Prediction Serving

what happens after learning?

Joseph E. Gonzalez

Asst. Professor, UC Berkeley

jegonzal@cs.berkeley.edu

Co-founder, Dato Inc.

joseph@dato.com

Outline

Daniel Crankshaw, Xin Wang Michael Franklin, & Ion Stoica

Learning

Timescale: minutes to days **Systems:** offline and batch optimized *Heavily studied ... major focus of the* **AMPLab**

Timescale: ~10 milliseconds **Systems:** *online* and *latency* optimized *Less studied ...*

JELOX Model Serving System [CIDR'15]

Daniel Crankshaw, Peter Bailis, Haoyuan Li, Zhao Zhang, Joseph Gonzalez, Michael J. Franklin, Ali Ghodsi, and Michael I. Jordan

Key Insight:

Decompose models into fast and slow changing components

Hybrid Offline + Online Learning

Update feature functions offline using batch solvers

- Leverage high-throughput systems (Tensor Flow)
- Exploit slow change in population statistics

 $f(x;\theta)^{T} W_{U}$

Update the user weights online:

- Simple to train + more robust model
- Address rapidly changing user statistics

Common modeling structure

 $f(x;\theta)^{T} w_{u}$

Matrix Factorization

Velox Online Learning for Recommendations (20-News Groups)

Online Updates: 0.4 ms **Retraining:** 7.1 seconds

>4 orders-of-magnitude faster adaptation

given sufficient offline training data

Velox Online Learning for Recommendations (20-News Groups)

Partial Updates: 0.4 ms Retraining: 7.1 seconds

>4 orders-of-magnitude faster adaptation

SVELOX: the Missing Piece of BDAS

Learning

-amplab// Berkeley Data A nalytics
S tack

SVELOX: the Missing Piece of BDAS

SVELOX: the Missing Piece of BDAS

Fraud Detection

Content
Rec.

Keystone ML	
MLLib	Velox
Spark	Single JVM Instance

Solution Just Arch?

Detection

Fraud

Content Rec.

NETFLIX

Personal Asst.

Robotic

Control

Machine Translation

Generalize Velox?

Clipper A Low-Latency Online Prediction Serving System

Daniel Crankshaw

Xin Wang

Michael Franklin

Joseph E. Gonzalez

Ion Stoica

Clipper Generalizes Velox Across ML Frameworks

Fraud Machine Personal Robotic Content Detection Control Translation Asst. Rec. NETFLIX Ich fliege n Clipper Dato learn theano Create

TensorFlow

Caffe

leann

ich fliege nacht Tenga a

Clipper

Key Insight: The challenges of prediction serving can be addressed between end-user applications and machine learning frameworks

As a result, Clipper is able to:

hide complexity

 \blacktriangleright by providing a *common prediction interface*

bound latency and maximize throughput

- through approximate caching and adaptive batching
- enable robust online learning and personalization
 - through generalized split-model correction policies

without modifying machine learning frameworks or end-user applications

Clipper Design Goals

Low and **bounded** latency predictions

➢ interactive applications need reliable latency objectives

Up-to-date and personalized predictions **across models** and **frameworks**

> generalize the split model decomposition

Optimize **throughput** for performance under heavy load

single query can trigger many predictions

Simplify deployment

serve models using the original code and systems

Provides a unified generic prediction API across frameworks

- ➤ Reduce Latency → Approximate Caching
- ➤ Increase Throughput → Adaptive Batching
- ➤ Simplify Deployment → RPC + Model Wrapper

Common Interface → Simplifies Deployment:

- Evaluate models using original code & systems
- > Models run in separate processes
 - Resource isolation

Common Interface → Simplifies Deployment:

- Evaluate models using original code & systems
- > Models run in separate processes
 - Resource isolation
 - Scale-out

Problem: frameworks optimized for batch processing not latency

Adaptive Batching to Improve Throughput

> Why batching helps:

A single page load may generate many queries Optimal batch depends on:

- hardware configuration
- model and framework
- system load

Clipper Solution:

be as **slow** as **allowed**...

- Inc. batch size until the latency objective is exceeded (Additive Increase)
- If latency exceeds SLO cut batch size by a fraction (Multiplicative Decrease)

Hardware Acceleration

GRPG

Helps amortize

system overhead

Comparison to TensorFlow Serving

Takeaway: Clipper is able to **match the average latency** of TensorFlow Serving while reducing **tail latency (2x)** and **improving throughput (2x)**

Approximate Caching to Reduce Latency

Opportunity for caching

Popular items may be evaluated frequently

Need for approximation

High Dimensional and continuous valued queries have low cache hit rate.

Clipper Solution: *Approximate Caching*

apply locality sensitive hash functions

Clipper Architecture

Goal:

Maximize accuracy through ensembles, online learning, and personalization

Generalize the **split-model** insight from Velox to achieve:

- robust predictions by combining multiple models & frameworks
- online learning and personalization by correcting and personalizing predictions in response to feedback

Correction Policy

Improves prediction **accuaray** by:

- Incorporating real-time feedback
- > Managing **personalization**
- Combine models & frameworks
 enables frameworks to compete

Improved Prediction Accuracy (ImageNet)

System	Model	Error Rate	#Errors
Caffe	VGG	13.05%	6525
Caffe	LeNet	11.52%	5760
Caffe	ResNet	9.02%	4512
TensorFlow	Inception v3	6.18%	3088

sequence of pre-trained state-of-the-art models

Improved Prediction Accuracy

System				rrors
Caffe	affe 5.2% relative improvement			
Caffe	in prediction accuracy!			5760
Caffe		nesnei	J.UZ 70	4512
TensorF	low	Inception v3	6.18%	3088
Clipper		Ensemble	5.86%	2930

Cost of Ensembles

Increased Load

- > Solutions:
 - Caching and Batching
 - Load-shedding correction policy can prioritize frameworks

Stragglers

- > e.g., framework fails to meet SLO
- > Solution: Anytime predictions
 - Correction policy must render predictions with missing inputs
 - e.g., built-in correction policies substitute expected value

Evaluation of Throughput Under Heavy Load

Takeaway: Clipper is able to **gracefully degrade accuracy** to maintain availability under heavy load.

Conclusion

Clipper sits between applications and ML frameworks to

> to simplifying deployment

bound latency and increase throughput

> and enable real-time learning and personalization across machine learning frameworks

Ongoing & Future Research Directions

- Serving and updating RL models
- Bandit techniques in correction policies
- Splitting inference across the cloud and the client to reduce latency and bandwidth requirements
- Secure model evaluation on the client (model DRM)

Coarsening + Anytime Predictions

