PowerGraph

Distributed Graph-Parallel Computation on Natural Graphs

Joseph Gonzalez

Joint work with:

Yucheng Low
Haijie Gu
Danny Bickson
Carlos Guestrin

Carnegie Mellon University
Graphs are ubiquitous.
• **Graphs encode relationships** between:

 People Products Ideas

 Facts Interests

• **Big: billions of vertices and edges** and rich metadata
Graphs are Essential to Data-Mining and Machine Learning

• Identify influential people and information
• Find communities
• Target ads and products
• Model complex data dependencies
Natural Graphs
Graphs derived from natural phenomena
Problem:

Existing *distributed* graph computation systems perform poorly on **Natural Graphs**.
PageRank on Twitter Follower Graph

Natural Graph with 40M Users, 1.4 Billion Links

Order of magnitude by exploiting properties of Natural Graphs

Hadoop results from [Kang et al. '11]
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]
Properties of Natural Graphs

Power-Law Degree Distribution
More than 10^8 vertices have one neighbor.

High-Degree Vertices

AltaVista WebGraph
1.4B Vertices, 6.6B Edges
Power-Law Degree Distribution

“Star Like” Motif

President Obama

Followers
Power-Law Graphs are Difficult to Partition

- Power-Law graphs do not have low-cost balanced cuts [Leskovec et al. 08, Lang 04]
- Traditional graph-partitioning algorithms perform poorly on Power-Law Graphs. [Abou-Rjeili et al. 06]
Properties of Natural Graphs

High-degree Vertices
Power-Law Degree Distribution
Low Quality Partition
Program For This

Run on This

- Split High-Degree vertices
- New Abstraction \rightarrow Equivalence on Split Vertices
How do we program graph computation?

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]
The Graph-Parallel Abstraction

• A user-defined **Vertex-Program** runs on each vertex

• **Graph** constrains **interaction** along edges
 – Using messages (e.g. **Pregel** [PODC’09, SIGMOD’10])
 – Through **shared state** (e.g., **GraphLab** [UAI’10, VLDB’12])

• **Parallelism**: run multiple vertex programs simultaneously
Example

What’s the popularity of this user?

Depends on popularity of her followers

Popular?

Depends on the popularity their followers
PageRank Algorithm

\[R[i] = 0.15 + \sum_{j \in \text{Nbrs}(i)} w_{ji} R[j] \]

- Rank of user \(i \)
- Weighted sum of neighbors’ ranks
- Update ranks in parallel
- Iterate until convergence
The Pregel Abstraction

Vertex-Programs interact by sending messages.

```
Pregel_PageRank(i, messages) : 
    // Receive all the messages
    total = 0
    foreach (msg in messages) :
        total = total + msg

    // Update the rank of this vertex
    R[i] = 0.15 + total

    // Send new messages to neighbors
    foreach (j in out_neighbors[i]) :
        Send msg(R[i] * wij) to vertex j
```

Malewicz et al. [PODC’09, SIGMOD’10]
The GraphLab Abstraction

Vertex-Programs directly read the neighbors state

GraphLab_PageRank(i)

// Compute sum over neighbors
total = 0
foreach (j in in_neighbors(i)):
 total = total + R[j] * w_{ji}

// Update the PageRank
R[i] = 0.15 + total

// Trigger neighbors to run again
if R[i] not converged then
 foreach (j in out_neighbors(i)):
 signal vertex-program on j

Low et al. [UAI’10, VLDB’12]
Challenges of High-Degree Vertices

- Asynchronous Execution requires heavy locking (GraphLab)
- Synchronous Execution prone to stragglers (Pregel)
Communication Overhead for High-Degree Vertices

Fan-In vs. Fan-Out
Pregel **Message Combiners on Fan-In**

- User defined **commutative associative** (+) message operation:

 ![Diagram of Pregel Message Combiners on Fan-In]

 - Machine 1
 - Machine 2
Pregel Struggles with **Fan-Out**

- **Broadcast** sends many copies of the same message to the same machine!
Fan-In and Fan-Out Performance

- PageRank on synthetic Power-Law Graphs
 - Piccolo was used to simulate Pregel with combiners
GraphLab Ghosting

- Changes to master are synced to ghosts
GraphLab Ghosting

- Changes to **neighbors** of high degree vertices creates substantial network traffic
Fan-In and Fan-Out Performance

- PageRank on synthetic Power-Law Graphs
- GraphLab is undirected

![Graph Diagram]

- More high-degree vertices

<table>
<thead>
<tr>
<th>Total Comm. (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
</tr>
</tbody>
</table>

Power-Law Constant alpha

- Pregel Fan-In
- Pregel Fan-Out
- GraphLab Fan-In/Out
Graph Partitioning

- Graph parallel abstractions rely on partitioning:
 - Minimize communication
 - Balance computation and storage

Machine 1

Data transmitted across network $O(\# \text{ cut edges})$

Machine 2
Random Partitioning

- Both GraphLab and Pregel resort to random (hashed) partitioning on natural graphs.

\[
\mathbb{E} \left[\frac{|Edges\ Cut|}{|E|} \right] = 1 - \frac{1}{p}
\]

10 Machines \rightarrow 90% of edges cut
100 Machines \rightarrow 99% of edges cut!
In Summary

GraphLab and Pregel are not well suited for natural graphs

• Challenges of high-degree vertices
• Low quality partitioning
PowerGraph

• **GAS Decomposition**: distribute vertex-programs
 – Move computation to data
 – Parallelize **high-degree** vertices

• **Vertex Partitioning**:
 – Effectively distribute large power-law graphs
A Common Pattern for Vertex-Programs

GraphLab_PageRank(i)

// Compute sum over neighbors
total = 0
foreach (j in in_neighbors(i)):
 total = total + R[j] * w_{ji}

// Update the PageRank
R[i] = 0.1 + total

// Trigger neighbors to run again
if R[i] not converged then
 foreach (j in out_neighbors(i))
 signal vertex-program on j
GAS Decomposition

Gather (Reduce)
Accumulate information about neighborhood

User Defined:
- Gather \(Y \rightarrow \Sigma \)
- \(\Sigma_1 \oplus \Sigma_2 \rightarrow \Sigma_3 \)

Apply
Apply the accumulated value to center vertex

User Defined:
- Apply \((Y, \Sigma) \rightarrow \)

Scatter
Update adjacent edges and vertices.

User Defined:
- Scatter \((Y) \rightarrow \)

Parallel Sum: \(+ \rightarrow \Sigma \)
PageRank in PowerGraph

\[R[i] = 0.15 + \sum_{j \in \text{Nbrs}(i)} w_{ji} R[j] \]

PowerGraph_PageRank(i)

Gather (j → i) : return \(w_{ji} * R[j] \)

sum(a, b) : return a + b;

Apply (i, \(\Sigma \)) : \(R[i] = 0.15 + \Sigma \)

Scatter (i → j) :

if \(R[i] \) changed then trigger j to be **recomputed**
Distributed Execution of a PowerGraph Vertex-Program

- Gather
- Apply
- Scatter
Minimizing Communication in PowerGraph

Communication is linear in the number of machines each vertex spans

A vertex-cut minimizes machines each vertex spans

Percolation theory suggests that power law graphs have good vertex cuts. [Albert et al. 2000]
New Approach to Partitioning

• Rather than cut edges:

New Theorem:

For any edge-cut we can directly construct a vertex-cut which requires strictly less communication and storage.

Must synchronize a single vertex
Constructing Vertex-Cuts

• **Evenly** assign **edges** to machines
 – Minimize machines spanned by each vertex

• Assign each edge **as it is loaded**
 – Touch each edge only once

• Propose three **distributed** approaches:
 – *Random* Edge Placement
 – *Coordinated Greedy* Edge Placement
 – *Oblivious Greedy* Edge Placement
Random Edge-Placement

• Randomly assign edges to machines

Balanced Vertex-Cut

Y Spans 3 Machines
Z Spans 2 Machines
Not cut!
Analysis Random Edge-Placement

- Expected number of machines spanned by a vertex:

Twitter Follower Graph
41 Million Vertices
1.4 Billion Edges

Accurately Estimate Memory and Comm. Overhead
Random Vertex-Cuts vs. Edge-Cuts

• Expected improvement from vertex-cuts:

![Graph showing expected improvement from vertex-cuts with a clear downward trend as the number of machines increases. The y-axis represents the reduction in communication and storage in order of magnitude, while the x-axis represents the number of machines. The graph indicates a significant improvement in communication and storage as the number of machines grows.]
Greedy Vertex-Cuts

• Place edges on machines which already have the vertices in that edge.
Greedy Vertex-Cuts

• **De-randomization** → greedily minimizes the expected number of machines spanned

• **Coordinated** Edge Placement
 – Requires coordination to place each edge
 – Slower: higher quality cuts

• **Oblivious** Edge Placement
 – Approx. greedy objective without coordination
 – Faster: lower quality cuts
Partitioning Performance

Twitter Graph: 41M vertices, 1.4B edges

Cost

![Graph showing cost vs. number of machines](image)

Construction Time

![Graph showing construction time vs. number of machines](image)

Oblivious balances cost and partitioning time.

Better
Greedy partitioning improves computation performance.
Other Features (See Paper)

• Supports three execution modes:
 – **Synchronous**: Bulk-Synchronous GAS Phases
 – **Asynchronous**: Interleave GAS Phases
 – **Asynchronous + Serializable**: Neighboring vertices do not run simultaneously

• Delta Caching
 – Accelerate gather phase by **caching** partial sums for each vertex
System Evaluation
System Design

- Implemented as C++ API
- Uses HDFS for Graph Input and Output
- Fault-tolerance is achieved by check-pointing
 - Snapshot time < 5 seconds for twitter network
Implemented Many Algorithms

• Collaborative Filtering
 – Alternating Least Squares
 – Stochastic Gradient Descent
 – SVD
 – Non-negative MF

• Statistical Inference
 – Loopy Belief Propagation
 – Max-Product Linear Programs
 – Gibbs Sampling

• Graph Analytics
 – PageRank
 – Triangle Counting
 – Shortest Path
 – Graph Coloring
 – K-core Decomposition

• Computer Vision
 – Image stitching

• Language Modeling
 – LDA
Comparison with GraphLab & Pregel

- PageRank on Synthetic Power-Law Graphs:

PowerGraph is robust to high-degree vertices.
PageRank on the Twitter Follower Graph

Natural Graph with 40M Users, 1.4 Billion Links

Communication

<table>
<thead>
<tr>
<th>Total Network (GB)</th>
<th>GraphLab</th>
<th>Pregel (Piccolo)</th>
<th>PowerGraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Runtime

<table>
<thead>
<tr>
<th>Seconds</th>
<th>GraphLab</th>
<th>Pregel (Piccolo)</th>
<th>PowerGraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reduces Communication

Runs Faster

32 Nodes x 8 Cores (EC2 HPC cc1.4x)
PowerGraph is Scalable

Yahoo Altavista Web Graph (2002):
One of the largest publicly available web graphs
1.4 Billion Webpages, 6.6 Billion Links

7 Seconds per Iter.
1B links processed per second
30 lines of user code
Topic Modeling

• English language Wikipedia
 – 2.6M Documents, 8.3M Words, 500M Tokens
 – Computationally intensive algorithm

Smola et al.
Specifically engineered for this task

PowerGraph
64 cc2.8xlarge EC2 Nodes
200 lines of code & 4 human hours
Triangle Counting on The Twitter Graph

Identify individuals with strong communities.

Counted: 34.8 Billion Triangles

Hadoop [WWW’11] 1536 Machines 423 Minutes

PowerGraph 64 Machines 1.5 Minutes 282 x Faster

Why? Wrong Abstraction → Broadcast $O(\text{degree}^2)$ messages per Vertex

S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11
Summary

• **Problem**: Computation on *Natural Graphs* is challenging
 – High-degree vertices
 – Low-quality edge-cuts

• **Solution**: *PowerGraph System*
 – **GAS Decomposition**: split vertex programs
 – **Vertex-partitioning**: distribute natural graphs

• *PowerGraph* ***theoretically*** and ***experimentally*** outperforms existing graph-parallel systems.
Machine Learning and Data-Mining Toolkits

- Graph Analytics
- Graphical Models
- Computer Vision
- Clustering
- Topic Modeling
- Collaborative Filtering

PowerGraph (GraphLab2) System
Future Work

• Time evolving graphs
 – Support **structural changes** during computation

• Out-of-core storage (GraphChi)
 – Support graphs that don’t fit in memory

• Improved Fault-Tolerance
 – Leverage **vertex replication** to reduce snapshots
 – *Asynchronous* recovery
PowerGraph

is GraphLab Version 2.1

Apache 2 License

http://graphlablab.org

Documentation... Code... Tutorials... (more on the way)