
Joseph E. Gonzalez
Asst. Professor, UC Berkeley
jegonzal@cs.berkeley.edu
Co-founder, Dato Inc.
joseph@dato.com

what happens after learning?
Prediction Serving

Outline

Daniel Crankshaw, Xin Wang
Michael Franklin, & Ion Stoica

VELOX
Clipper
Create

VWCaffe

Big
Data

Big Model

Training

Learning

Timescale: minutes to days
Systems: offline and batch optimized
Heavily studied ... major focus of the AMPLab

Big
Data

Big Model

Training

Application

Decision

Query

?

Learning Inference

Big
Data

Training

Learning
Inference

Big Model
Application

Decision

Query

Timescale: ~10 milliseconds
Systems: online and latency optimized
Less studied …

Big
Data

Big Model

Training

Application

Decision

Query

Learning Inference

Feedback

Big
Data

Training

Application

Decision

Learning Inference

Feedback

Timescale: hours to weeks
Systems: combination of systems
Less studied …

Big
Data

Big Model

Training

Application

Decision

Query

Learning Inference

Feedback

Responsive
(~10ms)

Adaptive
(~1 seconds)

Responsive
(~10ms)

Adaptive
(~1 seconds)

VELOX Model Serving System [CIDR’15]

Daniel Crankshaw, Peter Bailis, Haoyuan Li, Zhao Zhang,
Joseph Gonzalez, Michael J. Franklin, Ali Ghodsi, and Michael I. Jordan

Key Insight:
Decompose models into fast and slow changing components

Big
Data

Training

Application

Decision

Query

Learning Inference

Feedback

Big
Data

Training

Application

Decision

Query

Learning Inference

Feedback
Slow

Slow Changing
Model

Fast Changing
Model

Hybrid Offline + Online Learning

Update the user weights online:
• Simple to train + more robust model
• Address rapidly changing user statistics

Update feature functions offline using batch solvers
• Leverage high-throughput systems (Tensor Flow)
• Exploit slow change in population statistics

f(x; ✓)T wu

Common modeling structure
f(x; ✓)T wu

Items

U
se

rs

Matrix
Factorization

Input

Deep
Learning

Ensemble
Methods

Big
Data

Training

Application

Decision

Query

Learning Inference

Feedback
Slow

Slow Changing
Model

Fast Changing
Model

Big
Data

Training

Application

Decision

Query

Learning Inference

Feedback
Slow

Slow Changing
Model

Fast Changing
Model per user

Velox Online Learning for Recommendations
(20-News Groups)

0
0.1
0.2
0.3
0.4
0.5
0.6

0 10 20 30

Er
ro

r

Examples

Online Updates: 0.4 ms
Retraining: 7.1 seconds

>4 orders-of-magnitude
faster adaptation
given sufficient offline
training data

Velox Online Learning for Recommendations
(20-News Groups)

0
0.1
0.2
0.3
0.4
0.5
0.6

0 10 20 30

Er
ro

r

Examples

Partial Updates: 0.4 ms
Retraining: 7.1 seconds

>4 orders-of-magnitude
faster adaptation

Big
Data

Training

Application

Decision

Query

Learning Inference

Feedback
Slow

Slow Changing
Model

Fast Changing
Model per user

Big
Data Training

Application

Decision

Query

Learning Inference

Feedback
Slow

Slow Changing
Model

Fast Changing
Model per user

Velox

B
D
A
STachyon

Mesos

Spark

HDFS, S3, …

Spark
Streaming

Spark
SQL

BlinkDB

GraphX

Graph
Frames

MLLib

Keystone
ML

Learning

e rke ley
a ta
na ly t ics
tack

VELOX: the Missing Piece of BDAS

B
D
A
S

erke ley
a ta
na ly t ics
tackTachyon

Mesos

Spark

HDFS, S3, …

Spark
Streaming

Spark
SQL

BlinkDB

GraphX

Graph
Frames

MLLib

Keystone
ML

Learning
Management
and Serving

VELOX: the Missing Piece of BDAS

Velox

B
D
A
S

erke ley
a ta
na ly t ics
tack

Mesos

HDFS, S3, …

Spark
Streaming

Spark
SQL

BlinkDB

GraphX

Graph
Frames

Learning
Management
and Serving

VELOX: the Missing Piece of BDAS

Velox

Tachyon

Spark

MLLib

Keystone
ML

VELOX Architecture

Spark

MLLib

Single JVM Instance

Velox
Keystone ML

Content
Rec.

Fraud
Detection

VELOX Architecture

Spark

MLLib

Single JVM Instance

Velox
Keystone ML

Content
Rec.

Fraud
Detection

Personal
Asst.

Robotic
Control

Machine
Translation

Create

VW

Caffe

VELOX as a Middle Layer Arch?

SparkMLLib

Velox

Keystone ML

Content
Rec.

Fraud
Detection

Personal
Asst.

Robotic
Control

Machine
Translation

Create VW
Caffe

Generalize ?

Daniel Crankshaw
Xin Wang
Michael Franklin
Joseph E. Gonzalez
Ion Stoica

A Low-Latency Online Prediction
Serving System

Clipper

Clipper Generalizes Velox Across ML Frameworks

Clipper

Content
Rec.

Fraud
Detection

Personal
Asst.

Robotic
Control

Machine
Translation

Create VW
Caffe

Clipper
Create VWCaffeKey Insight:

The challenges of prediction serving can be addressed between
end-user applications and machine learning frameworks

As a result, Clipper is able to:
Ø hide complexity

Ø by providing a common prediction interface
Ø bound latency and maximize throughput

Ø through approximate caching and adaptive batching
Ø enable robust online learning and personalization

Ø through generalized split-model correction policies
without modifying machine learning frameworks or end-user applications

Clipper Design Goals
Low and bounded latency predictions

Ø interactive applications need reliable latency objectives

Up-to-date and personalized predictions across models and
frameworks

Ø generalize the split model decomposition

Optimize throughput for performance under heavy load
Ø single query can trigger many predictions

Simplify deployment
Ø serve models using the original code and systems

Clipper Architecture

Clipper

Content
Rec.

Fraud
Detection

Personal
Asst.

Robotic
Control

Machine
Translation

VW
Caffe
Create

Clipper Architecture

Clipper

Applications

Predict ObserveRPC/REST Interface

VW
Caffe
Create

Clipper Architecture

Clipper

Caffe

Applications

ust

Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Clipper Architecture

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Model Abstraction Layer
Provide a common interface to models
while bounding latency and
maximizing throughput.

Correction LayerImprove accuracy through ensembles,
online learning and personalization

Clipper Architecture

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Correction LayerCorrection Policy

Model Abstraction Layer
Approximate Caching

Adaptive Batching

Caffe

Correction LayerCorrection Policy

Provides a unified generic prediction API across frameworks
Ø Reduce Latency à Approximate Caching
Ø Increase Throughput à Adaptive Batching
Ø Simplify Deployment à RPC + Model Wrapper

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Model Abstraction Layer
Approximate Caching

Adaptive Batching
Approximate Caching

Adaptive Batching

Model Wrapper (MW) MW MW MW

Caffe

Correction LayerCorrection Policy

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Model Abstraction Layer
Approximate Caching

Adaptive Batching

Provide a common interface to models while

Correction LayerCorrection Policy

Model Wrapper (MW)
RPC

Caffe
MW

RPC
MW

RPC
MW

RPC

Model Abstraction Layer
Approximate Caching

Adaptive Batching

Common Interface à Simplifies Deployment:
Ø Evaluate models using original code & systems
Ø Models run in separate processes

Ø Resource isolation

Correction LayerCorrection Policy

Model Abstraction Layer
Approximate Caching

Adaptive Batching

Model Wrapper (MW)
RPC

Caffe
MW

RPC
MW

RPC
MW

RPC
MW

RPC
MW

RPC

Common Interface à Simplifies Deployment:
Ø Evaluate models using original code & systems
Ø Models run in separate processes

Ø Resource isolation
Ø Scale-out

Problem: frameworks optimized for batch processing not latency

A single
page load
may generate
many queries

Adaptive Batching to Improve Throughput
Ø Optimal batch depends on:

Ø hardware configuration
Ø model and framework
Ø system load

Clipper Solution:

be as slow as allowed…

Ø Inc. batch size until the latency objective
is exceeded (Additive Increase)

Ø If latency exceeds SLO cut batch size
by a fraction (Multiplicative Decrease)

Ø Why batching helps:

Hardware
Acceleration

Helps amortize
system overhead

Throughput
(Q

ueries Per Second)
La

te
nc

y
(m

s)

Batch Sizes (Queries)

Tensor Flow Conv. Net (GPU)

Latency
Deadline

Optimal Batch Size

Comparison to TensorFlow Serving

Takeaway: Clipper is able to match the average latency of
TensorFlow Serving while reducing tail latency (2x) and
improving throughput (2x)

Approximate Caching to Reduce Latency
Clipper Solution: Approximate Caching

apply locality sensitive hash functions

Ø Opportunity for caching

Ø Need for approximation

Popular items may
be evaluated
frequently

High Dimensional and continuous valued
queries have low cache hit rate.

Bag-of-Words
Model

Images

?

?

Cache Hit

Cache Miss

?
Cache Hit

Error

Clipper Architecture

Clipper

Caffe

Applications
Predict ObserveRPC/REST Interface

Model Wrapper (MW) MW MW MW
RPC RPC RPC RPC

Correction LayerCorrection Policy

Model Abstraction Layer
Approximate Caching

Adaptive Batching

Goal:
Maximize accuracy through ensembles, online learning,
and personalization

Generalize the split-model insight from Velox to achieve:
Ø robust predictions by combining multiple models &

frameworks
Ø online learning and personalization by correcting and

personalizing predictions in response to feedback

Clipper
Correction LayerCorrection Policy

Big
Data

Application

Learning Inference

Feedback
Slow

Slow Changing
Model

Fast Changing
User Model

Velox

Ca
ffe

Big
Data

Application

Learning Inference

Feedback
Slow

Slow Changing
Model

Fast Changing
User Model

Clipper

Ca
ffe

Slow Changing
Model

Fast Changing
User Model

Clipper

Correction Policy
Improves prediction accuaray by:
Ø Incorporating real-time feedback

Ø Managing personalization

Ø Combine models & frameworks
Ø enables frameworks to compete

Improved Prediction Accuracy (ImageNet)
System Model Error Rate #Errors

Caffe VGG 13.05% 6525

Caffe LeNet 11.52% 5760

Caffe ResNet 9.02% 4512

TensorFlow Inception v3 6.18% 3088

sequence of pre-trained state-of-the-art models

Improved Prediction Accuracy
System Model Error Rate #Errors

Caffe VGG 13.05% 6525

Caffe LeNet 11.52% 5760

Caffe ResNet 9.02% 4512

TensorFlow Inception v3 6.18% 3088

Clipper Ensemble 5.86% 2930

5.2% relative improvement
in prediction accuracy!

Increased Load
Ø Solutions:

Ø Caching and Batching
Ø Load-shedding correction policy

can prioritize frameworks

Stragglers
Ø e.g., framework fails to meet SLO

Ø Solution: Anytime predictions
Ø Correction policy must render

predictions with missing inputs
Ø e.g., built-in correction policies

substitute expected value
Ca
ffe

Slow Changing
Model

Fast Changing
User Model

Clipper

Cost of Ensembles

?

Evaluation of Throughput Under Heavy Load
Ac

cu
ra

cy

Throughput (queries per second)

Takeaway: Clipper is able to gracefully degrade accuracy to
maintain availability under heavy load.

Conclusion

Clipper
Create VWCaffe

Clipper sits between applications and ML frameworks to

Ø to simplifying deployment
Øbound latency and increase throughput
Ø and enable real-time learning and personalization
across machine learning frameworks

Big
Data

Model

Training

Application

Decision

Query

Feedback

VELOX
Clipper
Create

VWCaffe

Ongoing & Future Research Directions
Ø Serving and updating RL models

Ø Bandit techniques in correction policies

Ø Splitting inference across the cloud and the client to reduce
latency and bandwidth requirements

Ø Secure model evaluation on the client (model DRM)

Figure 10: Cash miss rate against accuracy

This work builds on related work in the machine learning and
database systems communities. Most closely related, is the work of
Agarwal et al. [1] and Crankshaw et al. [9]. The work by Agarwal
et al. describes the design of LASER, the general purpose machine
learning framework developed to train and serve models at LinkedIn.
Likewise the work by Crankshaw et al. describes an early prototype
of the Velox model serving framework developed as part of the
Berkeley Data Analytics stacks.

To support personalized modeling, both introduced a multitask
formulation that leverages statistical sharing across users. The work
by Agarwal et al. focuses on a restricted class of regularized bi-
variate linear models, while the work by Crankshaw et al. a restricted
version of the model formulation in Eq. (3) Inspired by these earlier
systems, we introduced a general framework that is capable of
expressing both the LASER and Velox model formulations as well
as a broader class of bandit algorithms needed to support competing
feature functions.

To address latency both the LASER and Velox systems focused
primarily on caching. The work by Agarwal et al. proposed a richer
feature cache capable of caching at many stages within a feature
function as well as a similar anytime feature evaluation strategy to
the one adopted here. In contrast this work, introduces cache equiv-
alence classes and feature coarsening to tradeoff a small reduction
in accuracy for a substantial improvement in cache efficiency.

Each of these works differ considerably in how they approach
learning. The work by Agarwal et al. focuses on batch distributed
offline retraining of both task specific and shared weights using
ADMM. More closely related is the work by Crankshaw et al.
which similarly suggests using a hybrid online and offline train-
ing mechanism but does not provide an algorithm. In this work
we explore hybrid online and offline learning with both supervised
and unsuperivsed feature training. In the supervised setting we
leverage additional side information (e.g., , the topic of the news
article) to construct predictive features. In the unsuperivised setting
we describe a simple alternating minimization heuristic capable of
automatic personalization of generic black-box learning algorithms.

In the context of more general database systems this work builds
on the the work of MauveDB [11] and LongView [2] which first
proposed model serving and management within data-management
systems. MauveDB first cast the the inference task as views on a
model explored various materialization and caching strategies in-
cluding materialization and caching of intermediate state analogous
to our feature caching. LongView explored a similar setting but
introduced a query optimizer capable of trading off accuracy and
computationally efficiency.

In the machine learning community perhaps the most closely

related work is in the context of multi-task learning. Yu et al. [29]
introduced an alternating formulation of the multi-task learning
for scalable inference based on a bilinear model similar to that
of [1]. Stern et al. [27] introduced a scalable Bayesian framework
for multitask learning that was later extended by Graepel et al. [16]
to manage ad serving for Bing search. Similar to our work, this
work also addressed evolving user interests. However in all three
cases the system design was largely focused on the offline setting.

7. CONCLUSION
In this work we introduce the Centipede model serving system

capable of both serving and training a wide range of machine learn-
ing models at interactive latencies. We identified several of the key
challenges and opportunities around low latency serving, continu-
ous online learning, collaborative development, and fine-grained
personalization. Centipede addresses these challenges by leveraging
advances in ensembles and multitask learning in conjunction with
techniques in any-time algorithms to dynamically trade-off latency
and accuracy.

We introduced a simple framework which decomposes models
into two basic operators: feature and merge. By exploiting the
structure of these operators we were able to improve cache effi-
ciency and automatically tradeoff accuracy and latency. To address
collaborative model development, we recast competing models as
meta-features and leveraged the online learning capabilities of the
merge operator to adaptively seek the best model as the data evolves.
By framing personalized machine learning in the context of multi-
task learning with shared feature functions we are able to address
the trade-off between the power of data aggregation to support rich
models and the desire to capture rapidly evolving dynamics at the
level of individuals. Finally, by exploiting the decomposition of
online learning for merge operators and offline learning for feature
operators we were able to achieve efficient model retraining.

To evaluate Centipede, we introduce a new model serving bench-
mark that builds on widely adopted benchmark datasets in machine
learning. We characterize the accuracy and latency tradeoffs of Cen-
tipede using the benchmark and demonstrated substantial reductions
in latency through the proposed caching strategies and substantial
gains in accuracy through the new model formulation.

N
o Coarsening

Coarsening + Anytime Predictions

O
ve

rly
 C

oa
rs

en
ed More Features

Approx. Expectation

Better

Best

Coarser Hash
fi(x; ✓) ⇡
E [fi(x; ✓)]

fi(x; ✓) ⇡
fi(z; ✓)

