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Learning

Big Model

Timescale: minutes to days
Systems: offline and batch optimized
Heavily studied ... major focus of the AMPLab
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Inference

m

Big Model
Application

Timescale: ~10 milliseconds
Systems: online and latency optimized
Less studied ...



Learning Inference

Application
Feedback PP




Learning Inference

Timescale: hours to weeks
Systems: combination of systems
Less studied ... Application

Feedback




Learning Inference
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‘Sa VELOX Model Serving System [CIDR™15]
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Adaptive Responsive

(~1 seconds)

(~10ms)

Key Insight:
Decompose models into fast and slow changing components
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Hybrid Offine + Online Learning

Update feature functions offline ijsing batch solvers
» Leverage high-throughput systems (Tensor Flow)
» Exploit slow change in population statistics

Wy

Update the user weights onl;ine:
» Simple to train + more robust model
» Address rapidly changing user statistics



Common modeling structure

Matrix Deep Ensemble
Factorization Learning Methods
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Velox Online Learning for Recommendations
(20-News Groups)
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>4 orders-of-magnitude
faster adaptation
given sufficient offline
training data



Velox Online Learning for Recommendations
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., VELOX as a Middle Layer Arch?
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Clipper Generalizes Velox Across ML Frameworks

Fraud Content Personal Robotic Machine
Detection Rec. Asst. Control Translation

sl NETFLIX

theano Datoy& Can T
Create f dmic =

KGYStOﬂ@ML Caffe tensorriow mxnet @LDI




Clipper

Key Insight:
The challenges of prediction serving can be addressed between
end-user applications and machine learning frameworks

As a result, Clipper is able to:

» hide complexity
» by providing a common prediction interface

» bound latency and maximize throughput
» through approximate caching and adaptive batching

» enable robust online learning and personalization
» through generalized split-model correction policies

without modifying machine learning frameworks or end-user applications



Clipper Design Goals

Low and bounded latency predictions
» Interactive applications need reliable latency objectives

Up-to-date and personalized predictions across models and

frameworks
» generalize the split model decomposition

Optimize throughput for performance under heavy load
» single query can trigger many predictions

Simplify deployment
» serve models using the original code and systems



Clipper Architecture
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Clipper Architecture
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Predict §

Clipper Architecture
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Predict I RPC/REST Interface I Observe

Improve accuracy through ensembles,

online learning and personalization Correctlon Layer

Provide a common interface to models

while bounding latency and Model Abstraction Layer

maximizing throughput.

Model Wrapper (MW)
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Clipper Architecture
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Model Abstraction Layer

RPCI RPCI RPCI RPCI
Model Wrapper (MW)

KeystoneML Caffe ~‘_~

Provides a unified generic prediction APl across frameworks
» Reduce Latency = Approximate Caching

» Increase Throughput - Adaptive Batching

» Simplify Deployment > RPC + Model Wrapper



Approximate Caching
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RPC]
Model Wrapper (MW)

KeystoneML
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Common Interface = Simplifies Deployment:
» Evaluate models using original code & systems
» Models run in separate processes

> Resource isolation
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Common Interface = Simplifies Deployment:
» Evaluate models using original code & systems

» Models run in separate processes
» Resource isolation
» Scale-out

Problem: frameworks optimized for batch processing not latency



Adaptive Batching to Improve Throughput

» Why batching helps: » Optimal batch depends on:
» hardware configuration
A single » model and framework

page load » system load

may generate
many queries

Clipper Solution:

Hardware be as slow as allowed. ..

Acceleration

» Inc. batch size until the latency objective
IS exceeded (Additive Increase)

;GRPC Helps amortize > If latency exceeds SLO cut batch size
yy system overhead

by a fraction (Multiplicative Decrease)




Tensor Flow Conv. Net (G

PU)
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Comparison to TensorFlow Serving
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Takeaway: Clipper is able to match the average latency of
TensorFlow Serving while reducing tail latency (2x) and
improving throughput (2x)



Approximate Caching to Reduce Latency

» Opportunity for caching

Lm Cards
i1 Against

e Popular items may
N De evaluated
frequently
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High Dimensional and continuous valued
queries have low cache hit rate.

Clipper Solution: Approximate Caching

apply locality sensitive hash functions
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Correction Policy Correction Layer

Goal:

Maximize accuracy through ensembles, online learning,
and personalization

Generalize the split-model insight from Velox to achieve:

» robust predictions by combining multiple models &
frameworks

» online learning and personalization by correcting and
personalizing predictions in response to feedback



Learning Inference

Velox

Slow Changing ' Fast Changing
Model @ User Model

-

Feedback

-

o, Application
2back




Learning Inference
Slow Changing |
Model

Clipper

Application

Feedback




Correction Policy

Slow Changing
Improves prediction accuaray by: Model Cll rper
» |Incorporating real-time feedback @
| . @
» Managing personalization -
> Combine models & frameworks C @ @ |
» enables frameworks to compete 0 -
5 H0
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Improved Prediction Accuracy (ImageNet)

Smen__ose___erorre_sero_

Caffe 13.05% 6525
Caffe LeNet 11.52% 5760
Caffe ResNet 9.02% 4512
TensorFlow Inception v3 6.18% 3088

sequence of pre-trained state-of-the-art models



Improved Prediction Accuracy

Caffe 5.2% relative improvement
Caffe in prediction accuracy!

Caffe

TensorFlow Inception v3 6.18%

Clipper Ensemble 5.86%

5760
4512

3088

2930



Cost of Ensembles

Increased Load

» Solutions:
» Caching and Batching

» Load-shedding correction policy
can prioritize frameworks

Stragglers
> e.g., framework fails to meet SLO

» Solution: Anytime predictions
» Correction policy must render
predictions with missing inputs
»> e.g., built-in correction policies
substitute expected value

Slow Changing
Model




Evaluation of Throughput Under Heavy Load
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Takeaway: Clipper is able to gracefully degrade accuracy to
maintain availability under heavy load.



Conclusion
Clipper sits between applications and ML frameworks to

Clipper

» to simplifying deployment

» bound latency and increase throughput

» and enable real-time learning and personalization
across machine learning frameworks
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Ongoing & Future Research Directions

» Serving and updating RL models
» Bandit techniques in correction policies

» Splitting inference across the cloud and the client to reduce
latency and bandwidth requirements

» Secure model evaluation on the client (model DRM)



Coarsening + Anytime Predictions
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