PowerGraph

Distributed Graph-Parallel Computation on Natural Graphs

{
)

Joseph Gonzalez

Joint work with:

Danny Carlos
Bickson Guestrin

Yucheng
Low

(Carnegie Mellon University

Graphs are ubiquitous..

Social Media Science Advertising

n L @

* Graphs encode relationships between:

People Products ldeas
Facts Interests

* Big: billions of vertices and edges and rich metadata

3

Graphs are Essential to
Data-Mining and Machine Learning

ldentify influential people and information
Find communities

Target ads and products

Model complex data dependencies

Ovioamm

Natural Graphs
Graphs derived from natural
phenomena

Problem:

Existing distributed graph
computation systems perform
poorly on Natural Graphs.

PageRank on Twitter Follower Graph
Natural Graph with 40M Users, 1.4 Billion Links

Runtime Per Iteration
0 50 100 150 200

Hadoop

Graphlab _
Twister -
—_—

Piccolo

Hadoop results from [Kang et al. '11] 2
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]

Properties of Natural Graphs

I,
::{ o .. :’.
r‘.:‘...’n g ...L.‘ ‘.. ®
S2% T "= *2es o
e " —wgs g . =° T, 2°
}o.. - . g ey :.‘E: ®
YL AN IS o ¢
.‘%“ ...:.."}
+T T2 ee
oo ®

Power-Law Degree Distribution

Number of Vertices

Power-Law Degree Distribution

10

10

108@<.../ have one neighbor. _

AltaVista WebGraph

More than 108 vertices

High-Degree
Vertices

1.4B Vertices, 6|.68 Edges

10

0 102

Power-Law Degree Distribution

“Star Like” Motif

President

Obama \ Y? Followers

Power-Law Graphs are
Difficult to Partition

DK =

 Power-Law graphs do not have low-cost balanced
cuts [Leskovec et al. 08, Lang 04]

* Traditional graph-partitioning algorithms perform

poorly on Power-Law Graphs.
[Abou-Rjeili et al. 06]

CPU 2

Properties of Natural Graphs

..... .:’:soo’.. o‘
::{z = o :’.
i s =
S2% Te* "= *2es o
R —— = - o o
. o b o % s ... 4 o= e o
o K= . % e ."‘:: o
.:. .o‘ * - -. o.
o ® o o
.‘%o:.\ ’o.:-od‘.:
+ 2B e

High-degre@ower-Lawow Quality
VertiPegree DistribuRarhition

PowerGraph

Program
For This

Run on This

Machine 1 Machine 2

-3 &

* Split High-Degree vertices

* New Abstraction = Equivalence on Split Vertices

How do we program
graph computation?

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]

The Graph-Parallel Abstraction

* A user-defined Vertex-Program runs on each vertex

* Graph constrains interaction along edges
— Using messages (e.g. Pregel [PODC’09, SIGMOD’10])
— Through shared state (e.g., GraphLab [UAI'10, VLDB’12])
* Parallelism: run multiple vertex programs simultaneously

15

Exam P le Depends on the
popularity their followers

Depends on popularity

ﬂ of her followers :
VR

What's the popularity
of this user?

v
" Popular?

16

PageRank Algorithm

R[] =

Rank of
user |

 Update ran

* |terate unti

Weighted sum of
neighbors’ ranks

ks in parallel

convergence

17

The Pregel Abstraction

Vertex-Programs interact by sending messages.

Pregel PageRank(i, messages) :
(// Receive all the messages)
total = ©
foreach(msg in messages)

total = total + msg
- J
f // Update the rank of this vertex
R[i] = ©.15 + total

g J

~

e)
// Send new messages to neighbors

foreach(j in out_neighbors[i]) :
Send msg(R[i] * w;;) to vertex jj

Malewicz et al. [PODC’09, SIGMOD’10]

The GraphLab Abstraction

Vertex-Programs directly read the neighbors state

GraphLab_PageRank (i)

(// Compute sum over neighbors R
total = ©
foreach(j in in_neighbors(i)):
total = total + R[J] * wy;
N\ y
/) Update the PageRank
R[i] = ©.15 + total

. J

J

/>// Trigger neighbors to run again
if R[1] not converged then
foreach(j in out_neighbors(i)):
signal vertex-program on j

NS

Low et al. [UAI'10, VLDB’12]

Challenges of High-Degree Vertices

% ¥ o K

Sequentially process Sends many Touches a large Edge meta-data
edges messages fraction of graph too large for single
(Pregel) (GraphLab) machine
—e —> I o—e —> 1
—e —> 1 o—0 —> :
—e —> I o—e —> I
| 1
— 1 1
Asynchronous Execution Synchronous Execution

requires heavy locking (GraphLab) prone to stragglers (Pregel)

Communication Overhead
for High-Degree Vertices

Pregel Message Combiners on Fan-In

Machine 1 Machine 2

* User defined commutative associative (+)
message operation:

Pregel Struggles with Fan-Out

NwAS,
<—=]
00—

Machine 1 Machine 2

* Broadcast sends many copies of the same
message to the same machine!

Fan-In and Fan-Out Performance

 PageRank on synthetic Power-Law Graphs

— Piccolo was used to simulate Pregel with combiners

Total Comm. (GB)

1.8 1.9 2 2.1 2.2

Power-Law Constant a

= More high-degree vertices 24

GraphLab Ghosting

-
-
Z ~

{\\A/‘
(D) B
. B
‘Ghost =
Machine 1 Machine 2

* Changes to master are synced to ghosts

GraphLab Ghosting

\ ’’’’’

\\\\\\\\\

~~~~~~ C/%~. Ghost
Machine 1 Machine 2

* Changes to neighbors of high degree vertices
creates substantial network traffic



Fan-In and Fan-Out Performance

* PageRank on synthetic Power-Law Graphs

 GraphLab is undirected

Total Comm. (GB)

[E
o

o N B OO

| —

{-rl |

1.8 1.9 2 2.1 2.2

Power-Law Constant alpha

< More high-degree vertices -




Graph Partitioning

* Graph parallel abstractions rely on partitioning:
— Minimize communication
— Balance computation and storage

Data transmitted

. across network .
Machine 1 O(# cut edges) Machine 2

28



Random Partitioning

* Both GraphlLab and Pregel resort to random
(hashed) partitioning on natural graphs

=

|Edges Cut|

E|

1
—1——
P

10 Machines =2 90% of edges cut
100 Machines = 99% of edges cut!




In Summary

GraphlLab and Pregel are not well
suited for natural graphs

* Challenges of high-degree vertices
* Low quality partitioning



PowerGraph

 GAS Decomposition: distribute vertex-programs
— Move computation to data
— Parallelize high-degree vertices

* Vertex Partitioning:
— Effectively distribute large power-law graphs



A Common Pattern for
Vertex-Programs

GraphLab_PageRank (1)

( // Compute sum over neighbors
total = ©
foreach( j in in_neighbors(i)):

total = total + R[J] * wy;
g

Gather Information
About Neighborhood

J

[ // Update the PageRank
R[i] = ©.1 + total

.

Update Vertex

~N

// Trigger neighbors to run again
if R[1i] not converged then
foreach( j in out _neighbors(i))
signal vertex-program on j

Signal Neighbors &
Modify Edge Data



GAS Decomposition

-

Gather (Reduce)

Accumulate information
about neighborhood

User Defined:

P

» Gather(Q—@ ) 2 2
»2, @D 2, - 23

P 6

~N

e

Apply
Apply the accumulated
value to center vertex

User Defined:
» Apply(@). 2) > @

N

e

\_

Scatter

Update adjacent edges
and vertices.

User Defined:
» Scatter(@—@) > —

Update Edge Data &
Activate Neighbors
33

J




PageRank in PowerGraph

R[] =015+ »  wjR[j

PowerGraph_PageRank(i)

Gather(j 2 1) : return w; * R[j]
sum(a, b) : returna + b;

Apply(, 2) : R[] =0.15 + >

Scatter(1=27):
if R[i] changed then trigger j to be recomputed

34



Distributed Execution of a PowerGraph
Vertex-Program

Machine 1 Machine 2

.

Gather @@
+ + \Mirror
Apply C o
Scatter AI\\ -
Mirror /‘

Machine 3 Machine 4

35



Minimizing Communication in PowerGraph

Communication is linear in
the number of machines
each vertex spans

A vertex-cut minimizes
machines each vertex spans

Percolation theory suggests that power law graphs
have good vertex cuts. [Albert et al. 2000]

36



New Approach to Partitioning

* Rather than cut edges:

New Theorem:
For any edge-cut we can directly
construct a vertex-cut which requires
strictly less communication and storage.

» | . Must synchronize
a single vertex

CPU 1 CPU 2




Constructing Vertex-Cuts

* Evenly assign edges to machines
— Minimize machines spanned by each vertex

* Assign each edge as it is loaded
— Touch each edge only once

* Propose three distributed approaches:

— Random Edge Placement
— Coordinated Greedy Edge Placement
— Oblivious Greedy Edge Placement



Random Edge-Placement

 Randomly assign edges to machines

Machine 1 Machine 2 Machine 3

Balanced Vertex-Cut




Analysis Random Edge-Placement

* Expected number of machines spanned by a

vertex:

Twitter Follower Graph
41 Million Vertices
1.4 Billion Edges

Accurately Estimate

Memory and Comm.
Overhead

Exp. # of Machines Spanned

20
18
16
14
12
10

N B O

—=Predicted

-@-Random-

I I

28 48
Number of Machines

40



Random Vertex-Cuts vs. Edge-Cuts

* Expected improvement from vertex-cuts:

100
)
(eT0)
o
k= S
2,
S &
© - .
Q E Order of Magnitude
S Improvement
1 I I I
0 50 100 150

Number of Machines



Greedy Vertex-Cuts

* Place edges on machines which already have
the vertices in that edge.

A B 0—O0

Machinel Machine 2

0—0

42



Greedy Vertex-Cuts

* De-randomization = greedily minimizes the
expected number of machines spanned

* Coordinated Edge Placement
— Requires coordination to place each edge
— Slower: higher quality cuts
* Oblivious Edge Placement
— Approx. greedy objective without coordination

— Faster: lower quality cuts



Partitioning Performance

Twitter Graph: 41M vertices, 1.4B edges

Cost Construction Time
o 18 1000
c 16 —
o 7,
S 14 T 800
e S
g 12 2 600
= 10 )
I £ 400
|—
Y oo
5 © £ 200
w 2 o
2 2 'g 0 T T T T T T |
8 16 24 32 40 48 56 64 O 8 16 24 32 40 48 56 64

Number of Machines Number of Machines

Oblivious balances cost and partitioning time.




Runtime Relative

Greedy Vertex-Cuts Improve Performance

to Random

1 -
0.9 -
0.8 -
0.7 -
0.6 -
0.5 -
0.4 -
0.3 -
0.2 -
0.1 -

0 -

Random
& Oblivious

oordinated

PageRank Collaborative Shortest Path
Filtering

Greedy partitioning improves

computation performance. .



Other Features (See Paper)

* Supports three execution modes:
— Synchronous: Bulk-Synchronous GAS Phases
— Asynchronous: Interleave GAS Phases

— Asynchronous + Serializable: Neighboring vertices
do not run simultaneously

* Delta Caching

— Accelerate gather phase by caching partial sums
for each vertex



System Evaluation



System Design

MPI/TCP-IP PThreads

EC2 HPC Nodes

mplemented as C++ API
Uses HDFS for Graph Input and Output

-ault-tolerance is achieved by check-pointing

— Snapshot time < 5 seconds for twitter network

48



Implemented Many Algorithms

* Collaborative Filtering * Graph Analytics

— Alternating Least Squares — PageRank
— Stochastic Gradient — Triangle Counting
Descent — Shortest Path

— SVD — Graph Coloring

— Non-negative MF — K-core Decomposition
* Statistical Inference e Computer Vision

— Loopy Belief Propagation — Image stitching

— Max-Product Linear

* Language Modeling
— LDA

Programs
— Gibbs Sampling



Total Network (GB)

Comparison with GraphlLab & Pregel

* PageRank on Synthetic Power-Law Graphs:

Communication Runtime
10 30
g ! : 25 - (Piccol
Pregel (Piccolo) Pregel (Piccolo)
6 w 20
g 15
o
4 g 10
2P 5
0 - 0 -
1.8 1.8
Power-Law Constant a Power-Law Constant a
<«— High-degree vertices <«— High-degree vertices

PowerGraph is robust to high-degree vertices. |



Total Network (GB)

PageRank on the Twitter Follower Graph
Natural Graph with 40M Users, 1.4 Billion Links
Communication

SN
o

N W W
Ul O U
| |

N
o
|

[EY
(9
|

=
o
|

(9
|

o
|

Graphlab Pregel PowerGraph
(Piccolo)

Reduces Communication

32 Nodes x 8 Cores (EC2 HPC cc1.4x) .




PowerGraph is Scalable

Yahoo Altavista Web Graph (2002):
One of the largest publicly available web graphs

1.4 Billion Webpages, 6.6 Billion Links

7 Seconds per lter.

1B links processed per second
30 lines of user code



Topic Modeling

* English language Wikipedia
— 2.6M Documents, 8.3M Words, 500M Tokens
— Computationally intensive algorithm

Million Tokens Per Second
0 20 40 60 80 100 120 140 160

100 Yahoo! Machines
Specifically engineered for this task

Smola et al.

PowerGraph

53



Triangle Counting on The Twitter Graph

ldentify individuals with strong communities.

Counted: 34.8 Billion Triangles

Hadoop [ EEILEl 1]
[WWW’11] [z R UL

64 Machines
1.5 Minutes

Why? Wrong Abstraction >
Broadcast O(degree?) messages per Vertex

PowerGraph

54
S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11



Summary

* Problem: Computation on Natural Graphs is
challenging

— High-degree vertices
— Low-quality edge-cuts

e Solution: PowerGraph System
— GAS Decomposition: split vertex programs
— Vertex-partitioning: distribute natural graphs

* PowerGraph theoretically and experimentally
outperforms existing graph-parallel systems.



Machine Learning and Data-Mining
Toolkits

Graph Graphical Computer

Topic Collaborative

Clusteri
HStering Modeling Filtering

Analytics Models Vision




Future Work

* Time evolving graphs

— Support structural changes during computation
* Qut-of-core storage (GraphChi)

— Support graphs that don’t fit in memory
* Improved Fault-Tolerance

— Leverage vertex replication to reduce snapshots
— Asynchronous recovery



PowerGraph

is GraphLab Version 2.1

Apache 2 License

http://graphlab.org

Documentation... Code... Tutorials... (more on the way)



