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Parallel Inference

Model

Data Processor | >

Processor 2

>

Correctness: Concurrency:

serial equivalence more machines = less time



Coordination Free Parallel Inference
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Cokeetn€sim and_Caccyrency:

Depends on Assumptions (almost) free
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Concurrency

O Concurrency
Control ¢

Database mechanisms

o Guarantee correctness
o Maximize concurrency
» Mutual exclusion

» Optimistic CC

Correctness
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Introducing locking (scheduling) protocols to prevent

potential conflicts.



Mutual Exclusion Through Locking
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Enforce serialization of computation that could conflict.



Optimistic Concurrency Control
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Allow computation to proceed without blocking.

Kung & Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems 98|



Optimistic Concurrency Control
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Validate potential conflicts.

Kung & Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems 98|



Optimistic Concurrency Control

Invalid Outcome
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Validate potential conflicts.

Kung & Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems 98|



Optimistic Concurrency Control
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Take a compensating action.

Kung & Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems 98|
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Validate potential conflicts.
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Optimistic Concurrency Control
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Take a compensating action.

Kung & Robinson. On optimistic methods for concurrency control.
ACM Transactions on Database Systems 98|



Optimistic Concurrency Control
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Non-Blocking Computation ) Concurrency

Validation: Identify Errors
o Correctness
Resolution: Correct Errors



Optimistic Concurrency Control
for Machine Learning

Non-parametric Clustering
Distributed DP-Means
[NIPS'13]

Submodular Optimization

Double Greedy Submodular Maximization
[NIPS" 4]
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Optimistic Concurrency Control
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Submodular Maxmization

Xinghao Pan, Stefanie Jegelka, Joseph Gonzalez, Joseph Bradley, Michael |. Jordan



Submodular Set Functions

Diminishing Returns Property

F:2V—R,suchthatforal ACBCYVY and e ¢ B

F(AUe)—F(A) > F(BUe)— F(B




Submodular Examples

Network Analysis

Sensing
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F(S) = area covered by S

F(S) = I(Y; Xs)

= reduction in uncertainty
(Krause & Guestrin 2005)

Document
Summarization

(Lin & Bilmes 201 1)

F(S) = E[# active nodes at end|

(Kempe, Kleinberg, Tardos 2003,
Mossel & Roch 2007)

Graph Algorithms

clustering
graph partitioning




Submodular Maximization
max F(A), A & V

Monotone (increasing) functions

[ Positive marginal gains ]

Non-monotone functions

Sequential

Greedy (Nemhauser et al, 1978)
(I-1/e) - approximation
Optimal polytime

Double Greedy (Buchbinder et al, 2012)
/2 - approximation
Optimal polytime
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GreeD1 (Mirzasoleiman et al, 2013)
(I-1/e)? / p — approximation
| MapReduce round

(Kumar et al, 2013)
| / (2+ € ) — approximation
O(I/ € ) MapReduce rounds

Concurrency Control Double Greedy
Optimal /2 - approximation
Bounded overhead

Coordination Free Double Greedy
Bounded error
Minimal overhead




Double Greedy Algorithm
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Double Greedy Algorithm
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Marginal gains
A, (UulA) = F(A U u) — F(A),
A (ulB) = F(B\u) — F(B).
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Double Greedy Algorithm
00000

Marginal gains
A, (UA) = F(A U u) - FA),
A (uB) = F(B\u) — F(B).

ol( ] A,B)Zml
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Double Greedy Algorithm
00000

Marginal gains
A, (VIA) = F(AU V) —FA),
Av|B) = FB\v) — F(B).
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Double Greedy Algorithm
0000

Return A



Parallel Double Greedy Algorithm
0000060

CPU |

CPU 2




Parallel Double Greedy Algorithm
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A(u|?) =1
Al =1
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Concurrency Control Double Greedy

Maintain bounds on A, B =» Enable threads to make decisions locally




Concurrency Control Double Greedy

Maintain bounds on A, B =» Enable threads to make decisions locally
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Concurrency Control Double Greedy

Maintain bounds on A, B =» Enable threads to make decisions locally
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Concurrency Control Double Greedy

Maintain bounds on A, B =» Enable threads to make decisions locally
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Properties of CC Double Greedy

Theorem: CC double greedy Is serializable.

Corollary: CC double greedy preserves optimal
approximation guarantee of /2OPT.

Correctness

Lemma; CC has bounded overhead.

Expected number of blocked elements

set cover with costs: < 21
sparse max cut: <2t |E|/|V]




Change in Analysis

Coordination Free:

Provably fast

Concurrency Control:

Provably correct

Correctness
Fasy Proof

Scalability
Challenging Proof



-mpirical Validation

Multicore up to |6 threads

Set cover;, Max graph cut

Real and synthetic graphs

IT-2004 ltalian web-graph 41 Million |1 Billion
UK-2005 UK web-graph 39 Million 0.9 Billion
Arabic-2005 Arabic web-graph 22 Million 0.6 Billion
Friendster Social sub-network 10 Million 0.6 Billion
Erdos-Renyi Synthetic random 20 Million 2.0 Billion
ZigZag Synthetic expander 25 Million 2.0 Billion



CC

Double Greedy Coordination

Increase in Coordination
-6~ Friendster
-©- Arabic-2005
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Runtime and Strong-Scaling

Runtime, relative to sequential Speedup for Max Graph Cut

-p-CC-2g, IT-2004
-A-CC-2g, ZigZag

Runtime relative to sequential

5 10 15
# threads # threads




Conclusion

Sequential

Double Greedy Always slow

Concurrency Control

Double Greedy Usually fast

Coordination Free

Double Greedy Near optimal

Paper @ NIPS 2014:
Parallel Double Greedy Submodular Maximization.
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Correctness

Concurrency Control Coordination Free

Theorem: serializable. Lemma:

preserves optimal approximation bound
approximation bound V2OPT - error

72 OPT.

set cover with costs: > T

=>
sparse maxcut:  |E|T /2|V]

Lemma: from same dependencies
bounded overhead. (uncertainty region) no
set cover with costs: 27 , I overhead

sparse maxcut: 2|E|T /|V]

Concurrency




Adversarial Setting
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Overlapping covers
= Increased coordination



Adversarial Setting — Ring Set Cover

Runtime on EC2: CF-2g decrease in F(A):
Ring Set Cover

Ring Set Cover
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