
Joseph E. Gonzalez
Asst. Professor, UC Berkeley

jegonzal@cs.berkeley.edu

Learning Systems
Research at the Intersection of

Machine Learning & Data Systems



Learning Systems

How can machine learning techniques 
be used to address systems challenges?

How can systems techniques 
be used to address machine learning challenges?



Learning Systems

How can machine learning techniques 
be used to address systems challenges?

How can systems techniques 
be used to address machine learning challenges?



How can machine learning techniques 
be used to address systems challenges?

Systems are getting increasing complex:

Ø Resource Disaggregation à growing diversity of system 
configurations and freedom to add resources as needed

Ø New Pricing Models à dynamic pricing and potential to bid for 
different types of resources

Ø Data-centric Workloads à performance depends on interaction 
between system, algorithms, and data
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Runtime Inference System

Ø What vm-type should I use to run my experiment?
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Paris
Performance Aware 
Runtime Inference System
Ø What vm-type should I use to run my experiment?

Ø Answer: workload specific and depends on cost & runtime goals
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Paris
Performance Aware 
Runtime Inference System
Ø Best vm-type depends on workload as well as cost & runtime goals
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me the least?
m1.small is cheapest? 

Price



Paris
Performance Aware 
Runtime Inference System
Ø Best vm-type depends on workload as well as cost & runtime goals

Neeraja
Yadwadkar

Bharath
Hariharan

Randy
Katz

Runtime Job
Cost

Requires accurate runtime prediction.

Price



Paris
Performance Aware 
Runtime Inference System
Ø Goal: Predict the runtime of workload w on VM type v

Ø Challenge: How do we model workloads and VM types
Ø Insight: 

Ø Extensive benchmarking to model 
relationships between VM types
Ø Costly but run once for all workloads

Ø Lightweight workload “fingerprinting”
by on a small set of test VMs

Ø Generalize workload performance on other
VMs

Ø Results: Runtime prediction 17% Relative RMSE (56% Baseline)
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vm1 vm2 vm100…

Workload
Fingerprinting



Hemingway*

Modeling Throughput and 
Convergence for ML Workloads

Ø What is the best algorithm and level of parallelism for an ML task?
Ø Trade-off: Parallelism, Coordination, & Convergence

Ø Research challenge: Can we model this trade-off explicitly?

*follow-up work to Shivaram’s Ernest paper
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Zheng

Loss as a function of 
iterations i and cores pL(i, p)I(p) Iterations per second as

a function of cores p
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We can estimate I from 
data on many systems
We can estimate L from 
data for our problem



Hemingway*

Modeling Throughput and 
Convergence for ML Workloads

Ø What is the best algorithm and level of parallelism for an ML task?
Ø Trade-off: Parallelism, Coordination, & Convergence

Ø Research challenge: Can we model this trade-off explicitly?

Shivaram
Venkataraman

Xinghao
Pan

Zi
Zheng

Loss as a function of 
iterations i and cores pL(i, p)

I(p) Iterations per second as
a function of cores p

loss(t, p) = L (t⇤I (p), p)
• How long does it take to get to a given loss?
• Given a time budget and number of cores 

which algorithm will give the best result?

*follow-up work to Shivaram’s Ernest paper



Deep Code Completion
Neural architectures for reasoning
about programs
Ø Goals:

Ø Smart naming of variables and routines
Ø Learn coding styles and patterns
Ø Predict large code fragments

Ø Char and Symbol LSTMs

Ø Programs are more tree shaped…
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def fib( ):x

if x < 2

return x

=

return y

+ fib(x–2)fib(x–1)y

:

else:
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Deep Code Completion
Neural architectures for reasoning
about programs
Ø Goals:

Ø Smart naming of variables and routines
Ø Learn coding styles and patterns
Ø Predict large code fragments

Ø Char and Symbol LSTMs

Ø Exploring Tree LSTMs
Ø Issue: dependencies 

flow in both directions
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def fib( ):

x
if x < 2

return x
=

return y

+

fib(x–2)
fib(x–1)

y

Parse
Tree

Kai Sheng Tai, Richard Socher, Christopher D. Manning. “Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks.” (ACL 2015) 



Deep Code Completion
Neural architectures for reasoning
about computer programs
Ø Goals:

Ø Smart naming of variables and routines
Ø Learn coding styles and patterns
Ø Predict large code fragments

Ø Current studying Char-LSTM and 
Tree-LSTM on benchmark C++ 
code and JavaScript code.

Ø Plan to extend Tree-LSTM with 
downward information flow

Xin
Wang

Chang
Liu

Dawn
Song

Vanilla LSTM

Tree- LSTM



Fun Code Sample Generated by Char-LSTM
Code Prefix Generated Code Sample

For now, the neural network can learn some code 
patterns like matching the parenthesis, if-else block, 
etc but the variable name issue still hasn’t been 
solved.

*this is trained on the leetcode OJ code submissions
from Github. 
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Big
Data

Big Model

Training

Systems for Machine Learning

Timescale: minutes to days
Systems: offline and batch optimized
Heavily studied ... primary focus of the ML research
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Temgine
A Scalable Multivariate 
Time Series Analysis Engine
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Difficult to align!

Challenge: 
Ø Estimate second order statistics

Ø E.g. Auto-correlation, auto-regressive models, …
Ø for high-dimensional & irregularly sampled time series
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• Project onto Fourier basis

• does not require data alignment
• Infer statistics in frequency domain

• equivalent to kernel smoothing
• analysis of bias – variance tradeoff



Temgine
A Scalable Multivariate 
Time Series Analysis Engine
Challenge: 
Ø Estimate second order statistics

Ø E.g. Auto-correlation, auto-regressive models, …
Ø for high-dimensional & irregularly sampled time series

Francois
Billetti

Evan
Sparks

Xin
Wang

Solution: 
• Project onto Fourier basis

• does not require data alignment
• Infer statistics in frequency domain

• equivalent to kernel smoothing
• analysis of bias – variance tradeoff

Define an operator DAG (like TF) 
and then rely on query-optimization 
to define efficient execution.

emgine
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Big Model
Application

Decision

Query

Timescale: ~10 milliseconds
Systems: online and latency optimized
Less Studied …



why is                        challenging?
Need to render low latency (< 10ms) predictions for complex

under heavy load with system failures.

Models Queries

To
p 

K

Features
SELECT * FROM
users JOIN items,
click_logs, pages
WHERE …

Inference
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Application

Decision

Query

Timescale: ~10 milliseconds
Systems: online and latency optimized
Less studied …

Claim:
next big area
of research in 

scalable ML 
systems
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Big
Data

Training

Application

Decision

Learning Inference

Feedback

Timescale: hours to weeks
Issues: No standard solutions …
implicit feedback, sample bias, …



Why is                            challenging?

Ø Exposes system to feedback loops 
Ø Address Explore – Exploit trade-off in real-time

Ø Adverserial feedback
Ø Opportunities for multi-task learning and anomly detection

Ø Need to address temporal variation
Ø Need to model time directly? When do we forget the past?

Feedback



Big
Data

Big Model

Training

Application

Decision

Query

Learning Inference

Feedback



Big
Data

Big Model

Training

Application

Decision

Query

Learning Inference

Feedback

Responsive
(~10ms)
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Learning Inference
Responsive

(~10ms)
Adaptive

(~1 seconds)

Techniques we are studying (or should be …):
Multi-task
Learning

Anytime
Inference

Adaptive
Batching

Approx.
Caching

Model
Switching

Meta-Policy
RL

Load
Shedding

Model
Compression

Online Ensemble
Learning

Inference
on the Edge
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Hybrid Offline + Online Learning

Update the user weights online:
• Simple to train + more robust model
• Address rapidly changing user statistics

Update feature functions offline using batch solvers
• Leverage high-throughput systems (Tensor Flow)
• Exploit slow change in population statistics

f(x; ✓)T wu



Common modeling structure
f(x; ✓)T wu
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Input

Deep
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Methods



Clipper Online Learning for Recommendations
(Simulated News Rec.)
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Examples

Partial Updates: 0.4 ms
Retraining: 7.1 seconds

>4 orders-of-magnitude 
faster adaptation
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Clipper Serves Predictions across ML Frameworks

Clipper

Content
Rec.

Fraud
Detection

Personal
Asst.

Robotic
Control

Machine
Translation

Create VW
Caffe



Clipper Architecture

Clipper

Applications

Predict ObserveRPC/REST Interface

VW
Caffe
Create
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Clipper Architecture

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Model Abstraction Layer
Provide a common interface to models
while bounding latency and 
maximizing throughput.

Model Selection LayerImprove accuracy through ensembles,
online learning and personalization



Clipper Architecture

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Model Selection LayerAnytime Predictions

Model Abstraction Layer
Approximate Caching

Adaptive Batching



A single 
page load 
may generate
many queries

Adaptive Batching to Improve Throughput
Ø Optimal batch depends on:

Ø hardware configuration
Ø model and framework
Ø system load

Clipper Solution:

be as slow as allowed…

Ø Application specifies latency objective
Ø Clipper uses TCP-like tuning algorithm 

to increase latency up to the objective

Ø Why batching helps:

Hardware
Acceleration

Helps amortize
system overhead
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Approximate Caching to Reduce Latency
Clipper Solution: Approximate Caching

apply locality sensitive hash functions

Ø Opportunity for caching

Ø Need for approximation

Popular items may 
be evaluated
frequently

High Dimensional and continuous valued 
queries have low cache hit rate.

Bag-of-Words 
Model

Images

?

?

Cache Hit

Cache Miss

?
Cache Hit

Error
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Adaptive Batching to Improve Throughput
Ø Optimal batch depends on:

Ø hardware configuration
Ø model and framework
Ø system load

Clipper Solution:

be as slow as allowed…

Ø Application specifies latency objective
Ø Clipper uses TCP-like tuning algorithm 

to increase latency up to the objective
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Ca
ffe

Slow Changing
Model

Fast Changing
Linear Model

Clipper

Anytime Predictions

Application

20ms ✓

✓
Solution:
Replace missing prediction 
with an estimator

E[ (x) ]
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Fast Changing
Model

Anytime Predictions

+ +fscikit(x) fCa↵e(x)

✓ ✓

EX [fTF(X)]wscikit wTF wCaffe



Comparison to TensorFlow Serving

Takeaway: Clipper is able to match the average latency of 
TensorFlow Serving while reducing tail latency (2x) and 
improving throughput (2x)



Evaluation of Throughput Under Heavy Load
Ac

cu
ra

cy

Throughput (queries per second)

Takeaway: Clipper is able to gracefully degrade accuracy to 
maintain availability under heavy load.



Improved Prediction Accuracy (ImageNet)
System Model Error Rate #Errors

Caffe VGG 13.05% 6525

Caffe LeNet 11.52% 5760

Caffe ResNet 9.02% 4512

TensorFlow Inception v3 6.18% 3088

sequence of pre-trained models 



Improved Prediction Accuracy (ImageNet)
System Model Error Rate #Errors

Caffe VGG 13.05% 6525

Caffe LeNet 11.52% 5760

Caffe ResNet 9.02% 4512

TensorFlow Inception v3 6.18% 3088

Clipper Ensemble 5.86% 2930

5.2% relative improvement 
in prediction accuracy!



Clipper
Create VWCaffe

Ø to simplifying model serving
Øbound latency and increase throughput
Ø and enable real-time learning and personalization
across machine learning frameworks

Clipper prediction serving system that spans 
multiple ML Frameworks and is designed to
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Real-time, Intelligent, and Secure 

Systems Lab



From batch data to advanced 
analytics

AMP Lab

From live data to real-time decisions
RISE Lab



Goal
Real-time decisions 

decide in ms
on live data

the current state as data arrives 
with strong security

privacy, confidentiality, and integrity
65

decide in ms

privacy, confidentiality, integrity

the current state of the environment



R  SE
Real-time, Intelligent, and Secure 

Systems Lab
Learn More:
• CS294 Course on RISE Topics

https://ucbrise.github.io/cs294-rise-fa16/
• Early RISErs Seminar on Mondays at 9:30 AM



Security: Protecting Models
Data is a core asset & models capture the value in data
Ø Expensive: many engineering & compute hours to develop
Ø Models can reveal private information about the data

How do we protect models from being stolen? 
Ø Prevent them from being copied from devices (DRM? SGX?)
Ø Defend against active learning attacks on decision boundaries

How do we identify when models have been stolen?
Ø Watermarks in decision boundaries?


