Learning Systems

Research at the Intersection of Machine Learning & Data Systems

Joseph E. Gonzalez

Asst. Professor, UC Berkeley jegonzal@cs.berkeley.edu

How can **systems** techniques be used **to address machine learning challenges**?

Learning Systems

How can **systems** techniques be used **to address machine learning challenges**?

Systems are getting increasing complex:

- ➢ Resource Disaggregation → growing diversity of system configurations and freedom to add resources as needed

Performance Aware Runtime Inference System

Katz

Neeraja Yadwadkar Bharath Hariharan

What vm-type should I use to run my experiment?

Performance Aware Runtime Inference System

Hariharan

Neeraja Yadwadkar

Randy Katz

> What vm-type should I use to run my experiment?

Performance Aware Runtime Inference System

Bharath

Hariharan

Neeraja Yadwadkar Randy Katz

What vm-type should I use to run my experiment?

> Answer: workload specific and depends on cost & runtime goals

Paris Performance Aware Runtime Inference System

Neeraja Yadwadkar

Bharath Hariharan Randy Katz

Best vm-type depends on workload as well as cost & runtime goals

Which VM will cost me the least?

m1.small is cheapest?

Paris Performance Aware Runtime Inference System

Neeraja Yadwadkar Bharath Hariharan

Randy Katz

Best vm-type depends on workload as well as cost & runtime goals

Requires accurate runtime prediction.

Performance Aware Runtime Inference System

Bharath

Hariharan

Neeraja Yadwadkar

Randy Katz

- Goal: Predict the runtime of workload w on VM type v
 - Challenge: How do we model workloads and VM types

> Insight:

- Extensive benchmarking to model relationships between VM types
 - ➤ Costly but run once for all workloads
- Lightweight workload "fingerprinting" by on a small set of test VMs
- Generalize workload performance on other VMs
- ➢ Results: Runtime prediction 17% Relative RMSE (56% Baseline)

Hemingway^{*} Modeling Throughput and Convergence for ML Workloads

- \succ What is the best algorithm and level of parallelism for an ML task?
 - Trade-off: Parallelism, Coordination, & Convergence
- > **Research challenge:** Can we model this trade-off explicitly?

Hemingway^{*} Modeling Throughput and Convergence for ML Workloads

- \succ What is the best algorithm and level of parallelism for an ML task?
 - > Trade-off: Parallelism, Coordination, & Convergence
- > **Research challenge:** Can we model this trade-off explicitly?

L(i,p) Loss as a function of iterations *i* and cores *p* I(p) Iterations per second as a function of cores *p*

$$\mathbf{loss}(t,p) = \mathbf{L}\left(t * \mathbf{I}(p), p\right)$$

How long does it take to get to a given loss?
Given a time budget and number of cores which algorithm will give the best result?

Deep Code Completion Neural architectures for reasoning about programs

Goals:

- Smart naming of variables and routines
- Learn coding styles and patterns
- Predict large code fragments
- Char and Symbol LSTMs

Programs are more tree shaped...

Xin Wang

Chang Dawn Liu Song

def fib(x):
 if x < 2:
 return x
 else:
 y = fib(x-1) + fib(x-2)
 return y</pre>

Deep Code Completion Neural architectures for reasoning about programs

Goals:

- Smart naming of variables and routines
- Learn coding styles and patterns
- Predict large code fragments
- Char and Symbol LSTMs

Programs are more tree shaped...

Deep Code Completion Neural architectures for reasoning about programs

Goals:

Smart naming of variables and routines

 y_2

 x_2

 x_1

 y_4

 x_4

- Learn coding styles and patterns
- Predict large code fragments
- Char and Symbol LSTMs

Issue: dependencies flow in both directions

return y

Kai Sheng Tai, Richard Socher, Christopher D. Manning. "Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks." (ACL 2015)

 x_5

Deep Code Completion

Neural architectures for reasoning about computer programs

Goals:

- Smart naming of variables and routines
- Learn coding styles and patterns
- Predict large code fragments
- Current studying Char-LSTM and Tree-LSTM on benchmark C++ code and JavaScript code.

Plan to extend Tree-LSTM with downward information flow

Fun Code Sample Generated by Char-LSTM

Code Prefix

```
vector<string> words;
   vector<set<int> > paths:
   unordered_map<string, int> dict_map;
   dict.insert(start);
   dict.insert(end);
   int i = 0;
   for (unordered_set<string>::iterator iter = dict.begin(); iter != dict.end(); iter ++ , i++) {
     words.push_back(* iter);
     dict_map.insert(pair<string, int>(* iter, i));
     paths.push_back(set<int>());
   vector<vector<int> > map;
   vector<int> distance:
   deque<int> queue;
   this->prepare_map(dict, dict_map, words, map, distance);
   int start_index = dict_map.find(start)->second;
   int end_index = dict_map.find(end)->second;
   distance[start_index] = 1;
   queue.push_back(start_index);
   while (!queue.empty())
        int n = queue.front();
        for (int i = 0; i < map[n].size(); ++i) {
          if ((distance[n] + 1) < distance[map[n][i]]) {
```

Generated Code Sample

```
queue[neigh] = 1 , path.push_back(i + 1) , group_dict[now] = opblue;
        permutation.push_back(idxChack[N - start + 1]);
        continue;
        } else {
            minpi_crange = true;
            path.pop_back();
        }
    }
    result.push_back(RowNum(next, vase - pres[start][2]));
}
return result;
```

For now, the neural network can learn some code patterns like matching the parenthesis, if-else block, etc but the variable name issue still hasn't been solved.

*this is trained on the leetcode OJ code submissions from Github.

Learning Systems

How can **systems** techniques be used **to address machine learning challenges**?

Learning Systems

How can **systems** techniques be used **to address machine learning challenges**?

Systems for Machine Learning

Timescale: minutes to days **Systems:** offline and batch optimized *Heavily studied ... primary focus of the* **ML research**

Please make a Logo!

Please make a Logo!

Temgine A Scalable Multivariate Time Series Analysis Engine

Challenge:

- Estimate second order statistics
 - ➢ E.g. Auto-correlation, auto-regressive models, ...
- > for high-dimensional & irregularly sampled time series

Evan

Sparks

Francois Billetti

Xin Wang

Temgine A Scalable Multivariate Time Series Analysis Engine

Challenge:

- Estimate second order statistics
 - ➢ E.g. Auto-correlation, auto-regressive models, ...
- > for high-dimensional & irregularly sampled time series

Solution:

- Project onto Fourier basis
 - does not require data alignment
- Infer statistics in frequency domain
 - equivalent to kernel smoothing
 - analysis of bias variance tradeoff

Evan

Sparks

Xin

Wang

Francois Billetti

Temgine A Scalable Multivariate Time Series Analysis Engine

Challenge:

- Estimate second order statistics
 - ➢ E.g. Auto-correlation, auto-regressive models, ...
- for high-dimensional & irregularly sampled time series

Solution:

- Project onto Fourier basis
 - does not require data alignment
- Infer statistics in frequency domain
 - equivalent to kernel smoothing
 - analysis of bias variance tradeoff

Evan

Sparks

Francois Billetti

Xin Wang

Learning

Timescale: ~10 milliseconds Systems: *online* and *latency* optimized Less Studied ...

why is **Inference** challenging?

Need to render **low latency** (< 10ms) predictions for **complex**

Features

SELECT * FROM users JOIN items, click_logs, pages WHERE ...

under heavy load with system failures.

Application

Timescale: ~10 milliseconds **Systems:** *online* and *latency* optimized *Less studied ...*

Why is Feedback challenging?

- Exposes system to feedback loops
 - Address Explore Exploit trade-off in real-time
- Adverserial feedback
 - Opportunities for multi-task learning and anomly detection
- Need to address temporal variation
 - Need to model time directly? When do we forget the past?

Techniques we are studying (or **should be** ...):

Multi-task
LearningAdaptive
BatchingApprox.
CachingAnytime
InferenceModel
SwitchingMeta-Policy
RLOnline Ensemble
LearningLoad
SheddingModel
CompressionInference
on the Edge

Prediction Serving

theano Dato Caffe learn Keystone CreatensorFlow mxnet @KALD

Daniel Crankshaw

Xin Wang

Giulio Zhou

Michael Franklin

lon Stoica

Hybrid Offline + Online Learning

Update feature functions offline using batch solvers

- Leverage high-throughput systems (Tensor Flow)
- Exploit slow change in population statistics

 $f(x;\theta)^{T} W_{U}$

Update the user weights **online**:

- Simple to train + more robust model
- Address rapidly changing user statistics

Common modeling structure

 $f(x;\theta)^{T} w_{u}$

Matrix Factorization

Clipper Online Learning for Recommendations (Simulated News Rec.)

Partial Updates: 0.4 ms Retraining: 7.1 seconds

>4 orders-of-magnitude *faster adaptation*

Clipper Serves Predictions across ML Frameworks

mxnet

Adaptive Batching to Improve Throughput

> Why batching helps:

A single page load may generate many queries \succ Optimal batch depends on:

- hardware configuration
- model and framework
- system load

Clipper Solution:

be as **slow** as **allowed**...

- Application specifies latency objective
- Clipper uses TCP-like tuning algorithm to increase latency up to the objective

Hardware Acceleration

Helps amortize system overhead

Approximate Caching to Reduce Latency

Opportunity for caching

Popular items may be evaluated frequently

Need for approximation

High Dimensional and continuous valued queries have low cache hit rate.

Clipper Solution: *Approximate Caching*

apply locality sensitive hash functions

Adaptive Batching to Improve Throughput

> Why batching helps:

A single page load may generate many queries \succ Optimal batch depends on:

- hardware configuration
- model and framework
- system load

Clipper Solution:

be as **slow** as **allowed**...

- Application specifies latency objective
- Clipper uses TCP-like tuning algorithm to increase latency up to the objective

Hardware Acceleration

Helps amortize system overhead

Application

Replace missing prediction $\Rightarrow E[f(x)]$ with an estimator

Comparison to TensorFlow Serving

Takeaway: Clipper is able to **match the average latency** of TensorFlow Serving while reducing **tail latency (2x)** and **improving throughput (2x)**

Evaluation of Throughput Under Heavy Load

Takeaway: Clipper is able to **gracefully degrade accuracy** to maintain availability under heavy load.

Improved Prediction Accuracy (ImageNet)

System	Model	Error Rate	#Errors	
Caffe	VGG	13.05%	6525	
Caffe	LeNet	11.52%	5760	
Caffe	ResNet	9.02%	4512	
TensorFlow	Inception v3	6.18%	3088	

sequence of pre-trained models

Improved Prediction Accuracy (ImageNet)

System					rrors
Caffe	5.2% relative improvement				6525
Caffe	in prediction accuracy!			5760	
Caffe		nesnei	J.UZ 70	_	4512
TensorF	low	Inception v3	6.18%		3088
Clipper		Ensemble	5.86%		2930

- Clipper prediction serving system that spans multiple ML Frameworks and is designed to
 - > to **simplifying** model serving
 - bound latency and increase throughput
 - and enable real-time learning and personalization across machine learning frameworks

Learning Systems **Joseph E. Gonzalez** 773 Soda Hall jegonzal@cs.berkeley.edu

Graduate students collaborators on this work:

Francois Billetti

Daniel Crankshaw

Ankur Dave

Xinghao Pan

Xin

Wang

Yadwadkar

Wenting Zheng

Real-time, Intelligent, and Secure Systems Lab

Joseph E. Gonzalez jegonzal@cs.berkeley.edu

Joseph Hellerstein hellerstein@cs.berkeley.edu

Raluca Ada Popa

Ion Stoica

raluca.popa@cs.berkeley.edu istoica@cs.berkeley.edu

RISE Lab

From live data to real-time decisions

From batch data to advanced analytics

Real-time decisions

decide in ms

on live data

the current state of the environment

with strong security privacy, confidentiality, integrity

Real-time, Intelligent, and Secure Systems Lab

Learn More:

CS294 Course on RISE Topics

https://ucbrise.github.io/cs294-rise-fa16/

• Early RISErs **Seminar** on **Mondays** at **9:30** <u>AM</u>

Security: Protecting Models

Data is a core **asset** & models capture the **value** in data

- > **Expensive**: many engineering & compute hours to develop
- > Models can **reveal private information** about the data

How do we **protect models** from being stolen?

- Prevent them from being copied from devices (DRM? SGX?)
- > Defend against **active learning** attacks on decision boundaries

How do we identify when models have been stolen?

> Watermarks in decision boundaries?