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Graphs are	ubiquitous..

2



Social	Media

• Graphs encode relationships between:

• Big:	billions of	vertices and	edges and	rich	metadata

AdvertisingScience Web

People
Facts

Products
Interests

Ideas
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Graphs	are	Essential	to	
Data-Mining and	Machine	Learning

• Identify	influential	people	and	information
• Find	communities
• Target	ads	and	products	
• Model	complex	data	dependencies
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Natural Graphs
Graphs	derived	from	natural	

phenomena
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Problem:

Existing	distributed graph	
computation	systems	perform	
poorly	on	Natural Graphs.



PageRank	on	Twitter	Follower	Graph
Natural	Graph	with	40M	Users,		1.4	Billion	Links

Hadoop results from [Kang et al. '11]
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]
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Properties	of	Natural	Graphs
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Power-Law	Degree	Distribution



Power-Law	Degree	Distribution
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Power-Law	Degree	Distribution
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“Star	Like”Motif
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Power-Law	Graphs	are	
Difficult	to	Partition

• Power-Law	graphs	do	not	have	low-cost balanced	
cuts	[Leskovec et	al.	08,	Lang	04]

• Traditional	graph-partitioning	algorithms	perform	
poorly	on	Power-Law	Graphs.
[Abou-Rjeili et	al.	06]
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Properties	of	Natural	Graphs
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High-degree	
Vertices

Low	Quality
Partition

Power-Law	
Degree	Distribution



Machine 1 Machine 2

• Split High-Degree	vertices
• New	Abstractionà Equivalence on	Split	Vertices
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Program
For	This

Run	on	This



How	do	we	program
graph	computation?

“Think	like	a	Vertex.”
-Malewicz et	al.	[SIGMOD’10]
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The	Graph-Parallel Abstraction
• A	user-defined Vertex-Program runs	on	each	vertex
• Graph constrains	interaction along	edges

– Using	messages		(e.g.	Pregel [PODC’09,	SIGMOD’10])

– Through	shared	state	(e.g.,	GraphLab [UAI’10,	VLDB’12])

• Parallelism:	run	multiple	vertex	programs	simultaneously
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Example

What’s the popularity
of this user?

Popular?

Depends on popularity
of her followers

Depends on the 
popularity their followers
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PageRank	Algorithm

• Update	ranks	in	parallel	
• Iterate	until	convergence

Rank	of	
user	i Weighted	sum	of	

neighbors’	ranks
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R[i] = 0.15 +
X

j2Nbrs(i)

wjiR[j]



The	Pregel Abstraction
Vertex-Programs	interact	by	sending	messages.

iPregel_PageRank(i, messages) : 
// Receive all the messages
total = 0
foreach( msg in messages) :

total = total + msg

// Update the rank of this vertex
R[i] = 0.15 + total

// Send new messages to neighbors
foreach(j in out_neighbors[i]) :

Send  msg(R[i] * wij) to vertex j

18Malewicz et	al.	[PODC’09,	SIGMOD’10]



The	GraphLab Abstraction
Vertex-Programs	directly	read the	neighbors	state

iGraphLab_PageRank(i) 
// Compute sum over neighbors
total = 0
foreach( j in in_neighbors(i)): 

total = total + R[j] * wji

// Update the PageRank
R[i] = 0.15 + total 

// Trigger neighbors to run again
if R[i] not converged then

foreach( j in out_neighbors(i)): 
signal vertex-program on j

19Low	et	al.	[UAI’10,	VLDB’12]



Asynchronous	Execution
requires	heavy	locking	(GraphLab)

Challenges	of	High-Degree	Vertices

Touches	a	large
fraction	of	graph

(GraphLab)

Sequentially	process
edges

Sends	many
messages
(Pregel)

Edge	meta-data
too	large	for	single

machine

Synchronous	Execution
prone	to	stragglers	(Pregel)
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Communication	Overhead	
for	High-Degree	Vertices

Fan-In	vs.	Fan-Out
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PregelMessage	Combiners	on	Fan-In

Machine	1 Machine	2

+B

A

C

D
Sum

• User	defined	commutative associative (+)	
message	operation:
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Pregel Struggles	with	Fan-Out

Machine	1 Machine	2

B

A

C

D

• Broadcast sends	many	copies	of	the	same	
message	to	the	same	machine!
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Fan-In	and	Fan-Out	Performance
• PageRank	on	synthetic	Power-Law	Graphs
– Piccolo	was	used	to	simulate	Pregel with	combiners
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GraphLab Ghosting

• Changes	to	master	are	synced	to	ghosts

Machine	1

A

B

C

Machine	2

DD

A

B

CGhost
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GraphLab Ghosting

• Changes	to	neighbors of	high	degree	vertices	
creates	substantial	network	traffic

Machine	1

A

B

C

Machine	2

DD

A

B

C Ghost
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Fan-In	and	Fan-Out	Performance

• PageRank	on	synthetic	Power-Law	Graphs
• GraphLab is	undirected
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Graph	Partitioning
• Graph	parallel	abstractions	rely	on	partitioning:
– Minimize	communication
– Balance	computation	and	storage

Y

Machine	1 Machine	2
28

Data transmitted
across network

O(# cut edges)



Machine	1 Machine	2

Random	Partitioning

• Both	GraphLab	and	Pregel resort	to	random
(hashed)	partitioning	on	natural	graphs

3"
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B" 2"
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D
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C"C"
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(a) Edge-Cut

B"A" 1"

C" D3"

C" B"2"

C" D

B"A" 1"

3"

(b) Vertex-Cut

Figure 4: (a) An edge-cut and (b) vertex-cut of a graph into
three parts. Shaded vertices are ghosts and mirrors respectively.

5 Distributed Graph Placement

The PowerGraph abstraction relies on the distributed data-
graph to store the computation state and encode the in-
teraction between vertex programs. The placement of
the data-graph structure and data plays a central role in
minimizing communication and ensuring work balance.

A common approach to placing a graph on a cluster of p
machines is to construct a balanced p-way edge-cut (e.g.,
Fig. 4a) in which vertices are evenly assigned to machines
and the number of edges spanning machines is minimized.
Unfortunately, the tools [21, 31] for constructing balanced
edge-cuts perform poorly [1, 26, 23] or even fail on power-
law graphs. When the graph is difficult to partition, both
GraphLab and Pregel resort to hashed (random) vertex
placement. While fast and easy to implement, hashed
vertex placement cuts most of the edges:

Theorem 5.1. If vertices are randomly assigned to p
machines then the expected fraction of edges cut is:

E

|Edges Cut|

|E|

�
= 1� 1

p
(5.1)

For example if just two machines are used, half of the
of edges will be cut requiring order |E|/2 communication.

5.1 Balanced p-way Vertex-Cut
The PowerGraph abstraction enables a single vertex pro-
gram to span multiple machines. Hence, we can ensure
work balance by evenly assigning edges to machines.
Communication is minimized by limiting the number of
machines a single vertex spans. A balanced p-way vertex-
cut formalizes this objective by assigning each edge e2 E
to a machine A(e) 2 {1, . . . , p}. Each vertex then spans
the set of machines A(v)✓ {1, . . . , p} that contain its ad-
jacent edges. We define the balanced vertex-cut objective:

min
A

1
|V | Â

v2V
|A(v)| (5.2)

s.t. max
m

|{e 2 E | A(e) = m}|< l |E|
p

(5.3)

where the imbalance factor l � 1 is a small constant. We
use the term replicas of a vertex v to denote the |A(v)|
copies of the vertex v: each machine in A(v) has a replica
of v. The objective term (Eq. 5.2) therefore minimizes the

average number of replicas in the graph and as a conse-
quence the total storage and communication requirements
of the PowerGraph engine.

Vertex-cuts address many of the major issues associated
with edge-cuts in power-law graphs. Percolation theory
[3] suggests that power-law graphs have good vertex-cuts.
Intuitively, by cutting a small fraction of the very high
degree vertices we can quickly shatter a graph. Further-
more, because the balance constraint (Eq. 5.3) ensures
that edges are uniformly distributed over machines, we
naturally achieve improved work balance even in the pres-
ence of very high-degree vertices.

The simplest method to construct a vertex cut is to
randomly assign edges to machines. Random (hashed)
edge placement is fully data-parallel, achieves nearly per-
fect balance on large graphs, and can be applied in the
streaming setting. In the following we relate the expected
normalized replication factor (Eq. 5.2) to the number of
machines and the power-law constant a .

Theorem 5.2 (Randomized Vertex Cuts). Let D[v] denote
the degree of vertex v. A uniform random edge placement
on p machines has an expected replication factor

E
"

1
|V | Â

v2V
|A(v)|

#
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◆D[v]
!
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For a graph with power-law constant a we obtain:

E
"

1
|V | Â

v2V
|A(v)|

#
= p� pLia

✓
p�1

p

◆
/z (a) (5.5)

where Lia (x) is the transcendental polylog function and
z (a) is the Riemann Zeta function (plotted in Fig. 5a).

Higher a values imply a lower replication factor, con-
firming our earlier intuition. In contrast to a random 2-
way edge-cut which requires order |E|/2 communication
a random 2-way vertex-cut on an a = 2 power-law graph
requires only order 0.3 |V | communication, a substantial
savings on natural graphs where E can be an order of
magnitude larger than V (see Tab. 1a).

5.2 Greedy Vertex-Cuts
We can improve upon the randomly constructed vertex-
cut by de-randomizing the edge-placement process. The
resulting algorithm is a sequential greedy heuristic which
places the next edge on the machine that minimizes the
conditional expected replication factor. To construct the
de-randomization we consider the task of placing the i+1
edge after having placed the previous i edges. Using the
conditional expectation we define the objective:

argmin
k

E
"

Â
v2V

|A(v)|

����� Ai,A(ei+1) = k

#
(5.6)
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10	Machines	à 90%	of	edges	cut
100	Machines	à 99%	of	edges	cut!
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In	Summary

GraphLab and	Pregel are	not	well	
suited	for	natural	graphs

• Challenges	of	high-degree	vertices
• Low	quality	partitioning

30



• GAS	Decomposition:	distribute	vertex-programs	
– Move	computation	to	data
– Parallelize	high-degree	vertices

• Vertex	Partitioning:
– Effectively	distribute	large	power-law	graphs
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Gather	Information
About	Neighborhood

Update	Vertex

Signal	Neighbors	&
Modify	Edge	Data

A	Common	Pattern for
Vertex-Programs

GraphLab_PageRank(i) 
// Compute sum over neighbors
total = 0
foreach( j in in_neighbors(i)): 

total = total + R[j] * wji

// Update the PageRank
R[i] = 0.1 + total 

// Trigger neighbors to run again
if R[i] not converged then

foreach( j in out_neighbors(i)) 
signal vertex-program on j

32



GAS	Decomposition
Y

+	…	+						à

Y

Parallel
Sum

User	Defined:
Gather(													)	à ΣY

Σ1 + Σ2 à Σ3

Y

Gather	(Reduce)
Apply	the	accumulated	
value	to	center	vertex

Apply
Update	adjacent	edges

and	vertices.

Scatter

⌃

Accumulate	information	
about	neighborhood

Y

+	

User	Defined:
Apply(							,	Σ)	à Y

’Y

Y

Σ Y
’

Update	Edge	Data	&
Activate	Neighbors

User	Defined:
Scatter(											)	àY’

Y’
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PowerGraph_PageRank(i)

Gather(	j à i )	: return		wji * R[j]
sum(a,	b) :		return	a	+	b;

Apply(i, Σ) : R[i] = 0.15 + Σ

Scatter( i à j ) :
if	R[i] changed	then	trigger	j to	be	recomputed

PageRank	in	PowerGraph

34

R[i] = 0.15 +
X

j2Nbrs(i)

wjiR[j]



Machine	2Machine	1

Machine	4Machine	3

Distributed	Execution	of	a	PowerGraph	
Vertex-Program

Σ1 Σ2

Σ3 Σ4

+												+												+		

YYYY

Y’

Σ
Y’Y’Y’Gather

Apply

Scatter
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Minimizing	Communication	in	PowerGraph

YYY

A	vertex-cut	minimizes	
machines	each	vertex	spans

Percolation	theory	suggests	that	power	law	graphs	
have	good	vertex	cuts.	[Albert	et	al.	2000]

Communication	is	linear	in	
the	number	of	machines	

each	vertex	spans
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New	Approach	to	Partitioning

• Rather	than	cut	edges:

• we	cut	vertices:
CPU 1 CPU 2

Y
Y Must	synchronize	

many edges

CPU 1 CPU 2

Y Y Must	synchronize	
a	single vertex

New	Theorem:
For	any edge-cut we	can	directly	
construct	a	vertex-cut	which	requires	
strictly	less	communication	and	storage.
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Constructing	Vertex-Cuts

• Evenly assign	edges to	machines
– Minimize	machines	spanned	by	each	vertex

• Assign	each	edge	as	it is	loaded
– Touch	each	edge	only	once

• Propose	three	distributed	approaches:
– Random Edge	Placement
– Coordinated	Greedy	Edge	Placement
– Oblivious	Greedy Edge	Placement
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Machine	2Machine	1 Machine	3

Random Edge-Placement
• Randomly	assign	edges	to	machines

YYYY ZYYYY ZY ZY Spans	3	Machines

Z Spans	2	Machines

Balanced	Vertex-Cut

Not	cut!
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Analysis	Random	Edge-Placement

• Expected	number	of	machines	spanned	by	a	
vertex:
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Random	Vertex-Cuts	vs.	Edge-Cuts	

• Expected	improvement	from	vertex-cuts:
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Greedy	Vertex-Cuts

• Place	edges	on	machines	which	already	have	
the	vertices	in	that	edge.

Machine1 Machine 2

BA CB

DA EB
42



Greedy	Vertex-Cuts

• De-randomizationà greedily	minimizes	the	
expected	number	of	machines	spanned

• Coordinated Edge	Placement
– Requires	coordination	to	place	each	edge
– Slower:	higher	quality	cuts

• Oblivious Edge	Placement
– Approx.	greedy	objective	without	coordination
– Faster:	lower	quality	cuts

43



Partitioning	Performance
Twitter	Graph: 41M	vertices,	1.4B	edges

Oblivious	balances	cost	and	partitioning	time.
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Greedy	Vertex-Cuts	Improve	Performance
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Other	Features	(See	Paper)

• Supports	three	execution	modes:
– Synchronous: Bulk-Synchronous	GAS	Phases
– Asynchronous: Interleave	GAS	Phases
– Asynchronous	+	Serializable:	Neighboring	vertices	
do	not	run	simultaneously

• Delta	Caching
– Accelerate	gather	phase	by	caching	partial	sums	
for	each	vertex

46



System	Evaluation
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System	Design

• Implemented	as	C++	API
• Uses	HDFS	for	Graph	Input	and	Output
• Fault-tolerance	is	achieved	by	check-pointing	
– Snapshot time	<	5	seconds	for	twitter	network

48

EC2 HPC	Nodes

MPI/TCP-IP PThreads HDFS

PowerGraph	(GraphLab2)	System



Implemented	Many	Algorithms

• Collaborative	Filtering
– Alternating	Least	Squares
– Stochastic	Gradient	
Descent

– SVD
– Non-negative	MF

• Statistical	Inference
– Loopy	Belief	Propagation
– Max-Product	Linear	
Programs

– Gibbs	Sampling

• Graph	Analytics
– PageRank
– Triangle	Counting
– Shortest	Path
– Graph	Coloring
– K-core	Decomposition

• Computer	Vision
– Image	stitching

• Language	Modeling
– LDA
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Comparison	with	GraphLab &	Pregel
• PageRank	on	Synthetic	Power-Law	Graphs:

RuntimeCommunication
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High-degree	vertices High-degree	vertices

PowerGraph	is	robust	to	high-degree vertices.



PageRank	on	the	Twitter	Follower	Graph
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PowerGraph	is	Scalable
Yahoo	Altavista Web	Graph	(2002):

One	of	the	largest	publicly	available	web	graphs
1.4 Billion	Webpages,		6.6	Billion	Links

1024	Cores	(2048	HT)
64	HPC	Nodes

7	Seconds	per	Iter.
1B	links	processed	per	second

30	lines	of	user	code
52



Topic	Modeling
• English	language	Wikipedia	

– 2.6M	Documents,	8.3M	Words,	500M	Tokens

– Computationally	intensive	algorithm
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Counted:	34.8	Billion	Triangles

54

Triangle	Counting	on	The	Twitter	Graph
Identify	individuals	with	strong	communities.

64	Machines
1.5	Minutes

1536	Machines
423	Minutes

Hadoop
[WWW’11]

S.	Suri and	S.	Vassilvitskii,	“Counting	triangles	and	the	curse	of	the	last	reducer,”	WWW’11

282	x	Faster

Why?Wrong	Abstraction		à
Broadcast	O(degree2)	messages	per	Vertex



Summary
• Problem: Computation	on	Natural	Graphs is
challenging
– High-degree	vertices
– Low-quality	edge-cuts

• Solution:	PowerGraph	System
– GAS	Decomposition:	split	vertex programs
– Vertex-partitioning:	distribute	natural	graphs

• PowerGraph	theoretically and	experimentally
outperforms	existing	graph-parallel	systems.
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PowerGraph	(GraphLab2)	System

Graph	
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Future	Work

• Time	evolving	graphs
– Support	structural	changes during	computation

• Out-of-core	storage	(GraphChi)
– Support	graphs	that	don’t	fit	in	memory

• Improved	Fault-Tolerance
– Leverage	vertex	replication	to	reduce	snapshots
– Asynchronous recovery	

57



is	GraphLab Version	2.1
Apache	2	License

http://graphlab.org
Documentation… Code… Tutorials… (more on the way) 


