
Parallel	and	Distributed	Systems
for	Probabilistic	Reasoning

Joseph	E.	Gonzalez

Thesis Committee:

Thesis Defense

Carlos	Guestrin
University	of	

Washington	&	CMU

Guy	Blelloch
CMU

David	O’Hallaron
CMU

Alex	Smola
CMU	&	Google

Jeff	Bilmes
University	of	
Washington1



The	foundations	of	computation
have	changed	…

2



New	Parallel	and	Distributed	Platforms

• New	Opportunities
– Increased	processing	and	storage

• New	Challenges	
– Parallel	algorithm	design	and	implementation

GPUs Multicore Clusters Single	Chip	
Cloud	Computers

Clouds

3



The	scale of	
machine	learning	problems	

is	exploding …

4



72	Hours	a	Minute
YouTube

28	Million	
Wikipedia	Pages

1	Billion
Facebook Users

6	Billion	
Flickr Photos

The	Age	of	Big Data

5

“…	data	a	new	class	of	economic	asset,	
like	currency	or	gold.”

“…growing	at	50	percent	a	year…”



Massive	data	provides	
opportunities	for	

structured models…

6



Liberal Conservative

Post

Post

Post

Post

Post

Post

Post

Post

Example: Estimate	Political	Bias

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

Post

?
?

?

?

?
?

?

? ?
?

?

?

?
?

? ?

?

?

?

?

?

?

?

?

?

?

?

? ?

?

7



Thesis:
Parallel and	Distributed	Systems	
for	Probabilistic	Reasoning

Massive	Structured	Problems

Advances	Parallel	Hardware

?
8



Thesis	Statement:	GrAD Methodology
Efficient	parallel	and	distributed systems	for	
probabilistic	reasoning:

1. Graphically decompose	computational and	
statistical dependencies

2. Asynchronously schedule	computation

3. Dynamically	identify	and	prioritize
computation	along	critical	paths

9



• Factor	statistical and	computational dependencies

• Improves	computational and	statistical
efficiency

• Increases	parallelism

GrAD Methodology:	Graphical

Independent

Overly	Simplistic

Sparse	Graph

Expressive	Tractable
Models	&	Algorithms

Fully	Connected

Intractable

10



• Synchronous: compute	everything	in	parallel

• Highly	parallel – Maximum	independent	work
• Highly	inefficient – Many	wasted	cycles		

?? ?
?

?

?

Post

?? ?
?

?

? ?? ?
?

?

?

Synchronous	vs.	Asynchronous

+																							+																				=		93 3 3

11



• Trigger	computation	as new	information	arrives

• Capture	the	flow	of	information:
– More	efficiently	use	network	and	processor	resources
– Guarantee	algorithm	correctness

GrAD Methodology:	Asynchronous

Post

+																							+																				=		31 1 1

12



• Dynamically	identify and	prioritize computation	along	
the	critical	path

• Focus	computational	resources	where	most	effective:
– Accelerated	convergence
– Increased	work	efficiency

GrAD Methodology:	Dynamic

13



1. Factor	statistical	models	over	a	sparse	graph

2. Design	parallel	and	distributed	algorithms	
– Operate	on	the	graphical decomposition		
– Asynchronously and	dynamically schedule	
computation

3. Develop	systems	that	support	the	design	and	
implementation	of	GrAD algorithms

We	apply	the	GrAD methodology	to

14

GraphLab & PowerGraph

Parallel and Distributed Algorithms 
for Probabilistic Inference

Probabilistic Graphical Models



Massive	Structured	Problems

Advances	Parallel	Hardware

15

GraphLab & PowerGraph

Parallel and Distributed Algorithms 
for Probabilistic Inference

Probabilistic Graphical Models



Noisy	Picture

Encode	Probabilistic	Structure

Noisy	Pixels

True	Image

16

Probabilistic Graphical Models



Graph

Observed	Random	Variables

La
te
nt
	P
ixe

l	V
ar
ia
bl
es

Local	DependenciesNoisy	Pixels
Random	Variables
True		unobserved values

Dependency	Graph:
Represent	dependencies	

Parameters:
Characterize	probabilities

Joint	Probability Factors
17



Probabilistic Graphical Models

Graphical	models	provide	a
common	representation	

Protein	Structure	
Prediction

Computer	
Vision

Machine	
Translation

How		are			you?

Movie	
Recommendation

18



Probabilistic Inference

• NP-complete in	general	
– Focus	on	approximatemethods

19

What is the best 
configuration of the 
protein side-chains?

What is the probability
that a particular 

pixel is black?

Making	predictions given	the	model	
structure	and	parameters



20

Belief	Propagation Gibbs	Sampling

Parallel and Distributed Algorithms 
for Probabilistic Inference



Parallel	Belief	Propagation

21

Published	Results
AISTATS’09						 UAI’09	 Chapter	in	SUML’10

Joint	Work	With:
Yucheng Low								Carlos	Guestrin David	O’Hallaron



Loopy	Belief	Propagation	(Loopy	BP)

• Iteratively	estimate	the	variable	beliefs
– Read	in	messages
– Updates	marginal
estimate	(belief)

– Send	updated	
out	messages

• Repeat	for	all	variables
until	convergence

22



Synchronous Loopy	BP

• Often	considered	embarrassingly	parallel	
– Associate	processor	
with	each	vertex

– Receive	all	messages
– Update	all	beliefs
– Send	all	messages

• Proposed	by:
– Brunton et	al.	CRV’06
– Mendiburu et	al.	GECC’07
– Kang,et al.		LDMTA’10
– …

23



Is	Synchronous	Loopy	BP
an	efficient parallel	algorithm?

24



Sequential	Computational	Structure

25



Hidden	Sequential	Structure

26



Hidden	Sequential Structure

• Running	Time:

EvidenceEvidence

Time for a single
parallel iteration Number of Iterations

27



Optimal	Sequential	Algorithm

Sequential (Fwd-Bkwd)

Naturally Parallel
2n2/p

p ≤ 2n

Running
Time

2n

Ga
p

p = 1
Optimal Parallel

n
p = 2 28



Role	of	model	Parameters on
Sequential	Sub-Problems

• τε represents	the	minimal	sequential		sub-problem		
• Captures	dependence	on	model	parameters

True	Messages

τε -Approximation

29

Epsilon
Change

101 2 3 4 5 6 7 8 9



Optimal	Parallel	Scheduling
Processor	1 Processor	2 Processor	3

Theorem: 
Using p processors this algorithm achieves a τε
approximation in time:

and is optimal for chain graphical models.

Parallel
Component

Sequential
Component

30



The	Splash	Operation
• Generalize	the	optimal	chain	algorithm:

to	arbitrary	cyclic	graphs:

~

1) Grow a BFS Spanning tree
with fixed size

2) Forward Pass computing all
messages at each vertex

3) Backward Pass computing all 
messages at each vertex

31



Local State

CPU 2

Local State

CPU 3

Local State

CPU 1

Running	Parallel	Splashes

• Partition	the	graph
• Schedule	Splashes	locally
• Transmit	the	messages	along	the	boundary	of	the	
partition

Splash Splash
Splash

32



Local State

Priority	Q
ueue

Priorities Determine	the	Roots
• Use	a	residual	priority	queue	to	select	roots:

Splash

Splash

?
?

?

CPU 1
33



Dynamic	Splashes
Priorities	adaptively	focus	computation	by	determining	

the	shape and	size	of	each	Splash	

High
Priority

Low
Priority

34



0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

Ru
nn

in
g	
Ti
m
e	
(S
ec
on

ds
)

Splash	Size	(Messages)

Be
tte

r
Dynamic	Splashes automatically	
identify	the	optimal splash	size

35

Without	Adaptation

With	Adaptation



Synthetic	Noisy	Image

Factor	Graph

Vertex	Updates

Many
Updates

Few
Updates

Algorithm identifies and focuses 
on hidden sequential structure

36

Splash	Belief	Propagation

Splash



Evaluation

• System	Design
–Multicore	and	distributed	implementations
– Development	was	time	consuming

• Evaluated	on	several	real-world	problems
– Protein	interaction	and	structure	prediction
–Markov	Logic	Networks

• Compared	against	several	other	variants
– Faster,	more	efficient,	more	stable

37



Representative	Results

• SplashBP converges	more	often
• Achieves	better	prediction	accuracy

38

Protein	Interaction	Models:			14K	Vertices,			21K	Factors

Runtime

Faster

Splash

Synchronous Theoretical	Optimal

Speedup

Be
tt
er

Sc
al
in
g

Synchronous

Splash

Total	Work

M
ore

Efficient

Splash

Synchronous



Summary:	Belief	Propagation
• Asynchronous	+	Dynamic	àmore	efficient
– Theoretically and	experimentally
– Insight: parallelize	optimal	sequential algorithm
– Tradeoff: Parallelism &	Convergence

• Approximationà Increased	Parallelism
– Exploit	weak interactions	(τε – approximation)

• Key	Contributions:
– Demonstrate	the	importance	of	dynamic	
asynchronous	scheduling	in	parallel	inference

– Theoretical	analysis	of	work	efficiency	and	
relationship	to	model	structure	and	parameters

39



GrAD Methodology

• Graphical
– BP	updates	only	depend	on	adjacent	vertices

• Asynchronous
– Compute	messages	sequentially	within	Splash

• Dynamic
– Priority	scheduling	and	adaptive	Splashes

40



Pa
ra
lle
l

Se
qu

en
tia

l TRP:	Wainwright	et	al.	IEEE	Inf.	Thr.	‘03

Additional	Related	Work

• Parallel	Exact	Inference: Pennock et	al.	UAI’98
• Approximate	Messages: Ihler et	al.	JMLR’05	

41

Synchronous																													Asynchronous																								Async.	+	Dynamic

Sun	et	al.	ECCV’02
Brunton et	al.	CRV’06
Mendiburu et	al.	GECC’07
Kang	et	al.		LDMTA’10

Wildfire:	Ranganathan et	al.	IJCAI’07	

ResidaulBP:	Elidan et	al.	UAI’06

Thesis	Work
Parallel and	Distributed
WildfireBP,	ResidualBP,	&	

SplashBP



42

Belief	Propagation Gibbs	Sampling

Parallel and Distributed Algorithms 
for Probabilistic Inference



Parallel	Gibbs	Sampling

43

Published
AISTATS’11				(Related	to	work	in	WSDM’12)

Joint	Work	With
Yucheng Low	 Arthur	Gretton Carlos	Guestrin

An	asynchronous Gibbs	Sampler	that	
dynamically	addresses	strong	dependencies.



Gibbs	Sampling	[Geman &	Geman,	1984]

• Sequentially for	each	variable	in	the	model
– Select variable
– Use	adjacent	assignments	
to	construct	a	biased	coin

– Flip	coin	and	update
assignment	to	variable

44In
iti
al
	A
ss
ig
nm

en
t



Can	we	sample	multiple	
variables	in	parallel?

45



From	the	original	paper	on	Gibbs	Sampling:

“…the	MRF	can	be	divided	into	collections	of	[variables]	
with	each	collection	assigned	to	an	independently
running	asynchronous processor.”

Converges to the 
wrong distribution!

-- Stuart	and	Donald	Geman,	1984.

46

Embarrassingly	
Parallel!



The	problem	with	
Synchronous	Gibbs	sampling

• Adjacent	variables	cannot be	sampled	
simultaneously.

Strong	Positive
Correlation

t=0

t=2 t=3

Strong Positive
Correlation

t=1

Strong Negative
Correlation

47



Introduced	Three	Convergent	Samplers

Chromatic: Use	graph	coloring	to	
synchronously	sample	independent	sets

Asynchronous:Markov	Blanket	Locks	
ensure	serializable execution

Splash: Adaptively	constructs	thin	junction	
tree	blocks

48



Dynamically Prioritized	Sampling
• Prioritize	Gibbs	updates
• Adapt	the	shape of	the	Splash	to	span	strongly	
coupled	variables:

49

Noisy	Image BFS	Splashes Adaptive	Splashes



Theorem: Chromatic Sampler

• Ergodic: converges	to	the	correct	distribution
– Based	on	graph	coloring	of	the	Markov	Random	
Field

• Quantifiable acceleration	in	mixing

Time	to	update
all	variables	once

#	Variables
#	Colors
#	Processors

50



Theorem
Asynchronous	and	Splash	Gibbs	Sampler
• Ergodic: converges	to	the	correct	distribution
– Requires	vanishing	adaptation
– Corrected	an	error	in	a	result	by	Levin	&	Casella	J.	
Multivar.	Anal.	’06

• Expected	Parallelism:

51#	Processors #	Variables

Max	Degree



Evaluation

• Implemented	multicore	version:
– Built	using	a	GraphLab prototype
• Substantially	shorter	development	time

– Novel	junction	tree	construction	algorithm
–Markov	blanket	locking	protocol

• Evaluated	on	large	real-world	problems

52



Experimental	Results

53

• The	Splash sampler	outperforms	the	Chromatic
sampler	on	models	with	strong dependencies	

Likelihood	
Final	Sample

Be
tt
er

Splash

Chromatic

“Mixing”

BetterSplash

Chromatic

Speedup	in	Sample	
Generation

Be
tt
er

Splash

Chromatic

• Markov	logic	network	with	strong	dependencies
10K Variables													28K	Factors



Contributions:	Gibbs	Sampling

• Proposed	three convergent Gibbs	samplers
– Chromatic,	Asynchronous,	Splash
– Spectrum	partially	synchronous	to	asynchronous
– New	algorithms	for	junction	tree	construction

• Theoretical	analysis	of	parallel	Gibbs	sampling
– Convergence	of	asynchronous	blocking
– Relate	parallelism	to	model	structure
– Stationary	distribution	of	synchronous	sampler

• Experimental	analysis	on	real-world	problems	
and	systems

54



GrAD Methodology

• Graphical
– Gibbs	updates	depend	only	on	neighbors	in	MRF

• Asynchronous
– Graph	Coloring and	Markov	Blanket	Locks

• Dynamic
– Prioritized	updates	and	adaptive	Splash

55



Ergodic
(Convergent)

• Geman &	Geman.	Pami ’84
• Trees: Hamze et	al.	UAI’04
• Dynamic	Blocking: Barbu et	

al.	IEEE	Trans	Pattern	
Analysis	‘05

Parallel	&
Distributed
LDA	&	Bayesian	Networks
• Newman	et	al.	NIPS’07
• Asuncion	et	al.	NIPS’08
• Yan	et	al.	NIPS’09

Related	Work

• Asynchronous	approximations	empirically	
perform	well

56

Thesis
Chromatic,

Asynchronous,
and	

Splash	Gibbs

Amr et	al.	WSDM’12



Massive	Structured	Problems

Advances	Parallel	Hardware

57

GraphLab & PowerGraph

Parallel and Distributed Algorithms 
for Probabilistic Inference

Probabilistic Graphical Models



Parallel Hardware

58

Published	Results
UAI’10										VLDB’12

Joint	Work	With
Yucheng Low				Aapo Kyrola Haijie Gu Danny	Bickson

Carlos	Guestrin Joe	Hellerstein Guy	Blelloch David	O’Hallaron

GraphLab & PowerGraph

Parallel Algorithms for Probabilistic Inference



Solution:			GraphLab

How	do	we	design and	implement
GrAD Algorithms

We	could:
• design and	implement	for	each	architecture?
– Time	consuming
– Repeatedly	solving	the	same	system	problems

• use	high-level	abstractions	like	MapReduce?
– Unable	to	express:
• Graphical
• Asynchronous
• Dynamic	

59

GrAD Methodology



GraphLab is	a	
Graph-Parallel	Abstraction

Data-Parallel         Graph-Parallel

• Independent Data
• Single	Pass
• Synchronous

Map	Reduce

• Graph Structured	Data
• Iterative Computation
• Dynamic	+ Asynchronous



The	GraphLab Abstraction
• A	user-defined Vertex	Program runs	on	each	vertex
• Graph constrains	interaction along	edges

– Directly	read and	modify the	state	of	adjacent	vertices	and	edges

• Parallelism:	run	multiple	vertex	programs	simultaneously

61



The	GraphLab Vertex	Program
Vertex	Programs	directly	access adjacent	vertices	and	edges

GraphLab_PageRank(i) 
// Compute sum over neighbors
total = 0
foreach( j in neighbors(i)): 

total = total + R[j] * wji

// Update the PageRank
R[i] = total 

// Trigger neighbors to run again
priority = |R[i] – oldR[i]|
if R[i] not converged then

signal neighbors(i) with priority

62

Dynamics	

R[4]	*	w41

+
+

4 1

3 2



GraphLab is	Asynchronous

CPU 1

CPU 2

The	scheduler determines	the	order	that	vertices	are	executed

e f g

kjih

dcba b

i
h

a

i

b e f

j

c

Sc
he

du
le

r

Scheduler	can	prioritize vertices.

63



GraphLab is	Serializable

• Automatically	ensures	serializable executions
64



Serializable Execution
For	each	parallel	execution,	there	exists	a	sequential	execution	
of	vertex-programs	which	produces	the	same	result.	

CPU 1

CPU 2

Single
CPU

Parallel

Sequential

time

65



The	GraphLab System

• Implemented	as	a	C++	API
–Widely	downloaded	open-source	project

• Multicore and	distributed versions:
– Hide	Latency: Pipelined	locking
– Fault	Tolerance:	Chandy-Lamport Snapshot

• Tested	on	a	wide	range	of	ML	algorithms
– ALS,	BP,	Gibbs,	Lasso,	CoEM,	SVM,	LDA,	…	

66



GraphLab vs.	Pregel (BSP)

PageRank	(25M	Vertices,	355M	Edges)

1
100

10000
1000000

100000000

0 10 20 30 40 50 60 70

N
um

-V
er
tic

es

Number	of	Updates

51%	updated	only once!

Be
tt
er

67



0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Sp
ee
du

p

Number	of	CPUs

Be
tt
er

Optimal

GraphLab CoEM

Never	Ending	Learner	Project	(CoEM)

GraphLab 16	Cores 30	min

15x	Faster!6x	fewer	CPUs!

Hadoop (BSP) 95 Cores 7.5	hrs

Distributed
GraphLab

32	EC2	
machines

80	secs

0.3% of Hadoop time

68



Summary:	GraphLab
• Generalizes the	GrAD Methodology
– ALS,	BP,	Gibbs,	Lasso,	CoEM,	SVM,	PageRank,	LDA,	…

• Simplifies the	design and	implementation of	
GrAD Algorithms

• Substantially	outperforms	existing	systems
• Key	Contributions:
– Formalized	the	graph-parallel	setting
– Isolates	computation	from	movement	of	data
– Strong	serializability guarantees
– Evaluation	on	a	wide	range	of	algorithms

69



GraphLab provided	exciting
scaling	performance

But…

Thus	far…

We	couldn’t	scale	up	to	
Altavista Webgraph from	2002
1.4B	vertices,	6.6B	edges

70



Parallel Hardware

71

Published	Results
OSDI’12

Joint	Work	With
Yucheng Low				Aapo Kyrola Haijie Gu Danny	Bickson

Carlos	Guestrin Joe	Hellerstein Guy	Blelloch David	O’Hallaron

GraphLab & PowerGraph

Parallel Algorithms for Probabilistic Inference



72

Natural Graphs
Graphs	derived	from	natural	

phenomena



Properties	of	Natural	Graphs

73

Power-Law	Degree	Distribution

Regular	Mesh Natural	Graph



Power-Law	Degree	Distribution

100 102 104 106 108
100

102

104

106

108

1010

degree

co
un
t

Top	1%	of	vertices	are	
adjacent	to

50%	of	the	edges!

High-Degree	
Vertices

74

N
um

be
r	o

f	V
er
tic
es

AltaVista	WebGraph
1.4B	Vertices,	6.6B	Edges

Degree

More	than	108 vertices	
have	one	neighbor.



Power-Law	Degree	Distribution

75

“Star	Like”Motif

President
Obama Followers



Serializability Requires
Heavy	Locking

Challenges	of	High-Degree	Vertices

Touches	a	large
fraction	of	graph

Sequentially	process
edges

Edge	meta-data
too	large	for	single

machine

76



Graph	Partitioning
• Graph	parallel	abstractions	rely	on	partitioning:
– Minimize	communication
– Balance	computation	and	storage

77

Machine	1 Machine	2

Comm. Cost
O(# cut edges)



Power-Law	Graphs	are	
Difficult	to	Partition

• Power-Law	graphs	do	not	have	low-cost balanced	
cuts	[Leskovec et	al.	08,	Lang	04]

• Traditional	graph-partitioning	algorithms	perform	
poorly	on	Power-Law	Graphs.
[Abou-Rjeili et	al.	06]

78

CPU 1 CPU 2



Machine	1 Machine	2

Random	Partitioning

• GraphLab resorts	to	random (hashed)	
partitioning	on	natural	graphs

3"
2"

1"

D

A"

C"

B" 2"
3"

C"

D

B"
A"

1"

D

A"

C"C"

B"

(a) Edge-Cut

B"A" 1"

C" D3"

C" B"2"

C" D

B"A" 1"

3"

(b) Vertex-Cut

Figure 4: (a) An edge-cut and (b) vertex-cut of a graph into
three parts. Shaded vertices are ghosts and mirrors respectively.

5 Distributed Graph Placement

The PowerGraph abstraction relies on the distributed data-
graph to store the computation state and encode the in-
teraction between vertex programs. The placement of
the data-graph structure and data plays a central role in
minimizing communication and ensuring work balance.

A common approach to placing a graph on a cluster of p
machines is to construct a balanced p-way edge-cut (e.g.,
Fig. 4a) in which vertices are evenly assigned to machines
and the number of edges spanning machines is minimized.
Unfortunately, the tools [21, 31] for constructing balanced
edge-cuts perform poorly [1, 26, 23] or even fail on power-
law graphs. When the graph is difficult to partition, both
GraphLab and Pregel resort to hashed (random) vertex
placement. While fast and easy to implement, hashed
vertex placement cuts most of the edges:

Theorem 5.1. If vertices are randomly assigned to p
machines then the expected fraction of edges cut is:

E

|Edges Cut|

|E|

�
= 1� 1

p
(5.1)

For example if just two machines are used, half of the
of edges will be cut requiring order |E|/2 communication.

5.1 Balanced p-way Vertex-Cut
The PowerGraph abstraction enables a single vertex pro-
gram to span multiple machines. Hence, we can ensure
work balance by evenly assigning edges to machines.
Communication is minimized by limiting the number of
machines a single vertex spans. A balanced p-way vertex-
cut formalizes this objective by assigning each edge e2 E
to a machine A(e) 2 {1, . . . , p}. Each vertex then spans
the set of machines A(v)✓ {1, . . . , p} that contain its ad-
jacent edges. We define the balanced vertex-cut objective:

min
A

1
|V | Â

v2V
|A(v)| (5.2)

s.t. max
m

|{e 2 E | A(e) = m}|< l |E|
p

(5.3)

where the imbalance factor l � 1 is a small constant. We
use the term replicas of a vertex v to denote the |A(v)|
copies of the vertex v: each machine in A(v) has a replica
of v. The objective term (Eq. 5.2) therefore minimizes the

average number of replicas in the graph and as a conse-
quence the total storage and communication requirements
of the PowerGraph engine.

Vertex-cuts address many of the major issues associated
with edge-cuts in power-law graphs. Percolation theory
[3] suggests that power-law graphs have good vertex-cuts.
Intuitively, by cutting a small fraction of the very high
degree vertices we can quickly shatter a graph. Further-
more, because the balance constraint (Eq. 5.3) ensures
that edges are uniformly distributed over machines, we
naturally achieve improved work balance even in the pres-
ence of very high-degree vertices.

The simplest method to construct a vertex cut is to
randomly assign edges to machines. Random (hashed)
edge placement is fully data-parallel, achieves nearly per-
fect balance on large graphs, and can be applied in the
streaming setting. In the following we relate the expected
normalized replication factor (Eq. 5.2) to the number of
machines and the power-law constant a .

Theorem 5.2 (Randomized Vertex Cuts). Let D[v] denote
the degree of vertex v. A uniform random edge placement
on p machines has an expected replication factor

E
"

1
|V | Â

v2V
|A(v)|

#
=

p
|V | Â

v2V

 
1�
✓

1� 1
p

◆D[v]
!
. (5.4)

For a graph with power-law constant a we obtain:

E
"

1
|V | Â

v2V
|A(v)|

#
= p� pLia

✓
p�1

p

◆
/z (a) (5.5)

where Lia (x) is the transcendental polylog function and
z (a) is the Riemann Zeta function (plotted in Fig. 5a).

Higher a values imply a lower replication factor, con-
firming our earlier intuition. In contrast to a random 2-
way edge-cut which requires order |E|/2 communication
a random 2-way vertex-cut on an a = 2 power-law graph
requires only order 0.3 |V | communication, a substantial
savings on natural graphs where E can be an order of
magnitude larger than V (see Tab. 1a).

5.2 Greedy Vertex-Cuts
We can improve upon the randomly constructed vertex-
cut by de-randomizing the edge-placement process. The
resulting algorithm is a sequential greedy heuristic which
places the next edge on the machine that minimizes the
conditional expected replication factor. To construct the
de-randomization we consider the task of placing the i+1
edge after having placed the previous i edges. Using the
conditional expectation we define the objective:

argmin
k

E
"

Â
v2V

|A(v)|

����� Ai,A(ei+1) = k

#
(5.6)

6

10	Machines	à 90%	of	edges	cut
100	Machines	à 99%	of	edges	cut!

79



In	Summary

GraphLab is	not	well	suited	for	
natural	graphs

80

Low	quality	
partitioning

CPU 1 CPU 2

Challenges	of	high-degree	
vertices



Machine 1 Machine 2

• Split High-Degree	vertices
• New	Abstractionà Equivalence on	Split	Vertices

81

Program
For	This

Run	on	This



Gather	Information
About	Neighborhood

Update	Vertex

Signal	Neighbors	&
Modify	Edge	Data

A	Common	Pattern for
Vertex-Programs

GraphLab_PageRank(i) 
// Compute sum over neighbors
total = 0
foreach( j in neighbors(i)): 

total = total + R[j] * wji

// Update the PageRank
R[i] = total 

// Trigger neighbors to run again
priority = |R[i] – oldR[i]|
if R[i] not converged then

signal neighbors(i) with priority

82



Machine	2Machine	1

Machine	4Machine	3

GAS	Decomposition

Σ1 Σ2

Σ3 Σ4

+												+												+		

YYYY

Y’

Σ
Y’Y’Y’Gather

Apply

Scatter

83

Master

Mirror

Mirror
Mirror



Minimizing	Communication	in	PowerGraph

YYY

A	vertex-cut	minimizes	
machines	each	vertex	spans

Percolation	theory	suggests	that	power	law	graphs	
have	good	vertex	cuts.	[Albert	et	al.	2000]

Communication	is	linear	in	
the	number	of	machines	

each	vertex	spans

84

New	Theorem:
For	any edge-cut we	can	directly	
construct	a	vertex-cut	which	requires	
strictly	less	communication	and	storage.



Constructing	Vertex-Cuts

• Evenly assign	edges to	machines
–Minimize	machines	spanned	by	each	vertex

• Assign	each	edge	as	it is	loaded
– Touch	each	edge	only	once

• Propose	two	distributed	approaches:
– Random Vertex	Cut
– Greedy	Vertex	Cut

85



Machine	2Machine	1 Machine	3

Random Vertex-Cut
• Randomly	assign	edges	to	machines

YYYY ZYYYY ZY ZY Spans	3	Machines

Z Spans	2	Machines

Balanced	Vertex-Cut

Not	cut!

86



Random	Vertex-Cuts	vs.	Edge-Cuts	

• Expected	improvement	from	vertex-cuts:

1

10

100

0 50 100 150

Re
du

ct
io
n	
in

Co
m
m
.	a
nd

	S
to
ra
ge

Number	of	Machines
87

Order	of	Magnitude
Improvement



Greedy	Vertex-Cuts

• Place	edges	on	machines	which	already	have	
the	vertices	in	that	edge.

Machine1 Machine 2

BA CB

DA EB
88



Greedy	Vertex-Cuts	Improve	Performance

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

PageRank Collaborative	
Filtering

Shortest	Path

Ru
nt
im

e	
Re

la
tiv

e	
to
	R
an

do
m

Random

Greedy

Greedy	partitioning	improves	
computation	performance. 89



System	Design

• Implemented	as	C++	API
• Uses	HDFS	for	Graph	Input	and	Output
• Fault-tolerance	is	achieved	by	check-pointing	
– Snapshot time	<	5	seconds	for	twitter	network

90

EC2 HPC	Nodes

MPI/TCP-IP PThreads HDFS

PowerGraph	(GraphLab2)	System



PageRank	on	the	Twitter	Follower	Graph

0
10
20
30
40
50
60
70

GraphLab Pregel	
(Piccolo)

PowerGraph

91

0
5

10
15
20
25
30
35
40

GraphLab Pregel	
(Piccolo)

PowerGraph

To
ta
l	N

et
w
or
k	
(G
B)

Se
co
nd

s

Communication Runtime
Natural	Graph	with	40M	Users,		1.4	Billion	Links

Reduces	Communication Runs	Faster
32	Nodes	x	8	Cores	(EC2	HPC	cc1.4x)



PowerGraph	is	Scalable
Yahoo	Altavista Web	Graph	(2002):

One	of	the	largest	publicly	available	web	graphs
1.4 Billion	Webpages,		6.6	Billion	Links

1024	Cores	(2048	HT)
64	HPC	Nodes

7	Seconds	per	Iter.
1B	links	processed	per	second

30	lines	of	user	code
92



Topic	Modeling
• English	language	Wikipedia	

– 2.6M	Documents,	8.3M	Words,	500M	Tokens

– Computationally	intensive	algorithm

93

0 20 40 60 80 100 120 140 160

Smola	et	al.

PowerGraph

Million	Tokens	Per	Second

100	Yahoo!	Machines
Specifically	engineered	for	this	task

64	cc2.8xlarge	EC2	Nodes
200	lines	of	code	& 4	human	hours



Counted:	34.8	Billion	Triangles

94

Triangle	Counting	on	The	Twitter	Graph
Identify	individuals	with	strong	communities.

64	Machines
1.5	Minutes

1536	Machines
423	Minutes

Hadoop
[WWW’11]

S.	Suri and	S.	Vassilvitskii,	“Counting	triangles	and	the	curse	of	the	last	reducer,”	WWW’11

282	x	Faster

Why?Wrong	Abstraction		à
Broadcast	O(degree2)	messages	per	Vertex



PowerGraph	(GraphLab2)	System

Graph	
Analytics

Graphical
Models

Computer
Vision Clustering Topic

Modeling
Collaborative

Filtering

Machine	Learning and	Data-Mining	
Toolkits

Demonstrates	the	Applicability
of	the	GrAD Methodology

95



Summary:	PowerGraph
• Identify	the	challenges of	Natural	Graphs
– High-degree	vertices,	Low-quality	edge-cuts

• Solution	PowerGraph	System
– GAS	Decomposition:	split	vertex programs
– Vertex-partitioning:	distribute	natural	graphs

• PowerGraph	theoretically and	experimentally
outperforms	existing	graph-parallel	systems.

96



Synchronous GrAD

Related	High-Level Abstractions

97

Messaging
[PODC’09,	SIGMOD’10]

Shared	State
[UAI’10,	VLDB’12,	OSDI’12]

6. Before

8. After

7. After

Others
Giraph,	Golden	Orbs,	
GPS,	BoostPGL,	…

[Dean	et	al.	OSDI’04]

Data-Parallel      Graph-Parallel
Others

Spark,	Twister,	…
Others

Signal-Collect,	GraphChi



Massive	Structured	Problems

Advances	Parallel	Hardware

98

GraphLab & PowerGraph

Parallel and Distributed Algorithms 
for Probabilistic Inference

Probabilistic Graphical Models



Thesis	Statment
Efficient	parallel	and	distributed systems	for	
probabilistic	reasoning	follow	the	GrAD Methodology

1. Graphically decomposition:

– Expose	parallelism	and	distribute	state

2. Asynchronous	scheduling

– Improved	convergence	and	correctness

3. Dynamic	prioritization

– Eliminated	wasted	work
99



Observations

• Graphical	models encode	statistical,	
computational,	and	parallel structure

• Tradeoff: Convergence	and	Parallelism
–Many	things	can	be	computed	in	parallel
– Not	all	parallel	computation	is	productive

• ApproximationàIncreased Parallelism
– τε-approximation,	approximate	sampling

• Power	of	high-level	abstractions
– Enables	the	exploration	of	GrAD methodology

100



Future: Declarative	Models

• Models	are	recursive	relationships
– BP,	Gibbs	Sampling,	PageRank,	…

• System	determines	the	optimal	schedule	
101

My	Interests Sum	of	my	friends	interests

“Closeness” number	of	overlapping	posts



Future: Online Probabilistic	Reasoning

• The	world	is	rapidly	evolving:
–Make	friends	and	rate	movies	in	real-time

• How	do	we	define	and	maintain	models?
– Declarative	specification: time	invariant
– τε-approximation: small change	à local effect

• Exploit	Power-Law structure	in	change
– Popular	items	are	rated	more	frequently
– Exploit	burstiness for	better	caching

102



Contributions	&	Broader	Impact
• Theoretically	and	experimentally	characterized
– Importance	of	dynamic	asynchronous	scheduling
– Effect	of	model	structure and	parameters on	parallelism
– Effect	of	approximation	accuracy	on	parallelism
– Tradeoff	between	parallelism and	convergence

• Developed	two	graph-parallel	abstractions
– GraphLab:	vertex-centric	view	of	computation	
– PowerGraph:	Distributed vertex-centric	view	of	
computation

• Fostered	a	community	around	GraphLab/PowerGraph
– Substantial	industry	and	academic	interest

• Built	a	foundation	for	the	future	design	of	scalable	
systems	for	probabilistic	reasoning

103



Thank	You!

104

Carlos
Guestrin

Guy
Blelloch

Joe
Hellerstein

David
O’Hallaron

Alex
Smola

Jeff
Bilmes

Yucheng
Low

Aapo
Kyrola

Danny
Bickson

Haijie
Gu

Arthur	
Gretto

n

Sue	Ann
Hong

Andreas
Krause

The	Select	Lab	&	My	Family


