 orders-of-
- : magnitude faster
0.2 adaptation
0 Full Updates
0 10 20 30

Examples



Learning Inference
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Learning Inference
Slow Changing !
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Clipper Serves Predictions across ML Frameworks

Fraud Content Personal Robotic Machine
Detection Rec. Asst. Control Translation
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Clipper

Key Insight:

The challenges of prediction serving can be addressed between
end-user applications and machine learning frameworks

As a result, Clipper is able to:

» hide complexity by
» providing a common interface to applications

» bound latency and maximize throughput
» through caching, adaptive batching, model replication

» enable robust online learning and personalization
» through model selection and ensemble algorithms

without modifying machine learning frameworks or front-end applications



Clipper Architecture

Fraud Content Personal Robotic Machine
Detection Rec. Asst. Control Translation
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Clipper Architecture

S 2 Nl
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= & ® NETELI

Predict § RPC/REST Interface § observe

Clipper
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Clipper Architecture

NETELIN

Predict I RPC/REST Interface I Observe

al2e] | rrcf  Rrec]  Recl

Model Wrapper (MW)
||<eystoneML| | Caffe | | | | |




NETFLIX

@fgu, ity
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Predict RPC/REST Interface Observe

Improve accuracy through bandit methods,

ensembles, online learning, and personalization Model Selectlon Layer

Provide a common interface to models

while bounding latency and Model Abstraction Layer

maximizing throughput.

Model Wrapper (MW)




Clipper Architecture

—

Predict Observe

Anytime Predictions Model Selection Layer

caching Model Abstraction Layer
— |
Adaptive Batching y

rrcl rrcf  Rrec]  Recl

Model Wrapper (MW) m m m e00
- | AL o P PN scikit |
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Model Abstraction Layer

rrcl rrc]  Rrc]  Rec]

Model Wrapper (MW)
KeystomeML ‘ Caffe H Y H O &am' oo

Provide a common interface to models while
bounding latency and maximizing throughput.

» Models run in separate processes as Docker containers
» Resource isolation



Model Abstraction Layer

1% | rrc]  Rrec] Rec]  Rrecl RPC]

ML|| caffe || g || g || ¢ || &

Provide a common interface to models while
bounding latency and maximizing throughput.

» Models run in separate processes as Docker containers
» Resource isolation

» Scaling under heavy load

Problem: frameworks optimized for batch processing not latency



Adaptive Batching to Improve Throughput

» Why batching helps: » Optimal batch depends on:
» hardware configuration
A single » model and framework

page load » system load
may generate
many queries

Clipper Solution:

ardware E be as slow as allowed. ..
Acceleration ; : — » Application specifies latency objective
» Clipper uses TCP-like tuning algorithm

'-GRP - Helps amortize to increase latency up to the objective
system overhead




Tensor Flow Conv. Net (GPU)
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I Adaptive

I Quantile Regression

I No Batching
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I Adaptive I Quantile Regression HEl No Batching

Throughput so0000
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Overhead of modularity?

[C1 TensorFlow Serving [ Clipper TF-C++ I Clipper TF-Python

a) MNIST
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Approximate Caching to Reduce Latency

» Opportunity for caching

1! Cards
ii Against

el Popular items may
N Dc cvaluated
frequently

» Need for approximation

SOMEPEOPLEJUSTNEED A
; ﬁ)lIGH-FWE"!* -

TAKENBY/REOPLEWHO/NNNOY(ME.

High Dimensional and continuous valued
queries have low cache hit rate.

Clipper Solution: Approximate Caching

apply locality sensitive hash functions




Clipper Architecture
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Selection Policy Model Selection Layer
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Selection Policy Model Selection Layer

Goal:

Maximize accuracy through bandits, ensembles, online
learning, and personalization

Incorporate feedback in real-time to achieve:

» robust predictions by adaptively combining predictions
from multiple models and frameworks

» online learning and personalization by selecting and
personalizing predictions in response to feedback



Model Selection Policy

Improves prediction accuracy by:

» Combining predictions from
multiple frameworks

» Ensemble methods

» Incorporate real-time feedback
» Personalized ensembles
» Bandit algorithms

» Estimates confidence of
predictions
» Agreement between models

Selection

' scikit

TensorFlow

Selection Policy

Caffe




Ensemble Prediction Accuracy (ImageNet)

Sren__wose__erorme e

Caffe 13.05% 6525
Caffe LeNet 11.52% 5760
Caffe ResNet 9.02% 4512
TensorFlow  Inception v3 6.18% 3088

seqguence of pre-trained models



Ensemble Prediction Accuracy (ImageNet)

Caffe 5.2% relative improvement

Caffe In prediction accuracy! 5760
Caffe 4512
TensorFlow  Inception v3 6.18% 3088

Clipper Ensemble 5.86% 2930



Ensemble Methods Create Stragglers

Slow Changing
Model

Clipper

-

Application

Solution:

Replace missing prediction = E[ Y % (X)]
with an estimator TensorFlow



Anytime Predictions
%—* Fast Changing
Model

Wikt Jscikit () + Wop Ex [frr(X)]+ Wege/Catte (%)
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Anytime Predictions

» Tolerates some loss of models
» Depends heavily on ensemble

Straggler Mitigation P99
Straggler Mitigation Mean

$— Y= — ¥ — Y= =
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Ensemble’s to Estimate Confidence

o o 9
N O
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N
(CTENN

Top-5 Error Rate Top 1 Error Rate
o
o

[ 1 single model

_|_’_P‘ 0.1807
.0915 0.0845 0.061

single model

[ 1 single model

ensemble

CIFAR-10

[ ensemble

4-agree
ImageNet

I ensemble

0.3182

.0618 0.0586 .04 J
DIE% [ —

single model

ensemble

4-agree

B confident
Bl unsure

0.126

0.0235]}

5-agree

B confident
Bl unsure
0.1983

0.032]
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Clipper

Clipper is a prediction serving system that spans
multiple ML Frameworks and is designed to

» to simplifying model serving

» bound latency and increase throughput

» and enable real-time learning and personalization
across machine learning frameworks

“Clipper: A Low-Latency Online Prediction Serving System”
https://github.com/ucbrise/clipper (open source)




Ongoing Clipper Subprojects

» Adaptive Batching for Prediction
» Leverage internal data-parallelism and hardware acceleration

» Approximate Caching
» Detect “similar” queries and re-use cached predictions

> Prediction Cascades
» Automatically deriving cascades of increasingly GPU intensive models

» RL/Control
» Serving and updating RL policies based on feedback

» Scheduling and resource allocation
» Reduce the need to over-provision for bursty workloads



driselab

UC Berkeley

We are developing new technologies that will enables
applications to make low-latency intelligent decision on
live data with strong security guarantees.
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UC Berkeley

Adaptive Responsive

Secure




