From Graphs to Tables:
The Design of Scalable Systems

for Graph Analytics

Joseph E. Gonzalez
Post-doc, UC Berkeley AMPLab
legonzal@eecs.berkeley.edu
Co-founder, GraphlLab Inc.
joseph@graphlab.com

WWW' 14 Workshop on Big Graph Mining

*These slides are best viewed in PowerPoint with animation.

PageRank

PageRank: ldentifying Leaders

R[] =015+ » wjR[j]

Rank of

user | Sum of neighbors

Update ranks in parallel

terate until convergence

Recommending Products

Users Ratings

Recommending Products

L ow-Rank Matrix Factorization:

f(3)

Users

Users
)
=)

\H

=
User Factors (U)
() SJO1DB SIAOA|

Movies l]

lterate:

S (ry —wT Fl)T 4 Alfwl]|3

jENDrs(2)

7| = arg min
fli] = arg min

5

Predicting User Behavior

a O
Conditional Random Field
Belief Propagation

Mean Field Algorithm

Sum over
Neighbors

A

|
bi(zi) o< ¢;(x;) exp (Z f(xi,b)

71EN;

f(@i,b) = bi(z;)log ¢ j(wi, z;)

Finding Communities

Count triangles passing through each vertex:
2

1

Measures “cohesiveness” of local community

Fewer Triangles More Triangles
Weaker Community Stronger Community

The Graph-Parallel Pattern

o
Model / Alg.

State

Computation depends
only on the neighbors

Many Graph-Parallel Algorithms

* Collaborative Filtering * Community Detection
— Alternating Least Squares — Triangle-Counting
— Stochastic Gradient Descent — K-core Decomposition
— lensor Factorization — K-Truss

* Structured Prediction * Graph Analytics
— Loopy Belief Propagation — PageRank
— Max-Product Linear Programs ~ — Personalized PageRank
— Gibbs Sampling — Shortest Path

« Semi-supervised ML — Graph Coloring

— Graph SSL * (lassification
— CoEM — Neural Networks

Graph-Parallel Systems

.“.'." { | ‘==."‘

Pregel #:&% Grapr Lab\

AAAAAA

Expose specialized APIs to simplify
graph programming.

The Pregel (Push) Abstraction

Vertex-Programs interact by sending messages.

Pregel PageRank(i, messages) :
" // Receive all the messages
total = ©
foreach(msg in messages) :

total = total + msg
o J

/ // Update the rank of this vertex
R[i] = ©.15 + total

\

f // Send new messages to neighbors
foreach(j in out_neighbors[i]) :
Send msg(R[i]) to vertex j

Malewicz et al.

12

The GraphlLab (Pull) Abstraction

Vertex Programs directly access adjacent vertices and edges

GraphLab_PageRank (i)

" // Compute sum over neighbors

total = ©

foreach(j in neighbors(i)):
total = total + R[J] * wy;

o

(// Update the PageRank
R[i] = ©.15 + total

Data movement 1s managed by the system
and not the user.

[terative Bulk Synchronous Execution

Compute Communicate

JaldJeq

Graph-Parallel Systems

XA

.‘;‘-:.:‘. "':.:2 N

B RO d \
Pregel &:&% GrophlLab®

GIRAPH

Exploit graph structure to achieve
orders-of-magnitude performance gains
over more general data-parallel systems.

Real-World Graphs

Edges >> Vertices

Power-Law Degree Distribution

AltaVista \/\/ebGraphI AB Vertices, 6. 6B Edges

Facebook 10'°
200 More than |08 vertices
., 180 /é) % 108(}/ have one neighbor.
S 160 = RPAR) _
E 140 / E 9() Top 1% of vertices are
2120 / L 10 \ adjacent to
8, 100 / o 50% of the edges!
0 80 + 8 10 1
o) D)
5 40 Z e
20
0 T T T]
2008 2009 2010 2011 2012 10° L x .
Noar 10 10 10

Challenges of High-Degree
Vertices

* O w

Sequentially process Touches a large
edges fraction of graph

!

o
o
; I ; CPU 1 CPU 2

Provably Difficult to Partition

@W@[@M@

Program T

1

i

(PowerGraph, OSD

NIS

12)

Run on This

Machine | Machine 2

Split High-Degree vertices

o\
2k

Lo

New Abstraction => Equivalence on Split Vertices

GAS Decomposition

Machine 1 Machine 2
G h @/ Master
ather \
+ . ?
Apply 0%0
Scatter ® \

Machine 3 Machine 4

Minimizing Communication in PowerGraph

Commu awm D [Inear In
the number of machines
each vertex spans.

Total communication upper bound:

O (#Vertices \/ #machines)

Num-Vertices

Shrinking Working Sets

00000000

10000000 ¥

1000000
100000
10000
1000
100

10

|

PageRank on Web Graph

e 51% of vertices run only oncel

0 10 20 30 40 50 60 70

Number of Updates

The GraphlLab (Pull) Abstraction

Vertex Programs directly access adjacent vertices and edges

GraphLab_PageRank (i)
// Compute sum over neighbors
total = ©
foreach(j in neighbors(i)):
total = total + R[J] * wy;

// Update the PageRank
R[i] = ©.15 + total

// Trigger neighbors to run again
if R[1i] not converged then
signal nbrsOf(i) to be recomputed

Trigger computation only when necessary.

PageRank on the Live-Journal Graph

MehoutHadoop I 40

Naive Spark _ 354

GraphlLab F 22

0 200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for 10 iterations)

Graphlab i1s 60x faster than Hadoop
Graphlab is | 6x faster than Spark

Triangle Counting on Twitter
40M Users, 1.4 Billion Links

Counted: 34.8 Billion Triangles

mElslolels) 1536 Machines
NAYYAYARNl 423 Minutes

64 Machines
Graphlab n |5 Seconds -

24
S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11

PageRank

lables

Top 20 Pages

Text
Table
Word Topics
\/\/orleopic
Discussion User Community
Table Community Topic

]
[

Graphs

Hyperlinks PageRank

G

Term-Doc Topic Model
Graph (LDA)

=

Community
Editor Graph Detection

M K

Separate Systems to Support Each View
lable View

" N

Graph View

(X 1]

:a‘o"'o

.‘!!o Q) "

@z 2%
See b

= W

a0t S)

8 a!
& SON G308

o
Pregel GraphlLa b\

AAAAAA

GIRAPH

Dependency Graph

Result

Separate systems
for each view can be
difficult to use and inefficient

Difficult to Program and Use

Users must Learn, Deploy, and Manage
multiple systems

@ (T \ O
1t % & 0:_:;) :;; {
‘g é‘ uIVE SPQF K Fowed Gra O NnLa b\'

AAAAAA

L eads to brittle and often
complex interfaces

30

Inefficient

Extensive data movement and duplication across

the network and file system

Sl

<

. CﬂaphLab\

ﬁ @8 b

HDFS

Limited reuse internal data-structures
across stages

g

-

31

Solution: The GraphX Unified Approach

New AP New System
Blurs the distinction between Combines Data-Parallel
lables and Graphs Graph-Parallel Systems

X DA AT
:c‘o"’d . ‘::-"’
@
e C/ .
L 0] ".!
[O
X S]
s e
v SN
AAAAAA .

GIRAPH { N
GraphLab'

Enabling users to easily and efficiently
express the entire graph analytics pipeline

Tables and Graphs are composable
views of the same physical data

Jn Vg

Table View Graph View

Representation

Fach view has its own operators that
exploit the semantics of the view
to achieve efficient execution

View a Graph as a lable

Property Graph

Vertex Property lable

Id

Property (V)

Rxin

(Stu., Berk.)

Jegonzal (PstDoc, Berk.)

Franklin (Prof., Berk)

Istoica

(Prof., Berk)

Edge

Property lable

Srcld

Dstld Property (E)

rXIin

jegonzal Friend

franklin

rXIin Advisor

Istoica

franklin Coworker

franklin

jegonzal Pl

Table Operators

Table (RDD) operators are inherited from Spark:

map reduce sample
filter count take
groupBy fold first

sort reduceByKey partitionBy
union groupByKey mapwith
join cogroup pipe
leftOuterJoin Cross save

rightouterJoin Z1ip

Graph Operators

class Graph [v, E] {

?

def Graph(vertices: Table[(1d, V) 1,
edges: Tablel (1d, 1d, E)])

36

Iriplets Join Vertices and tdges
The triplets operator joins vertices and edges:

SELECT s.Id, d.Id'=eP, e.P, d.P Edges

FRONiRdges ASe o
JOINGrtices A@svérlices A

ON e(gicld = s. I@g@@ dstld @—Iﬂ—@
The m%plets OperEor AUER ad] ac

SELECT t.dstld, reduce(map(t)) AS sum
FROM triplets AS t GROUPBY t.dstld

We express enhanced Pregel and Graphlab
abstractions using the GraphX operators
in less than 50 lines of codel

38

Enhanced to Pregel iIn GraphX

PR (; _ (Require Message
pregelPR(1, W)\ Combiners

// Receive all the messages

total = 0
foreach(msg i%%t) :

total = total + msg

// Update the rank of this vertex
R[i] = 0.15 + total ~

combineMsg(a, Remove Message

b):
h iRifle fadd) ors C tati
B e

ret el R Q1AL 47]) to vertex

N Vertex Program)

Malewicz et al. [PODC09, SIGMOD' | 0] 39

Implementing PageRank In
GraphX

// Load and initialize the graph
val graph = GraphBuilder.text(“hdfs://web.txt”)

val prGraph = graph.joinVertices(graph.outDegrees)

// Implement and Run PageRank
val pageRank =

prGraph.pregel{initialMessage = 0.0, 1iter 1@)(
koldv, msgSum) => 0.15 + 0.85 x msgSum,}

triplet => triplet.src.pr / triplet.src.deg,}

/(msgA, msgB) => msgA + msgB)}

40

We express the Pregel and Graphlab like
abstractions using the GraphX operators
in less than 50 lines of codel

By composing these operators we can
construct entire graph-analytics pipelines.

41

-xample Analytics Pipeline

// Load raw data tables

val verts = sc.textFile(“hdfs://users.txt”).map(parserV)
val edges = sc.textFile(“hdfs://follow.txt”).map(parserE)
// Build the graph from tables and restrict to recent links
val graph = new Graph(verts, edges)

val recent = graph.subgraph(edge => edge.date > LAST_MONTH)
// Run PageRank Algorithm

val pr = graph.PageRank(tol = 1.0e-5)

// Extract and print the top 25 users

val topUsers = verts.join(pr).top(25).collect

topUsers.foreach(u => println(u.name + “\t’ + u.pr))

GraphX System Design

Property Graph
Part. |
A\ j \
2D \%Cut Heur%%
\

Part. 2

Distributed Graphs as Tables (R

DDs)

Vertex
Table

(RDD)

Routing
Table

(RDD)

0>
~

L8

Ay

2
o

Edge Table
(RDD)

0.0

OIOIOIO} @IOIO,
©1010]0)]©I0I0

Caching for lterative mririplets

Table (izTgi'e

e ()
g (a0
P <)
©: ()
o (a(®)
g (a ()
e ()
O-| (P

Incremental Updates for Iterative mrlriplets

Vertex Edge Table
ROD) o0
Mirror
Change ——> % “ache @
g ionc
¢ e ©
@ 0] (o)
P Sl 100
Q=
Change —> % @ @ -®
0§ o)
e 0§ .

Aggregation for [terative mrlriplets

Change —

Change

Change —

Change

Change —

Change

Vertex
Table

(RDD)

Local
Aggregate

Local
Aggregate

o

Edge Table

Mirror
Cache

0=
0
)

(RDD)

Mirror
Cache

Q=

—>Ej@

6=

)))& @Q@g@
HEOEIEOOE

-0

Reduction in Comm

10000
S 1000
E oo
O
O
Y 10
o
§
Z

0.1

Due to Cachec

UM

L

pC

ication

ates

Connected Components on Twitter Graph

Most vertices are within 8 hops
of all vertices in their comp.

0 2 4 6 8
[teration

Benefit of Indexing Active Edges

Connected Components on Twitter Graph

30
g =¢=Scan
8 25
S ““*Indexed
g 20
L
o |5 Q
= Scan All Edges
g=
S 10
é (4 .)
5 -
0

O

2 4 6 8 10 12 |4 |6

lteration

Join Elimination

|dentify and bypass joins for unused triplet fields

sendMsg(i>j, R[il, RI[j1, E[i,i1):

14000
12000
10000
8000
6000
4000
2000

Communication (MB)

// Compute single message
return msg(R[i]l/E[i,j])

PageRank on Twitter co-tyyce Way Join

“"]oin Elimination

/M

/

M—

Factor of 2 reduction in communication

5 10 |5 20
lteration

50

Additional Query Optimizations

Indexing and Bitmaps:

» To accelerate joins across graphs

» To efficiently construct sub-graphs

Substantial Index and Data Reuse;
» Reuse routing tables across graphs and sub-graphs

» Reuse edge adjacency information and indices

51

Performance Comparisons

Live-Journal: 69 Million Edges

Mahout/Hadoop | | | | | | 1340
Naive Spark | 354
Giraph , 207
GraphX [l 68
GraphlLab | 22

0 200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for |0 iterations)

GraphX is roughly 3x slower than Graphlab

GraphX scales to larger graphs

Twitter Graph: |.5 Billion Edges

Giraph — 749
GraphX # 451

Graphlab _— 203

0 200 400 600 800

Runtime (in seconds, PageRank for 10 iterations)

GraphXis roughly 2x slower than Graphlab
» Scala + Java overhead: Lambdas, GC time, ...
» No shared memory parallelism: 2x increase in comm.

PageRank Is just one stage.. ..

What about a pipeline!

A Small Pipeline in GraphX

Raw Wikipedia Hyperlinks PageRank Top 20 Pages
—) «__ 3> C—p >
& -l
Spark | , | . . . 1492
Giraph + Spark | , 1 605
GraphX | 342
Graphlab + Spark | 375

0 200 400 600 800 1000 1200 1400 1600
Total Runtime (in Seconds)

Timed end-to-end GraphX is faster than Graphlab

Conclusion and Observations

Domain specific views: Tables and Graphs
»tables and graphs are first-class composable objects
» specialized operators which explort view semantics

Single system that efficiently spans the pipeline
» minimize data movement and duplication
» eliminates need to learn and manage multiple systems

Graphs through the lens of database systems
» Graph-Parallel Pattern = Triplet joins in relational alg.
» Graph Systems > Distributed join optimizations

Open Source Project

Alpha release as part of Spark 0.9

GraphX Programming Guide - Spark 0.9.0 Documentation %

@ w <7 spark.incubator.apache.org (3 @

SporK 006 Overview Programming Guides~ API| Docs~ Deploying~ More~

GraphX

GraphX is the new (alpha) Spark API for graphs and graph-parallel computation. At a high-level, GraphX extends the Spark RDD by introducing
the Resilient Distributed Property Graph: a directed multigraph with properties attached to each vertex and edge. To support graph computation,
GraphX exposes a set of fundamental operators (e.g., subgraph, joinVertices, and mapReduceTriplets) as well as an optimized variant of the
Pregel API. In addition, GraphX includes a growing collection of graph algorithms and builders to simplify graph analytics tasks.

Overview

Background on Graph-Parallel Computation

From social networks to language modeling, the growing scale and importance of graph data has driven the development of numerous new
graph-parallel systems (e.g., Giraph and GraphLab). By restricting the types of computation that can be expressed and introducing new
techniques to partition and distribute graphs, these systems can efficiently execute sophisticated graph algorithms orders of magnitude faster
than more general data-parallel systems.

Data-Parallel Graph-Parallel

+

1
@hadmmp N i R P
SprK : Pregel GrapnlLab" #
Table | Property Graph
1
1
1

Active Research

Static Data = Dynamic Data

» Apply GraphX unified approach to time evolving data
» Materialized view maintenance for graphs

Serving Graph Structured Data
» Allow external systems to interact with GraphX
» Unify distributed graph databases with relational
database technology

Collaborators
Graphlab:

i,
;-h
.

Yucheng Haljie Aapo Danny Carlos Alex
Low Gu Kyrola Bickson Guestrin Smola Blelloch

GraphX:

Daniel Michael
Crankshaw Franklin

Reynold
Xin

T hanks!

http://tinyurl.com/ampgraphx

legonzal@eecs.berkeley.edu

