Optimistic Concurrency Control

N the
of

Design and Analysis

Joseph E. Gonzalez

Postdoc, UC Berkeley AMPLab
Co-founder, GraphLab Inc.
jegonzal@eecs.berkeley.edu

Serial Inference

Model
State

Data == e : —\ \—‘—‘—‘—H—)

Parallel Inference

Model
State

Data Proce' | 3

Processor 2

Parallel Inference

Model

Data Processor | >

Processor 2

>

Correctness: Concurrency:

serial equivalence more machines = less time

Coordination Free Parallel Inference

Model
State

Processor |
>

Data. —)
-©

Processor 2

>

Cokeetn€sim and_Caccyrency:

Depends on Assumptions (almost) free

Correctness
Low

Concurrency

Correctness

Concurrency

O Concurrency
Control ¢

Database mechanisms

o Guarantee correctness
o Maximize concurrency
» Mutual exclusion

» Optimistic CC

Correctness

Mutual

Model
State

-xclusion 'hrough Locking

Processor |
>

Processor 2 o

Introducing locking (scheduling) protocols to prevent

potential conflicts.

Mutual Exclusion Through Locking

X

Data —‘ 1% ‘ Processor | >
_‘ (] ‘ ‘ Processor 2 N

Model
State

Enforce serialization of computation that could conflict.

Optimistic Concurrency Control

Model
State

Data Processor | >

‘ ‘ ‘ Processor 2 N

Allow computation to proceed without blocking.

Kung & Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems 98|

Optimistic Concurrency Control

Model
State *

Data —‘

Valid outcome

Processor |
@ >

‘ ‘ Processor 2 N

Validate potential conflicts.

Kung & Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems 98|

Optimistic Concurrency Control

Invalid Outcome

Model
State

Processor |
>

‘ Processor 2 N

Validate potential conflicts.

Kung & Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems 98|

Optimistic Concurrency Control

Model
State

Processor |
>

‘ Processor 2 N

Take a compensating action.

Kung & Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems 98|

Optimistic Concurrency Control

Invalid Outcome

Model
State

Processor |
>

‘ Processor 2 N

Validate potential conflicts.

Kung & Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems 98|

Optimistic Concurrency Control

Model
State ix Ex—

Processor |
>

Processor 2 o

Take a compensating action.

Kung & Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems 98|

Optimistic Concurrency Control

Model

State
Data —‘ ‘ O ‘ Processor | o
_‘ ‘ ‘ ‘ Processor 2 o

Non-Blocking Computation) Concurrency

Validation: Identify Errors
o Correctness
Resolution: Correct Errors

Optimistic Concurrency Control
for Machine Learning

Non-parametric Clustering
Distributed DP-Means
[NIPS'13]

Submodular Optimization

Double Greedy Submodular Maximization
[NIPS" 4]

18

Optimistic Concurrency Control

ﬁ

for
Submodular Maxmization

Xinghao Pan, Stefanie Jegelka, Joseph Gonzalez, Joseph Bradley, Michael |. Jordan

Submodular Set Functions

Diminishing Returns Property

F:2V—R,suchthatforal ACBCYVY and e ¢ B

F(AUe)—F(A) > F(BUe)— F(B

Submodular Examples

Network Analysis

Sensing

' t?\‘". i ¥) 7 & éliis‘: l‘:i:- jm "

F(S) = area covered by S

F(S) = I(Y; Xs)

= reduction in uncertainty
(Krause & Guestrin 2005)

Document
Summarization

(Lin & Bilmes 201 1)

F(S) = E[# active nodes at end|

(Kempe, Kleinberg, Tardos 2003,
Mossel & Roch 2007)

Graph Algorithms

clustering
graph partitioning

Submodular Maximization
max F(A), A & V

Monotone (increasing) functions

[Positive marginal gains]

Non-monotone functions

Sequential

Greedy (Nemhauser et al, 1978)
(I-1/e) - approximation
Optimal polytime

Double Greedy (Buchbinder et al, 2012)
/2 - approximation
Optimal polytime

- 9
a5
T =2
o
o +
AR
(]

GreeD1 (Mirzasoleiman et al, 2013)
(I-1/e)? / p — approximation
| MapReduce round

(Kumar et al, 2013)
| / (2+ €) — approximation
O(I/ €) MapReduce rounds

Concurrency Control Double Greedy
Optimal /2 - approximation
Bounded overhead

Coordination Free Double Greedy
Bounded error
Minimal overhead

Double Greedy Algorithm
000000

Double Greedy Algorithm
000000

Double Greedy Algorithm
00000

Marginal gains
A, (UulA) = F(A U u) — F(A),
A (ulB) = F(B\u) — F(B).

ol(] A,B)Zml

rand

Double Greedy Algorithm
00000

Marginal gains
A, (UA) = F(A U u) - FA),
A (uB) = F(B\u) — F(B).

ol(] A,B)Zml

rand

Double Greedy Algorithm
00000

Marginal gains
A, (VIA) = F(AU V) —FA),
Av|B) = FB\v) — F(B).

ol(] A,B)Zml

rand

Double Greedy Algorithm
0000

Return A

Parallel Double Greedy Algorithm
0000060

CPU |

CPU 2

Parallel Double Greedy Algorithm

- 000

A(u|?) =1
Al =1

> QOO

A (v =7
AN|?) =7

Concurrency Control Double Greedy

Maintain bounds on A, B =» Enable threads to make decisions locally

Concurrency Control Double Greedy

Maintain bounds on A, B =» Enable threads to make decisions locally

- OO

@ uwvenrumswa)
A(UB) € [AMUB), AM(UPB)]

i .5) - N
0

- OO

Q uwenrun ey
A(B) € [AT(WB), AT(B)]

@) -

0 I

Concurrency Control Double Greedy

Maintain bounds on A, B =» Enable threads to make decisions locally

- OO

@ uvenrumswa)
A(UB) € [AMUB), AM(UPB)]

@ /.5 - NI
0 |

rand
o OO

Q uwenrun ey
A(B) € [AT(WB), AT(B)]

@) -

0 I

Concurrency Control Double Greedy

Maintain bounds on A, B =» Enable threads to make decisions locally

. OO

+(UIA) € [(UlA), A (UIA)]
(u[B) E[A™(ulB), Am(ulB)]

p(OIAB)‘

- QO

Q@ owemuuwmmyup)
AB) € B (B)- B (B)]

@ A B) = B vrerany B

& 0
rand

Properties of CC Double Greedy

Theorem: CC double greedy Is serializable.

Corollary: CC double greedy preserves optimal
approximation guarantee of /2OPT.

Correctness

Lemma; CC has bounded overhead.

Expected number of blocked elements

set cover with costs: < 21
sparse max cut: <2t |E|/|V]

Change in Analysis

Coordination Free:

Provably fast

Concurrency Control:

Provably correct

Correctness
Fasy Proof

Scalability
Challenging Proof

-mpirical Validation

Multicore up to |6 threads

Set cover;, Max graph cut

Real and synthetic graphs

IT-2004 ltalian web-graph 41 Million |1 Billion
UK-2005 UK web-graph 39 Million 0.9 Billion
Arabic-2005 Arabic web-graph 22 Million 0.6 Billion
Friendster Social sub-network 10 Million 0.6 Billion
Erdos-Renyi Synthetic random 20 Million 2.0 Billion
ZigZag Synthetic expander 25 Million 2.0 Billion

CC

Double Greedy Coordination

Increase in Coordination
-6~ Friendster
-©- Arabic-2005
=3 UK-2005
|- 1T-2004
0.01 A ZigZag
Erdos—Renyi

O
o
—h
o

0.005;

% elements failed + blocked

threads

Runtime and Strong-Scaling

Runtime, relative to sequential Speedup for Max Graph Cut

-p-CC-2g, IT-2004
-A-CC-2g, ZigZag

Runtime relative to sequential

5 10 15
threads # threads

Conclusion

Sequential

Double Greedy Always slow

Concurrency Control

Double Greedy Usually fast

Coordination Free

Double Greedy Near optimal

Paper @ NIPS 2014:
Parallel Double Greedy Submodular Maximization.

BACKUP SLIDES

Correctness

Concurrency Control Coordination Free

Theorem: serializable. Lemma:

preserves optimal approximation bound
approximation bound V2OPT - error

72 OPT.

set cover with costs: > T

=>
sparse maxcut: |E|T /2|V]

Lemma: from same dependencies
bounded overhead. (uncertainty region) no
set cover with costs: 27 , I overhead

sparse maxcut: 2|E|T /|V]

Concurrency

Adversarial Setting

AN/
A

\\\A//
o0

(XXX X))

Overlapping covers
= Increased coordination

Adversarial Setting — Ring Set Cover

Runtime on EC2: CF-2g decrease in F(A):
Ring Set Cover

Ring Set Cover

300¢ o 1.2
9
250+ S 1
> 0.8
® g 0.6 0Q
£ 150} 2 *
5 < 0.4- m
“ 100 i 3
re 0.2r 93
[
50¢ S o
(@]
©
I | 2 i I |
0O 5 10 15 0 0 5 10 15
Number of threads Number of threads

 Coord Free [L LRELT T osSbly Wiohg
| Awaysoptimal

