From *Graphs* to *Tables*: The Design of Scalable Systems for *Graph Analytics*

Joseph E. Gonzalez
Post-doc, UC Berkeley AMPLab
jegonzal@eecs.berkeley.edu
Co-founder, GraphLab Inc.
joseph@graphlab.com

WWW'14 Workshop on Big Graph Mining

Graphs are Central to Analytics

PageRank: Identifying Leaders

$$R[i] = 0.15 + \sum_{j \in \mathrm{Nbrs}(i)} w_{ji} R[j]$$
 Rank of user i

Update ranks in parallel

Iterate until convergence

Recommending Products

Recommending Products

Low-Rank Matrix Factorization:

Iterate:

$$f[i] = \arg\min_{w \in \mathbb{R}^d} \sum_{j \in \text{Nbrs}(i)} (r_{ij} - w^T f[j])^2 + \lambda ||w||_2^2$$

Predicting User Behavior

Mean Field Algorithm

Finding Communities

Count triangles passing through each vertex:

Measures "cohesiveness" of local community

The Graph-Parallel Pattern

Many Graph-Parallel Algorithms

- Collaborative Filtering
 - Alternating Least Squares
 - Stochastic Gradient Descent
 - Tensor Factorization
- Structured Prediction
 - Loopy Belief Propagation
 - Max-Product Linear Programs
 - Gibbs Sampling
- Semi-supervised ML
 - Graph SSL
 - CoEM

- Community Detection
 - Triangle-Counting
 - K-core Decomposition
 - K-Truss
- Graph Analytics
 - PageRank
 - Personalized PageRank
 - Shortest Path
 - Graph Coloring
- Classification
 - Neural Networks

Graph-Parallel Systems

Expose specialized APIs to simplify graph programming.

The Pregel (Push) Abstraction

Vertex-Programs interact by sending messages.

```
Pregel_PageRank(i, messages) :
  // Receive all the messages
 total = 0
 foreach( msg in messages) :
    total = total + msg
  // Update the rank of this vertex
  R[i] = 0.15 + total
  // Send new messages to neighbors
 foreach(j in out neighbors[i]) :
    Send msg(R[i]) to vertex j
```


The GraphLab (Pull) Abstraction

Vertex Programs directly access adjacent vertices and edges

```
GraphLab_PageRank(i)

// Compute sum over neighbors
total = 0
foreach( j in neighbors(i)):
  total = total + R[j] * W<sub>ji</sub>

// Update the PageRank
R[i] = 0.15 + total
```

Data movement is managed by the system and not the user.

Iterative Bulk Synchronous Execution

Graph-Parallel Systems

Exploit graph structure to achieve orders-of-magnitude performance gains over more general data-parallel systems.

Real-World Graphs

Edges >> Vertices

Power-Law Degree Distribution

Challenges of High-Degree

Vertices

Sequentially process edges

Touches a large fraction of graph

GraphLab

(PowerGraph, OSDI'12)

Program This

Run on This

Split High-Degree vertices

New Abstraction → Equivalence on Split Vertices

GAS Decomposition

Gather
Apply
Scatter

Minimizing Communication in PowerGraph

Total communication upper bound:

$$O\left(\#\text{vertices}\sqrt{\#\text{machines}}\right)$$

Shrinking Working Sets

The GraphLab (Pull) Abstraction

Vertex Programs directly access adjacent vertices and edges

```
GraphLab_PageRank(i)
  // Compute sum over neighbors
  total = 0
  foreach( j in neighbors(i)):
    total = total + R[j] * W<sub>ii</sub>
  // Update the PageRank
  R[i] = 0.15 + total
  // Trigger neighbors to run again
  if R[i] not converged then
   signal nbrsOf(i) to be recomputed
```


PageRank on the Live-Journal Graph

Runtime (in seconds, PageRank for 10 iterations)

GraphLab is 60x faster than Hadoop GraphLab is 16x faster than Spark

Triangle Counting on Twitter

40M Users, 1.4 Billion Links

Counted: 34.8 Billion Triangles

Hadoop [WWW'11]

1536 Machines423 Minutes

GraphLab

64 Machines 15 Seconds

 $1000 \times Faster$

PageRank

Tables

Graphs

Separate Systems to Support Each View

Graph View

Separate systems for each view can be difficult to use and inefficient

Difficult to Program and Use

Users must Learn, Deploy, and Manage multiple systems

Leads to brittle and often complex interfaces

Inefficient

Extensive data movement and duplication across the network and file system

Limited reuse internal data-structures across stages

Solution: The GraphX Unified Approach

New API

Blurs the distinction between Tables and Graphs

New System

Combines Data-Parallel Graph-Parallel Systems

Enabling users to easily and efficiently express the entire graph analytics pipeline

Tables and Graphs are composable views of the same physical data

Each view has its own operators that exploit the semantics of the view to achieve efficient execution

View a Graph as a Table

Property Graph

Vertex Property Table

ld	Property (V)	
Rxin	(Stu., Berk.)	
Jegonzal	(PstDoc, Berk.)	
Franklin	(Prof., Berk)	
Istoica	(Prof., Berk)	

Edge Property Table

SrcId	Dstld	Property (E)
rxin	jegonzal	Friend
franklin	rxin	Advisor
istoica	franklin	Coworker
franklin	jegonzal	PI

Table Operators

Table (RDD) operators are inherited from Spark:

map	reduce	sample
filter	count	take
groupBy	fold	first
sort	reduceByKey	partitionBy
union	groupByKey	mapWith
join	cogroup	pipe
leftOuterJoin	cross	save
rightOuterJoin	zip	

Graph Operators

```
class Graph [ V, E ] {
   def Graph(vertices: Table[ (Id, V) ],
              edges: Table[ (Id, Id, E) ])
   def vertices: Table[ (Id, V) ]
   def edges: Table[ (Id, Id, E) ]
   def triplets: Table [ ((Id, V), (Id, V), E) ]
   def reverse: Graph[V, E]
   def subgraph(pV: (Id, V) => Boolean,
                 pE: Edge[V, E] \Rightarrow Boolean): Graph[V, E]
   def mapV(m: (Id, V) \Rightarrow T): Graph[T, E]
   def mapE(m: Edge[V, E] \Rightarrow T): Graph[V, T]
   def joinV(tb]: Table [(Id, T)]): Graph[(V, T), E]
   def joinE(tbl: Table [(Id, Id, T)]): Graph[V, (E, T)]
   def mrTriplets(mapF: (Edge[V, E]) \Rightarrow List[(Id, T)],
                    reduceF: (T, T) \Rightarrow T: Graph[T, E]
```

Triplets Join Vertices and Edges

The triplets operator joins vertices and edges:

SELYECTS s.ld, d.ldripsetP, e.P, d.P Edges
FROM edges AS PATICES AS PATICES AS PATICES AS CONTROL OF SURE AS A SECOND ON escilo = s.log And De.dstld = B.log And De.dstld = B.log

SELECT t.dstld, reduce(map(t)) AS sum FROM triplets AS t GROUPBY t.dstld

We express enhanced Pregel and GraphLab abstractions using the GraphX operators in less than 50 lines of code!

Enhanced to Pregel in GraphX

```
messageSum
 pregelPR(i,
                               // Receive all the messages
                               total = 0
                               foral = 0
foreach( msg in messageList):
                                                     total = total + msq
                             // Update the rank of this vertex
R[i] = 0.15 + total combineMsg(a, b):
sendus gilles fares in the same of the sam
```

Require Message Combiners

Remove Message
Computation
from the
Vertex Program

Implementing PageRank in GraphX

```
// Load and initialize the graph
val graph = GraphBuilder.text("hdfs://web.txt")
val prGraph = graph.joinVertices(graph.outDegrees)
// Implement and Run PageRank
val pageRank =
  prGraph.pregel(initialMessage = 0.0, iter = 10)(
    (oldV, msgSum) \Rightarrow 0.15 + 0.85 * msgSum,
    triplet => triplet.src.pr / triplet.src.deg,
    (msgA, msgB) => msgA + msgB)
```

We express the Pregel and GraphLab *like* abstractions using the GraphX operators in less than 50 lines of code!

By composing these operators we can construct entire graph-analytics pipelines.

Example Analytics Pipeline

```
// Load raw data tables
val verts = sc.textFile("hdfs://users.txt").map(parserV)
val edges = sc.textFile("hdfs://follow.txt").map(parserE)
// Build the graph from tables and restrict to recent links
val graph = new Graph(verts, edges)
val recent = graph.subgraph(edge => edge.date > LAST_MONTH)
// Run PageRank Algorithm
val pr = graph.PageRank(tol = 1.0e-5)
// Extract and print the top 25 users
val topUsers = verts.join(pr).top(25).collect
topUsers.foreach(u => println(u.name + '\t' + u.pr))
```

GraphX System Design

Distributed Graphs as Tables (RDDs)

Property Graph

Caching for Iterative mrTriplets

Incremental Updates for Iterative mrTriplets

Aggregation for Iterative mrTriplets

Reduction in Communication Due to Cached Updates

Connected Components on Twitter Graph

Benefit of Indexing Active Edges

Connected Components on Twitter Graph

Join Elimination

Identify and bypass joins for unused triplet fields

```
sendMsg(i→j, R[i], R[j], E[i,j]):
  // Compute single message
  return msg(R[i]/E[i,j])
```


Additional Query Optimizations

Indexing and Bitmaps:

- » To accelerate joins across graphs
- » To efficiently construct sub-graphs

Substantial Index and Data Reuse:

- » Reuse routing tables across graphs and sub-graphs
- » Reuse edge adjacency information and indices

Performance Comparisons

Live-Journal: 69 Million Edges

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 3x slower than GraphLab

GraphX scales to larger graphs

Twitter Graph: 1.5 Billion Edges

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 2x slower than GraphLab

- » Scala + Java overhead: Lambdas, GC time, ...
- » No shared memory parallelism: 2x increase in comm.

PageRank is just one stage....

What about a pipeline?

A Small Pipeline in GraphX

Timed end-to-end GraphX is faster than GraphLab

Conclusion and Observations

Domain specific views: Tables and Graphs

- » tables and graphs are first-class composable objects
- » specialized operators which exploit view semantics

Single system that efficiently spans the pipeline

- » minimize data movement and duplication
- » eliminates need to learn and manage multiple systems

Graphs through the lens of database systems

- » Graph-Parallel Pattern → Triplet joins in relational alg.
- » Graph Systems → Distributed join optimizations

Open Source Project

Alpha release as part of Spark 0.9

Active Research

Static Data → Dynamic Data

- » Apply GraphX unified approach to time evolving data
- » Materialized view maintenance for graphs

Serving Graph Structured Data

- » Allow external systems to interact with GraphX
- » Unify distributed graph databases with relational database technology

Collaborators

GraphLab:

Yucheng Low

Haijie Gu

Aapo Kyrola

Danny Bickson

Carlos Guestrin

Alex Smola

Guy Blelloch

GraphX:

Reynold Xin

Ankur Dave

Daniel Crankshaw

Michael Franklin

lon Stoica

Thanks!

http://tinyurl.com/ampgraphx

jegonzal@eecs.berkeley.edu