Thesis Defense

Parallel and Distributed Systems for Probabilistic Reasoning

Joseph E. Gonzalez

Thesis Committee:

Carlos Guestrin University of Washington & CMU

Guy Blelloch CMU

David O'Hallaron CMU

Alex Smola CMU & Google

Jeff Bilmes University of Washington

The foundations of **computation** have changed ...

New Parallel and Distributed Platforms

New Opportunities

Increased processing and storage

• New Challenges

- Parallel algorithm design and implementation

The **SCale** of machine learning problems is **exploding** ...

The Age of **Big** Data

28 Million Wikipedia Pages

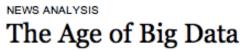
facebook.

1 Billion Facebook Users 6 Billion Flickr Photos 72 Hours a Minute

YouTube

The New Hork Times Sunday Review

WORLD U.S. N.Y. / REGION BUSINESS TEC



By STEVE LOHR

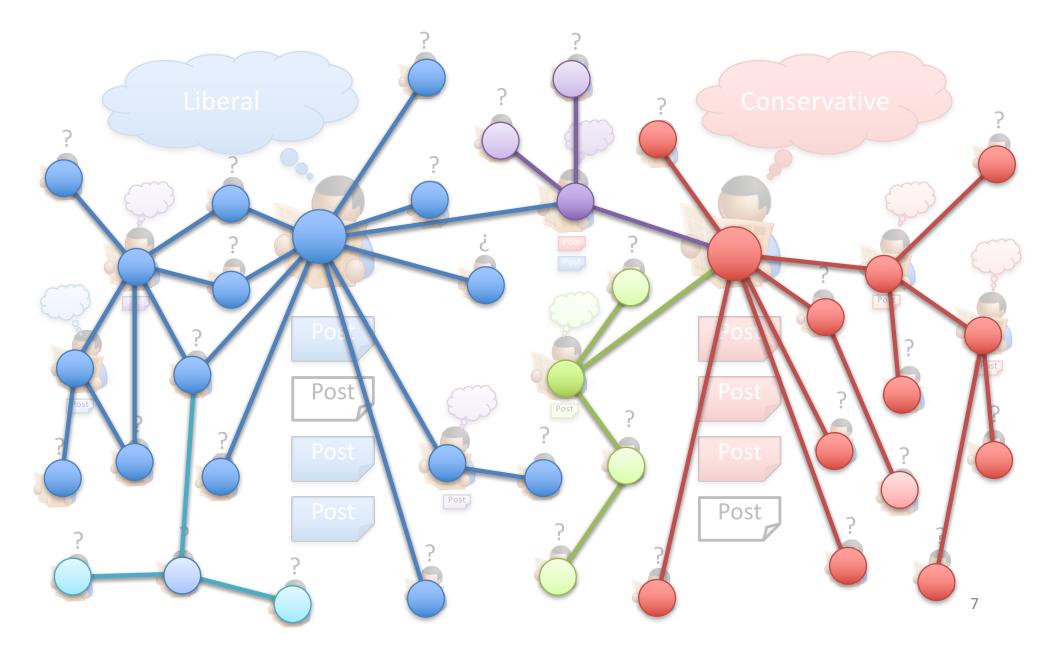
Published: February 11, 2012

"...growing at 50 percent a year..."

"... data a new class of economic asset, like currency or gold."

Massive data provides opportunities for **structured models...**

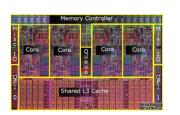
Example: Estimate Political Bias



Massive Structured Problems

Thesis: Parallel and Distributed Systems for Probabilistic Reasoning

Advances Parallel Hardware



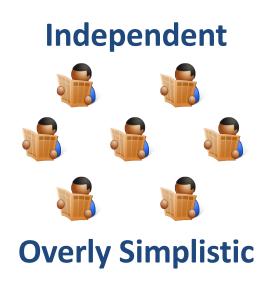
Thesis Statement: GrAD Methodology

Efficient **parallel** and **distributed** systems for probabilistic reasoning:

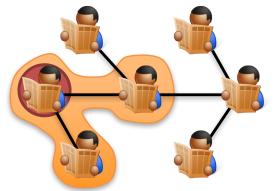
- 1. <u>Graphically</u> decompose *computational* and *statistical* dependencies
- 2. <u>A</u>synchronously schedule computation
- **3. Dynamically** identify and *prioritize* computation along critical paths

GrAD Methodology: Graphical

• Factor statistical and computational dependencies

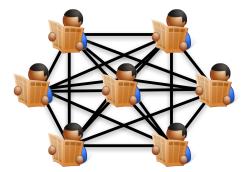


Sparse Graph



Expressive Tractable Models & Algorithms

Fully Connected

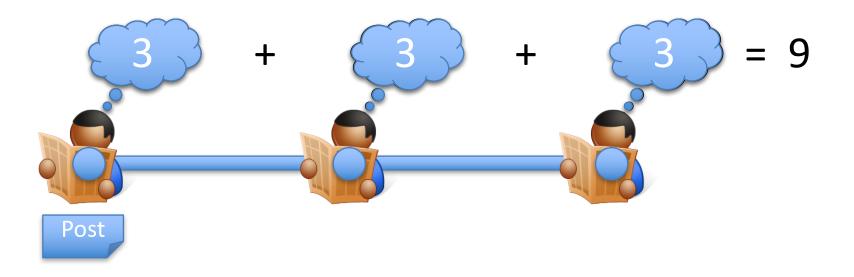


Intractable

- Improves computational and statistical efficiency
- Increases parallelism

Synchronous vs. Asynchronous

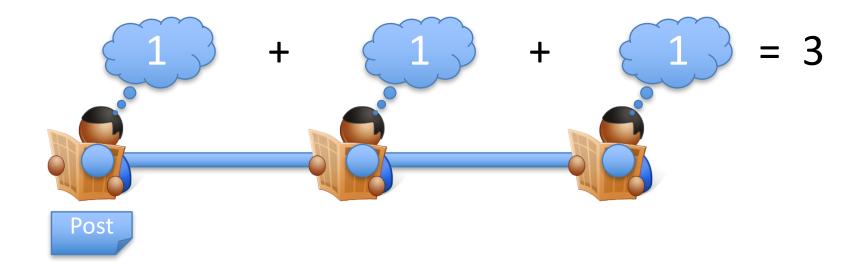
• Synchronous: compute everything in parallel



- Highly parallel Maximum independent work
- Highly inefficient Many wasted cycles

GrAD Methodology: Asynchronous

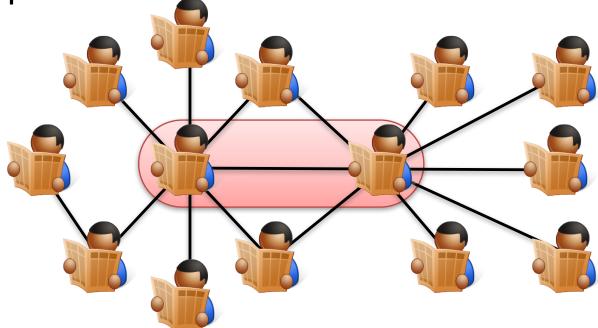
• Trigger computation as **new information arrives**



- Capture the flow of information:
 - More efficiently use network and processor resources
 - Guarantee algorithm correctness

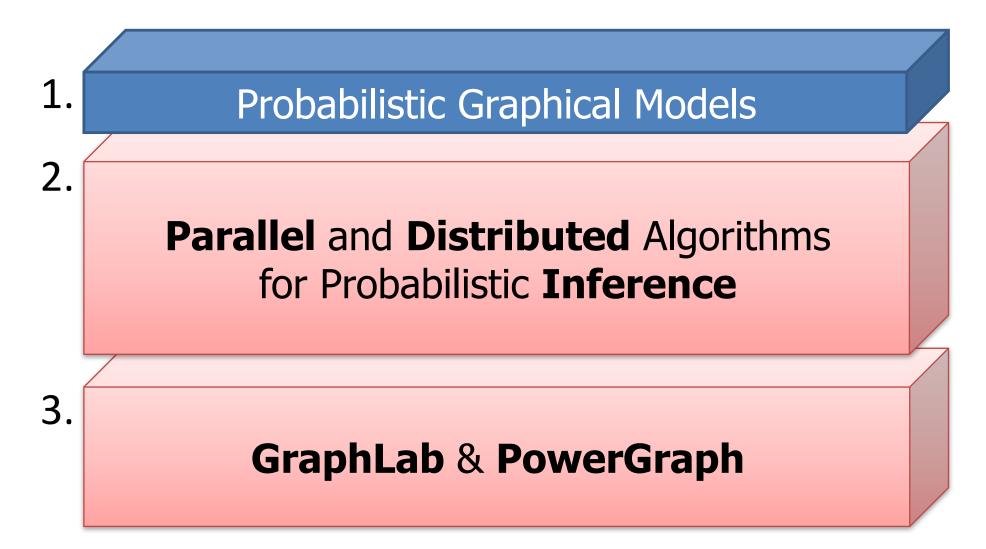
GrAD Methodology: Dynamic

 Dynamically identify and prioritize computation along the critical path



- Focus computational resources where most effective:
 - Accelerated convergence
 - Increased work efficiency

We apply the GrAD methodology to



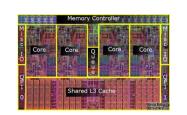
Massive Structured Problems

Probabilistic Graphical Models

Parallel and **Distributed** Algorithms for Probabilistic Inference

GraphLab & PowerGraph

Advances Parallel Hardware



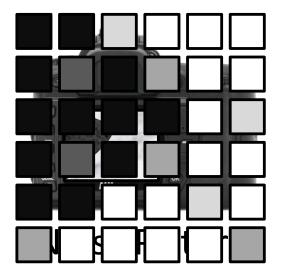
Probabilistic Graphical Models

Encode Probabilistic Structure



True Image

Noisy Pixels

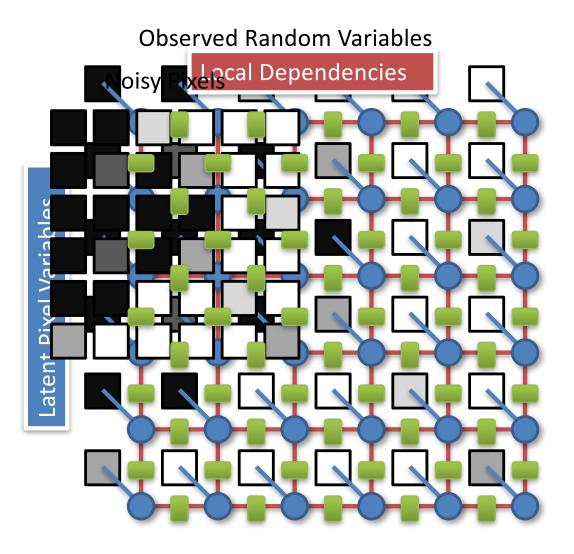


Random Variables True *unobserved* values

Dependency Graph: Represent dependencies

Parameters:

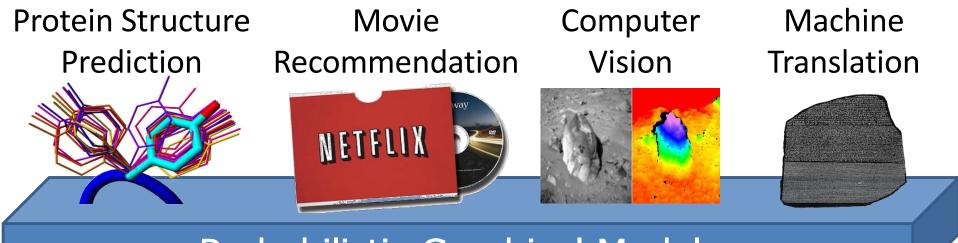
Characterize probabilities



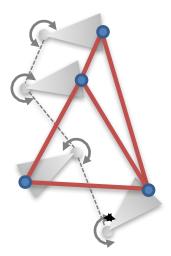
$$\mathbf{P}(X_1, \dots, X_n; \theta) \propto \prod_{(u,v) \in E} f(X_u, X_v; \theta_{u,v})$$
Joint Probability Factors

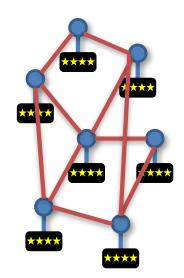
Graph

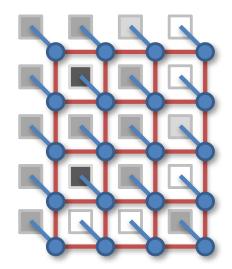
Graphical models provide a common representation



Probabilistic Graphical Models







How are you?

Probabilistic Inference

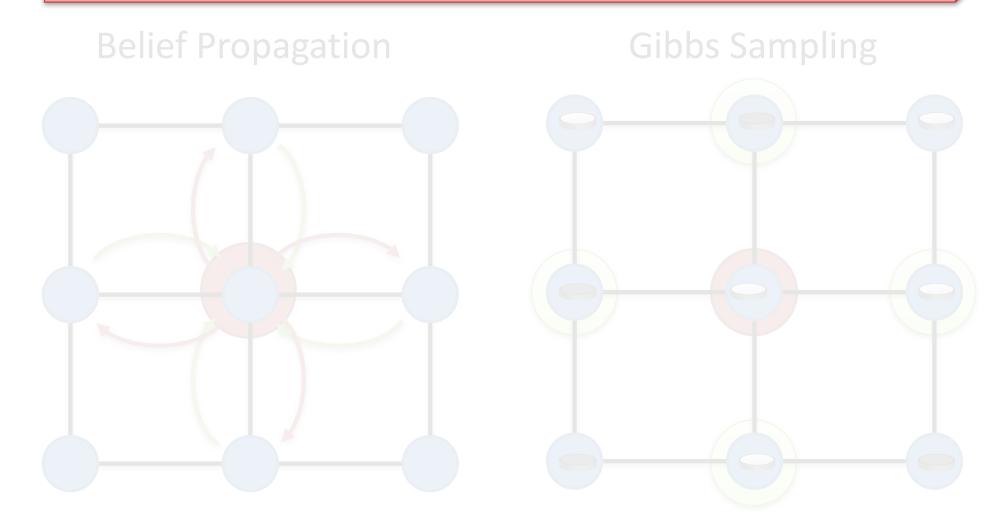
Making **predictions** given the model structure and parameters

What is the best configuration of the protein side-chains? What is the probability that a particular pixel is black?

• NP-complete in general

– Focus on *approximate* methods

Parallel and Distributed Algorithms for Probabilistic Inference

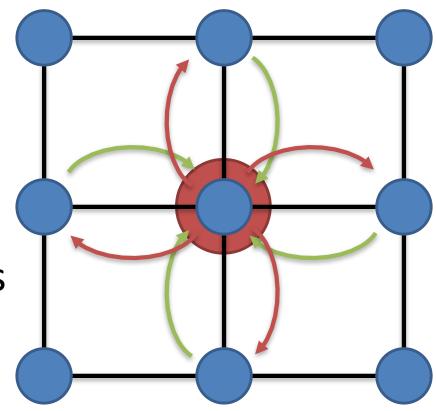


Parallel Belief Propagation

Yucheng Low	Joint Work Wit Carlos Guestrin	h: David O'Hallaron
AISTATS'09	Published Resul UAI'09	ts Chapter in SUML'10

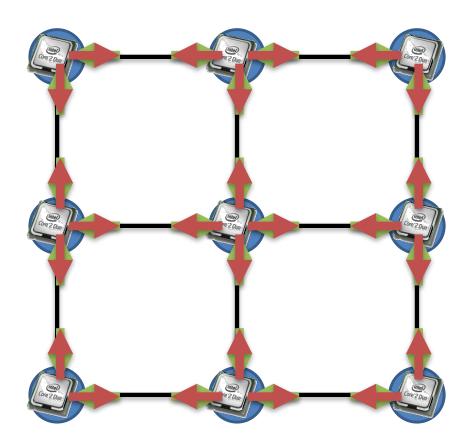
Loopy Belief Propagation (Loopy BP)

- Iteratively estimate the variable beliefs
 - Read in messages
 - Updates marginal estimate (**belief**)
 - Send updated
 out messages
- Repeat for all variables until convergence



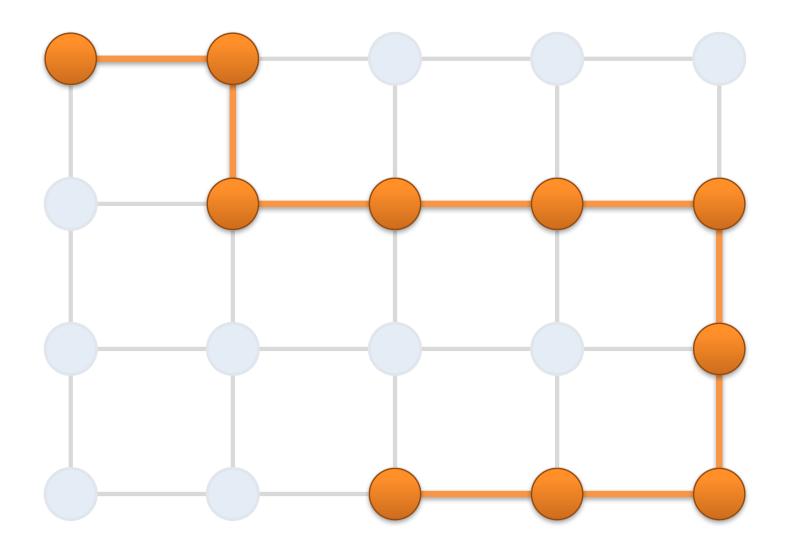
Synchronous Loopy BP

- Often considered embarrassingly parallel
 - Associate processor with each vertex
 - Receive all messages
 - Update all beliefs
 - Send all messages
- Proposed by:
 - Brunton et al. CRV'06
 - Mendiburu et al. GECC'07
 - Kang, et al. LDMTA'10

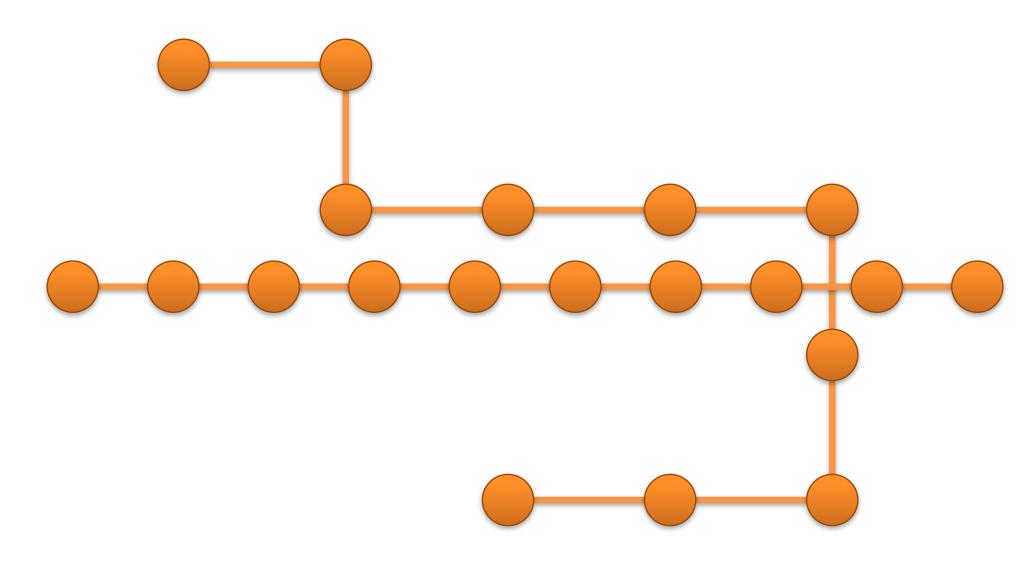


Is Synchronous Loopy BP an **efficient** parallel algorithm?

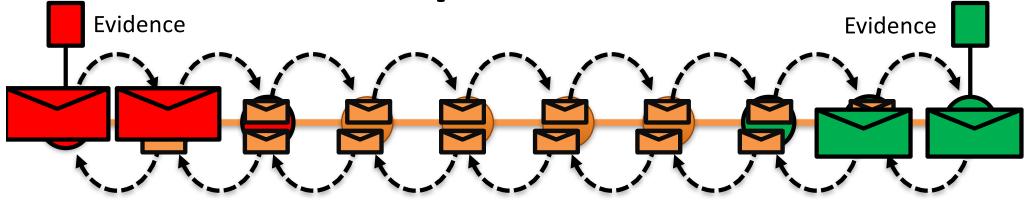
Sequential Computational Structure



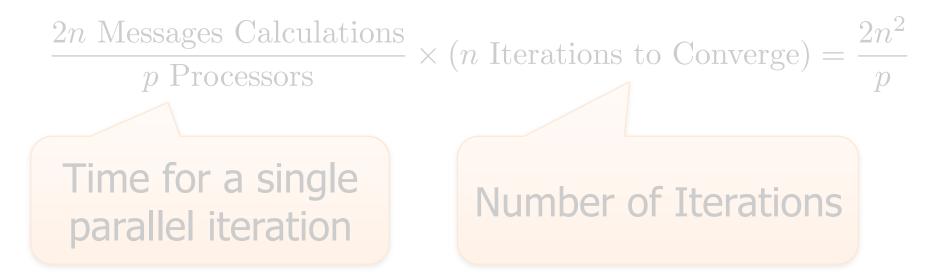
Hidden Sequential Structure



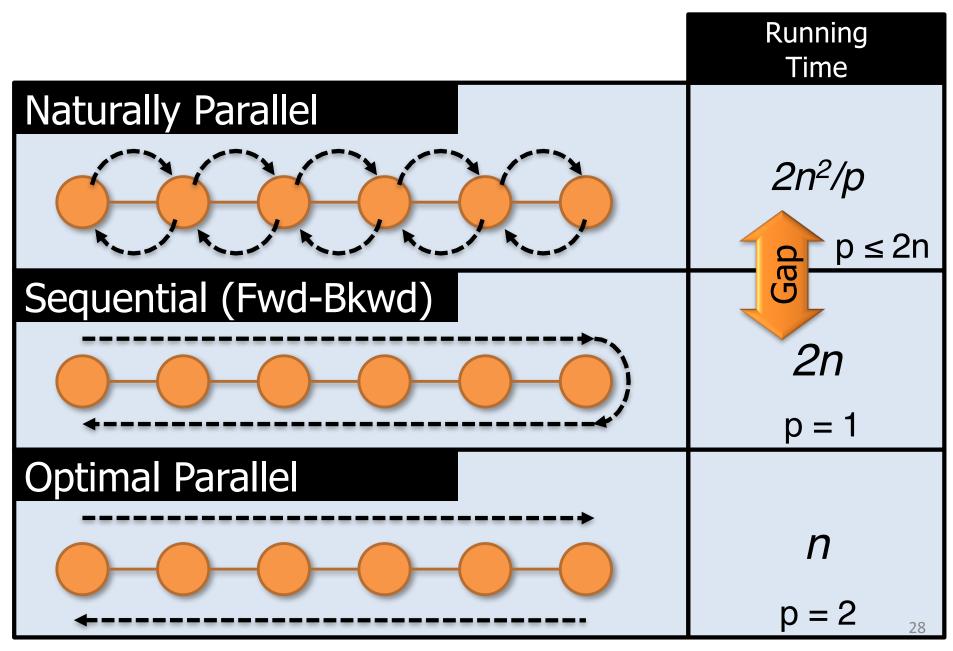
Hidden Sequential Structure

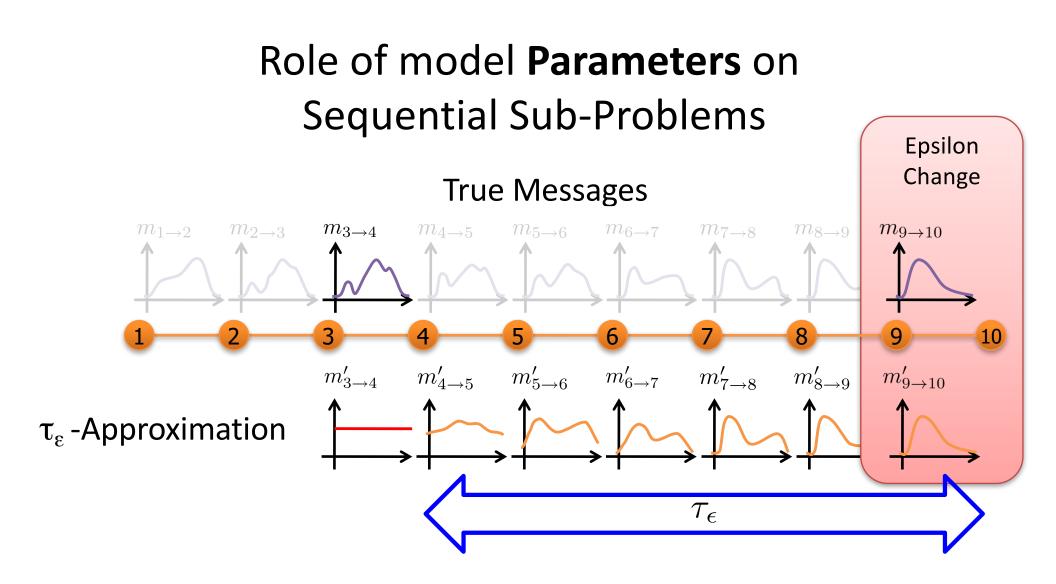


• Running Time:



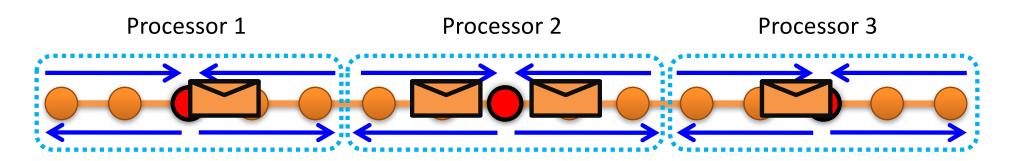
Optimal Sequential Algorithm





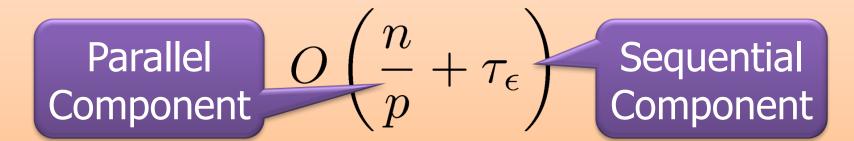
- τ_{ϵ} represents the minimal sequential sub-problem
- Captures dependence on model parameters

Optimal Parallel Scheduling



Theorem:

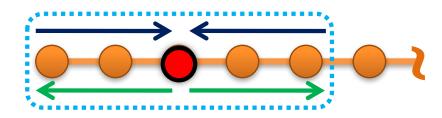
Using *p* processors this algorithm achieves a τ_{ϵ} approximation in time:



and is **optimal** for chain graphical models.

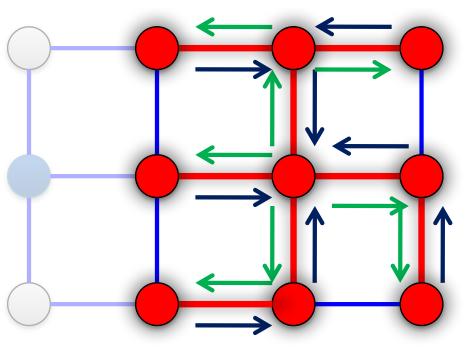
The Splash Operation

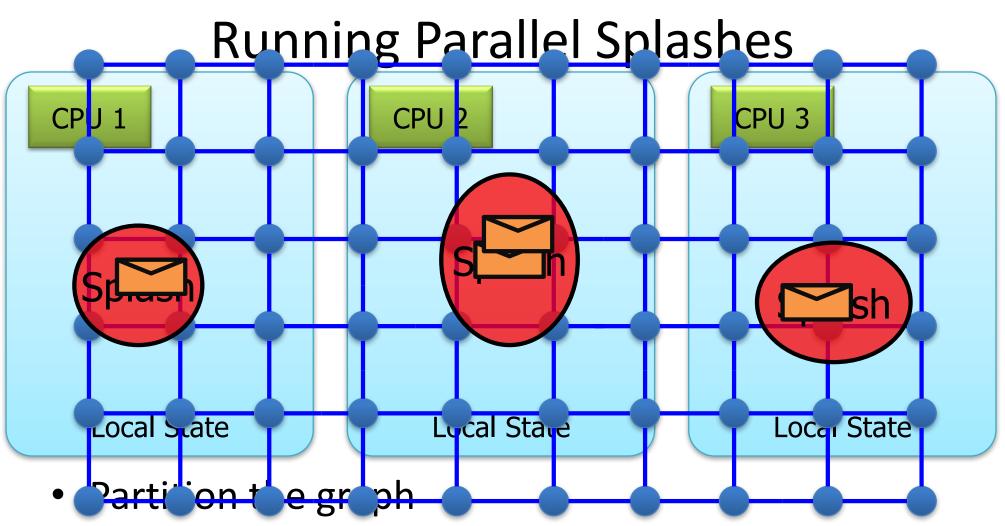
• Generalize the optimal chain algorithm:



to arbitrary cyclic graphs:

- 1) Grow a BFS Spanning tree with fixed size
- 2) Forward Pass computing all messages at each vertex
- 3) Backward Pass computing all messages at each vertex

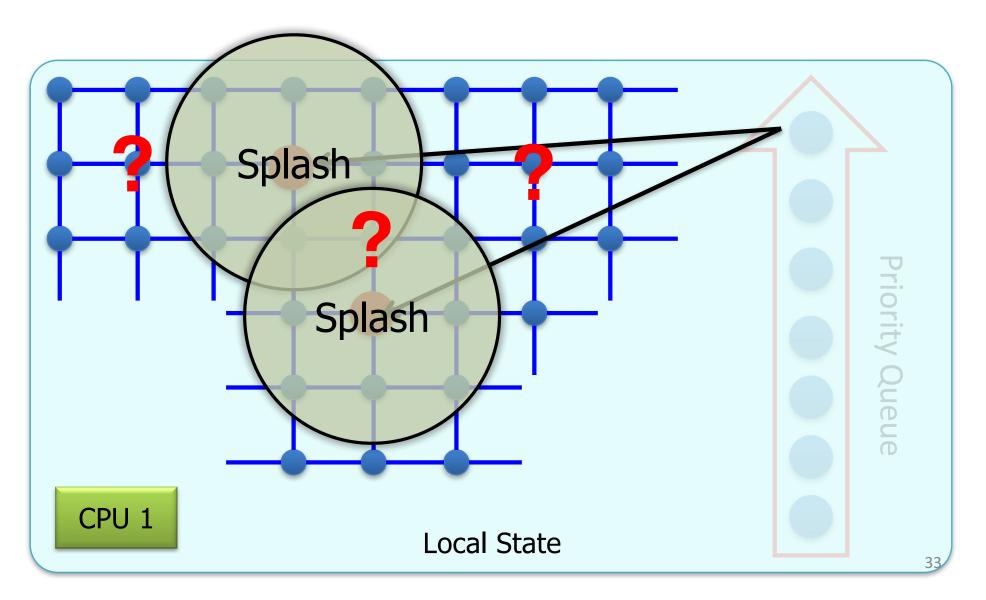




- Schedule Splashes locally
- Transmit the messages along the boundary of the partition

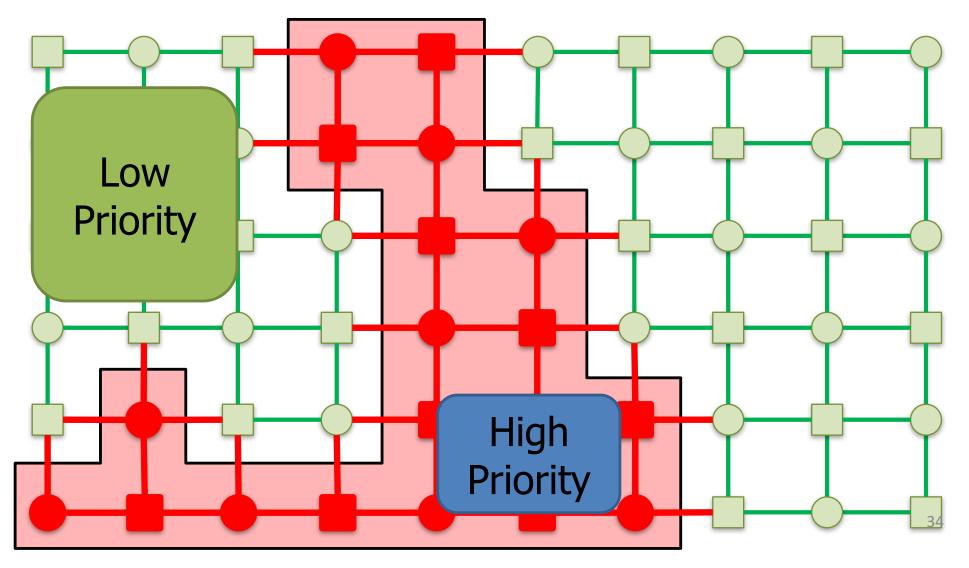
Priorities Determine the Roots

• Use a residual priority queue to select roots:

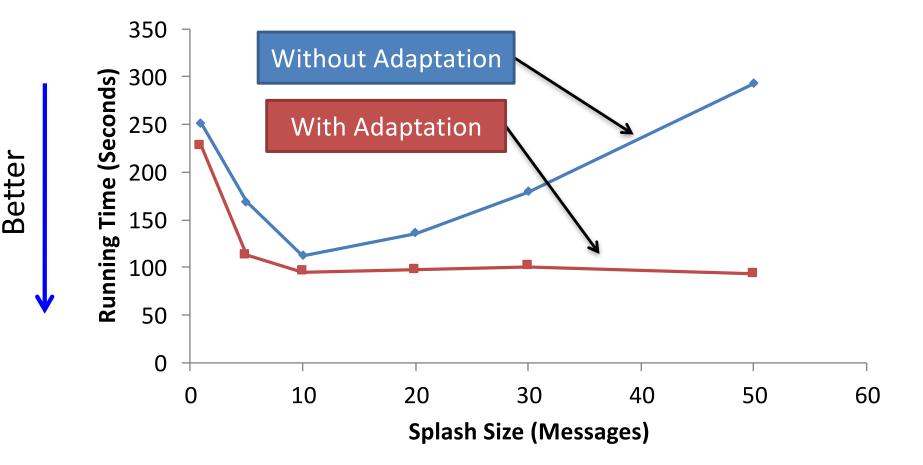


Dynamic Splashes

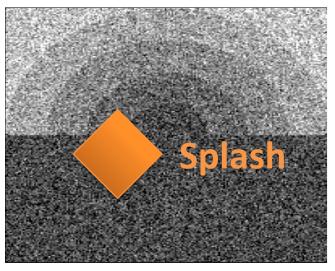
Priorities **adaptively** focus computation by determining the **shape** and **size** of each Splash



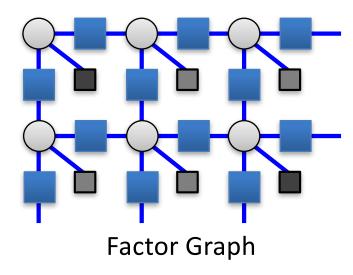
Dynamic Splashes automatically identify the **optimal** splash size



Splash Belief Propagation



Synthetic Noisy Image





Vertex Updates

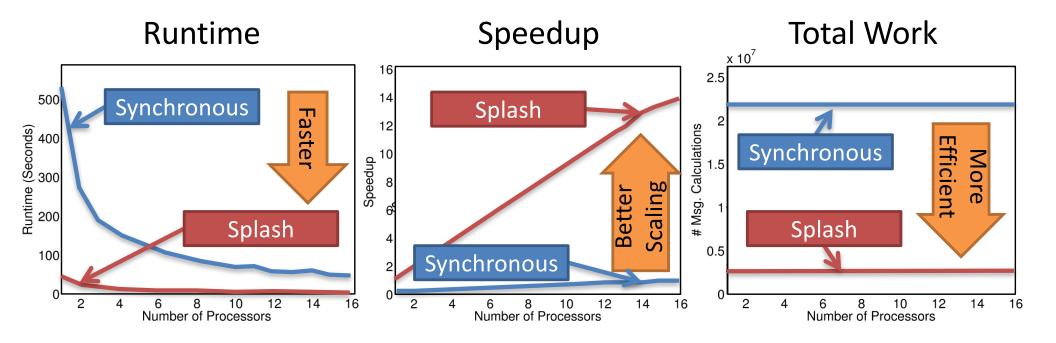
Algorithm identifies and focuses on hidden sequential structure

Evaluation

- System Design
 - Multicore and distributed implementations
 - Development was time consuming
- Evaluated on several real-world problems
 - Protein interaction and structure prediction
 - Markov Logic Networks
- Compared against several other variants
 - Faster, more efficient, more stable

Representative Results

Protein Interaction Models: 14K Vertices, 21K Factors



- SplashBP converges more often
- Achieves better prediction accuracy

Summary: Belief Propagation

- Asynchronous + Dynamic → more efficient
 - Theoretically and experimentally
 - Insight: parallelize optimal sequential algorithm
 - Tradeoff: Parallelism & Convergence
- Approximation \rightarrow Increased Parallelism
 - Exploit weak interactions (τ_{ε} approximation)
- Key Contributions:
 - Demonstrate the importance of dynamic asynchronous scheduling in parallel inference
 - Theoretical analysis of work efficiency and relationship to model structure and parameters

GrAD Methodology

• Graphical

BP updates only depend on adjacent vertices

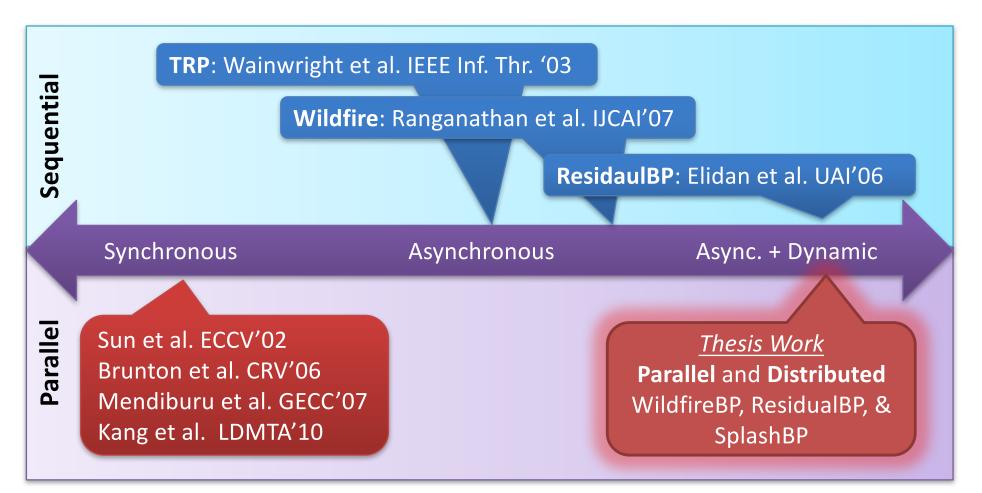
• Asynchronous

- Compute messages sequentially within Splash

• Dynamic

Priority scheduling and adaptive Splashes

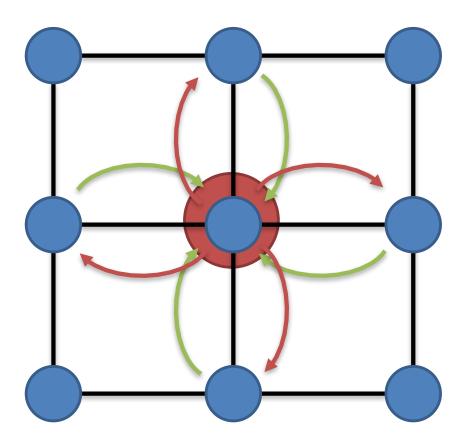
Additional Related Work

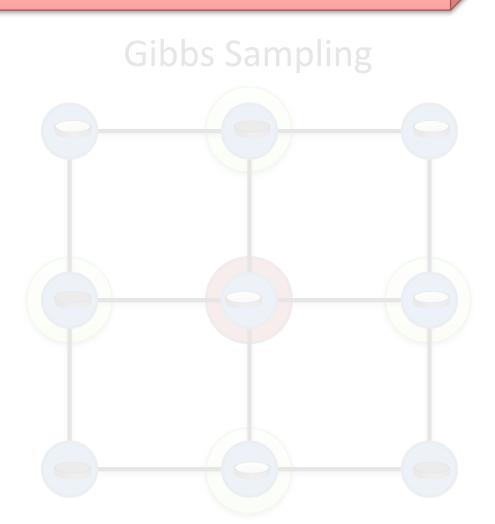


- Parallel Exact Inference: Pennock et al. UAI'98
- Approximate Messages: Ihler et al. JMLR'05

Parallel and Distributed Algorithms for Probabilistic Inference

Belief Propagation





Parallel Gibbs Sampling

An **asynchronous** Gibbs Sampler that **dynamically** addresses **strong dependencies**.

Joint Work With

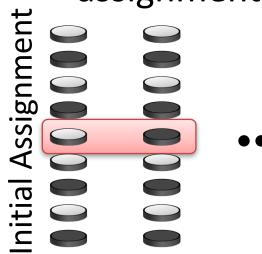
Yucheng Low Arthur Gretton Carlos Guestrin

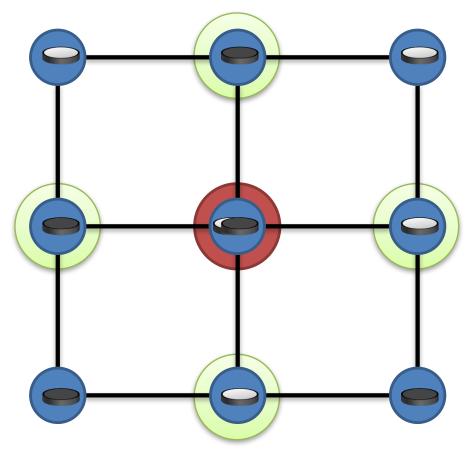
Published

AISTATS'11 (Related to work in WSDM'12)

Gibbs Sampling [Geman & Geman, 1984]

- Sequentially for each variable in the model
 - Select variable
 - Use adjacent assignments to construct a biased coin
 - Flip coin and update assignment to variable



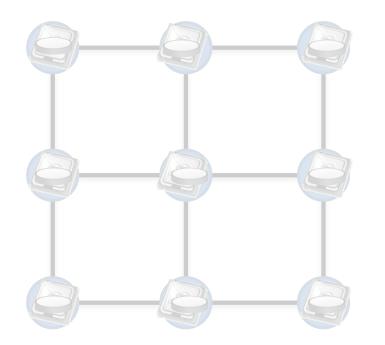


Can we sample multiple variables in **parallel**?

From the original paper on Gibbs Sampling:

"...the MRF can be divided into collections of [variables] with each collection assigned to an **independently** running **asynchronous processor**."

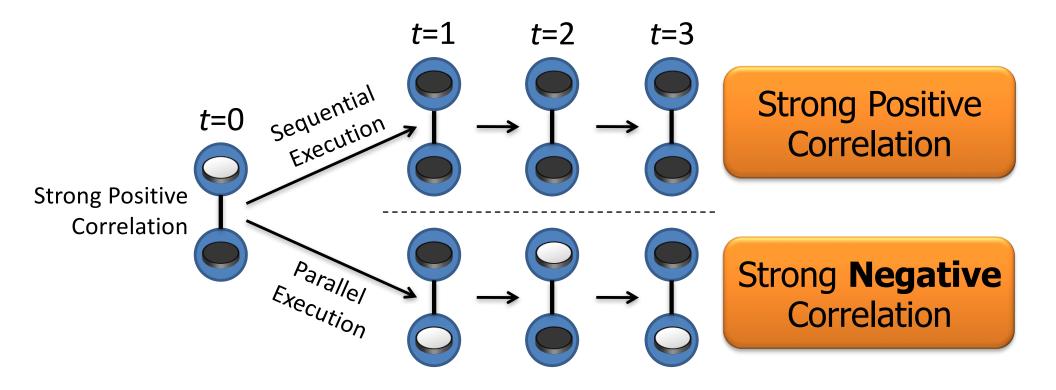
-- Stuart and Donald Geman, 1984.



Embarrassingly Parallel!

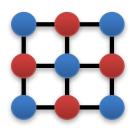
Converges to the **wrong** distribution!

The problem with **Synchronous** Gibbs sampling



 Adjacent variables cannot be sampled simultaneously.

Introduced Three Convergent Samplers



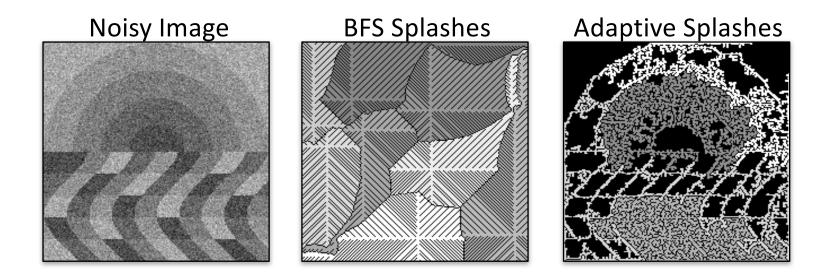
Chromatic: Use graph coloring to synchronously sample independent sets

Asynchronous: Markov Blanket Locks ensure serializable execution

Splash: Adaptively constructs thin junction tree blocks

Dynamically Prioritized Sampling

- Prioritize Gibbs updates
- Adapt the shape of the Splash to span strongly coupled variables:

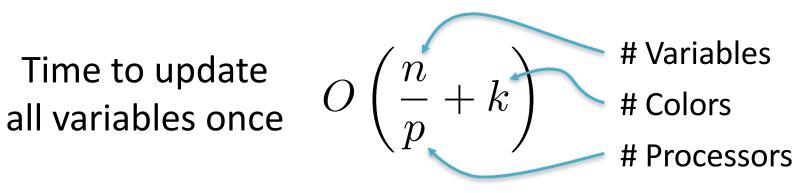


Theorem: Chromatic Sampler

 Ergodic: converges to the correct distribution Based on graph coloring of the Markov Random

Field

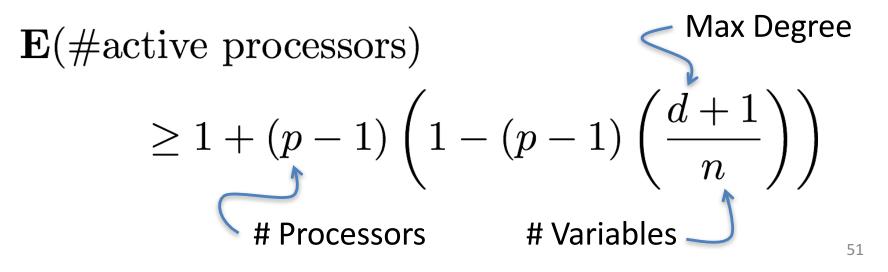
Quantifiable acceleration in mixing



Theorem

Asynchronous and Splash Gibbs Sampler

- Ergodic: converges to the correct distribution
 - Requires vanishing adaptation
 - Corrected an error in a result by Levin & Casella J.
 Multivar. Anal. '06
- Expected Parallelism:

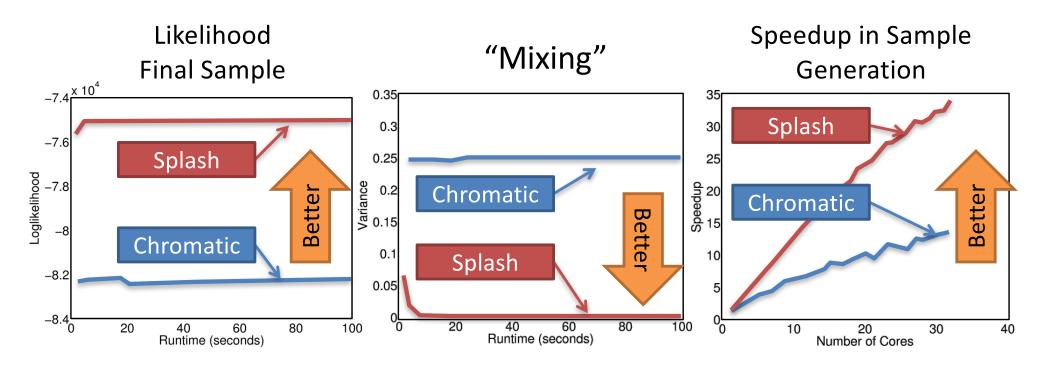


Evaluation

- Implemented multicore version:
 - Built using a GraphLab prototype
 - Substantially shorter development time
 - Novel junction tree construction algorithm
 - Markov blanket locking protocol
- Evaluated on large real-world problems

Experimental Results

Markov logic network with strong dependencies
 10K Variables
 28K Factors



• The *Splash* sampler outperforms the *Chromatic* sampler on models with **strong** dependencies

Contributions: Gibbs Sampling

- Proposed three convergent Gibbs samplers
 - Chromatic, Asynchronous, Splash
 - Spectrum partially synchronous to asynchronous
 - New algorithms for junction tree construction
- Theoretical analysis of parallel Gibbs sampling
 - Convergence of asynchronous blocking
 - Relate parallelism to model structure
 - Stationary distribution of synchronous sampler
- Experimental analysis on real-world problems and systems

GrAD Methodology

• Graphical

- Gibbs updates depend only on neighbors in MRF

Asynchronous

- Graph Coloring and Markov Blanket Locks

• Dynamic

Prioritized updates and adaptive Splash

Related Work

Ergodic (Convergent)

- Geman & Geman. Pami '84
- Trees: Hamze et al. UAI'04
- **Dynamic Blocking:** Barbu et al. IEEE Trans Pattern Analysis '05

<u>Thesis</u> Chromatic, Asynchronous, and Splash Gibbs

Parallel & Distributed

LDA & Bayesian Networks

- Newman et al. NIPS'07
- Asuncion et al. NIPS'08
- Yan et al. NIPS'09

Amr et al. WSDM'12

 Asynchronous approximations empirically – perform well

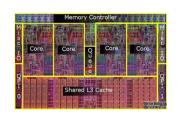
Massive Structured Problems

Probabilistic Graphical Models

Parallel and **Distributed** Algorithms for Probabilistic Inference

GraphLab & PowerGraph

Advances Parallel Hardware



Parallel Algorithms for Probabilistic **Inference**

GraphLab & PowerGraph

Parallel Hardware

Joint Work With

Yucheng Low Aapo Kyrola Haijie Gu Danny Bickson Carlos Guestrin Joe Hellerstein Guy Blelloch David O'Hallaron

> Published Results **UAI'10 VLDB'12**

How do we design and implement GrAD Algorithms

We could:

design and implement for each architecture?

– Time consuming

- Repeatedly solving the same system problems
- use high-level abstractions like MapReduce?
 - Unable to express:

GraphLab is a **Graph-Parallel** Abstraction

Map Reduce

Data-Parallel

• Independent Data

• Single Pass

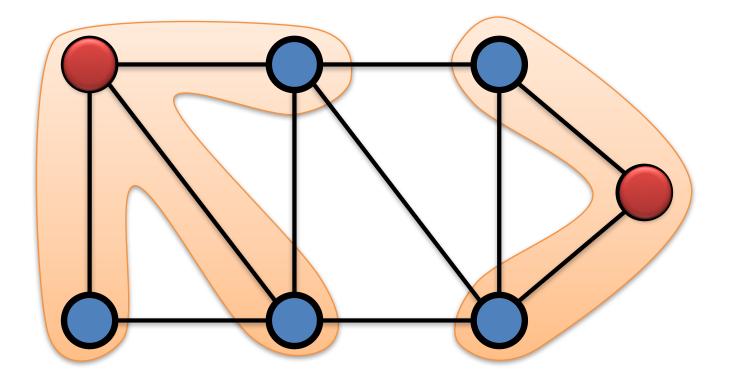
Synchronous

• Graph Structured Data

- Iterative Computation
- Dynamic + Asynchronous

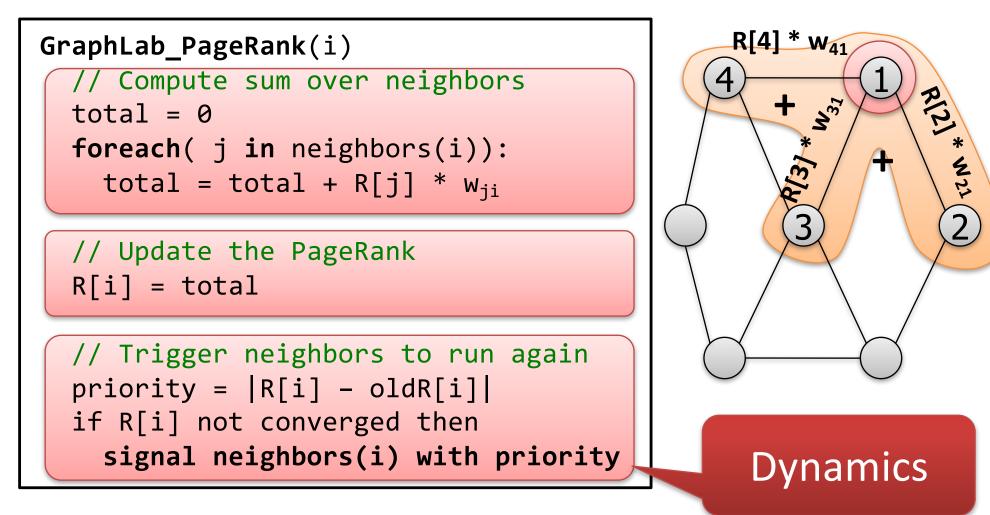
The GraphLab Abstraction

- A user-defined Vertex Program runs on each vertex
- **Graph** constrains **interaction** along edges
 - Directly read and modify the state of adjacent vertices and edges
- **Parallelism**: run multiple vertex programs simultaneously



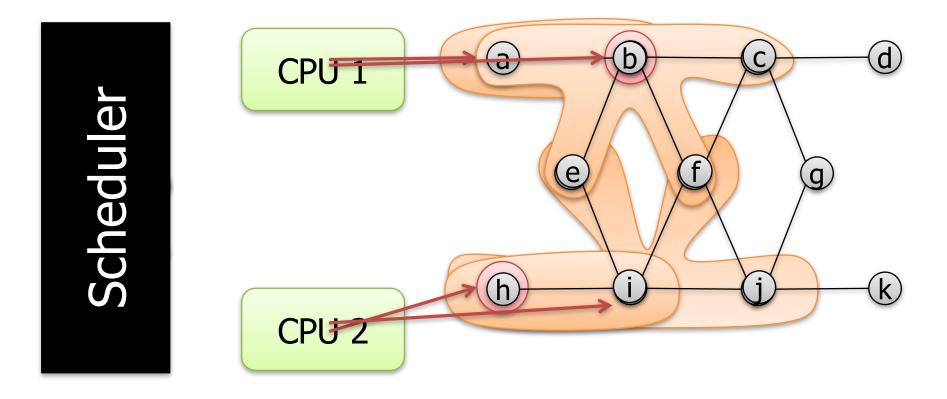
The GraphLab Vertex Program

Vertex Programs directly access adjacent vertices and edges



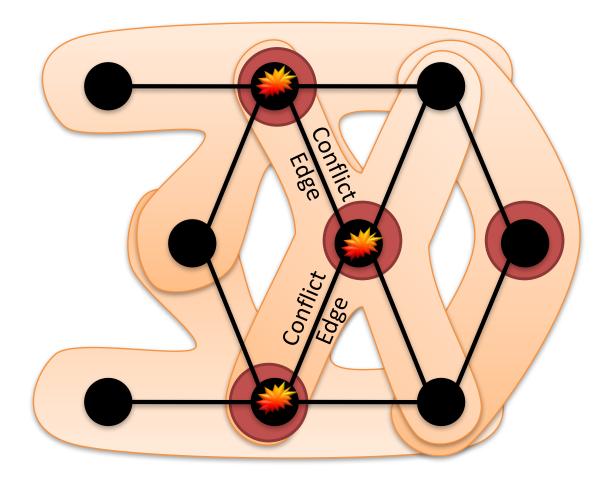
GraphLab is Asynchronous

The scheduler determines the order that vertices are executed



Scheduler can prioritize vertices.

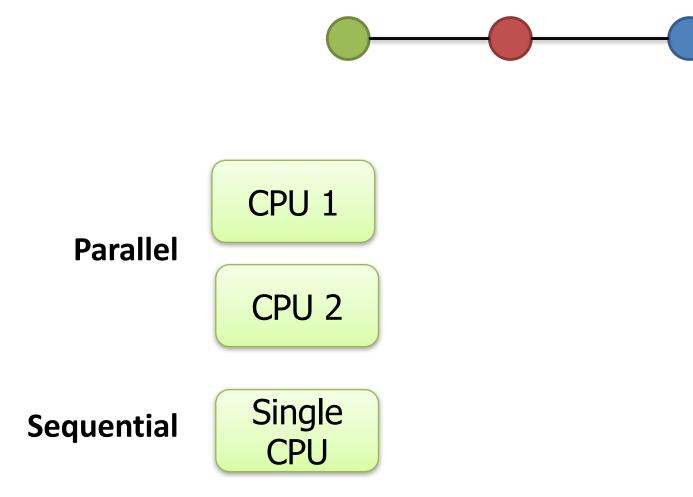
GraphLab is Serializable



• Automatically ensures serializable executions

Serializable Execution

For **each parallel execution**, there exists a **sequential execution** of vertex-programs which produces the same result.



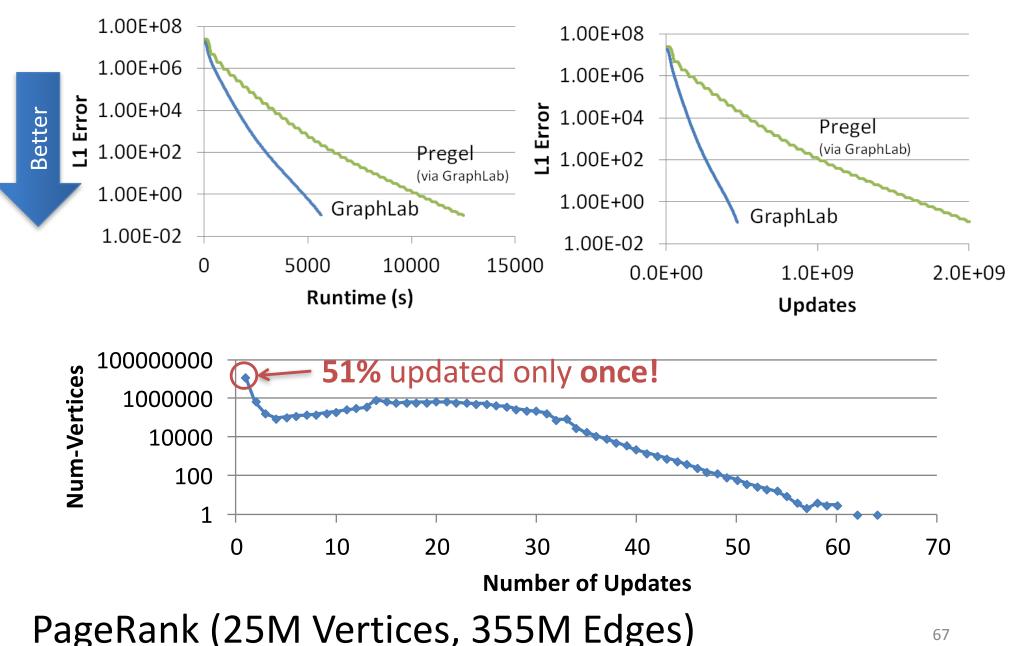
The GraphLab System

- Implemented as a C++ API

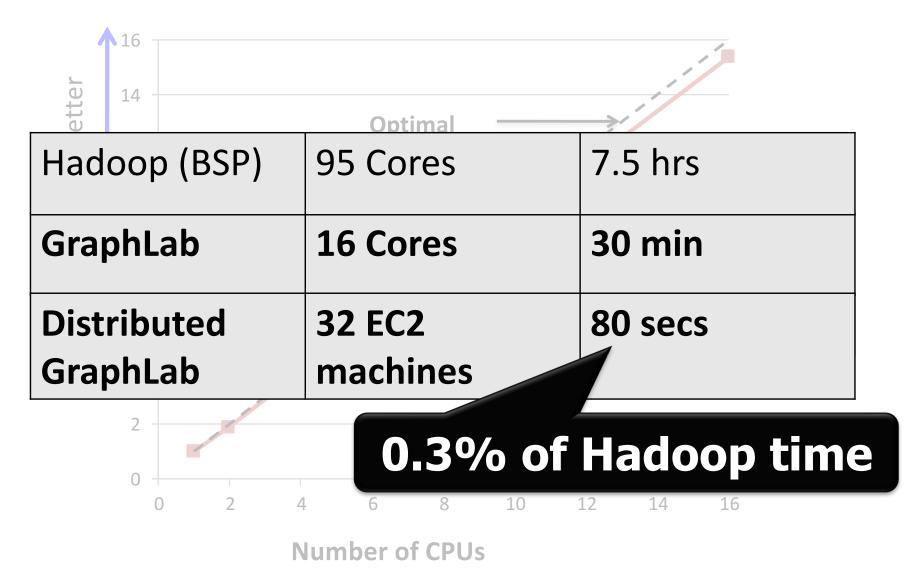
 Widely downloaded open-source project
- Multicore and distributed versions:
 - Hide Latency: Pipelined locking
 - Fault Tolerance: Chandy-Lamport Snapshot
- Tested on a wide range of ML algorithms

 ALS, BP, Gibbs, Lasso, CoEM, SVM, LDA, ...

GraphLab vs. Pregel (BSP)



Never Ending Learner Project (CoEM)



Summary: GraphLab

- Generalizes the GrAD Methodology

 ALS, BP, Gibbs, Lasso, CoEM, SVM, PageRank, LDA, ...
- **Simplifies** the *design* and *implementation* of GrAD Algorithms
- Substantially outperforms existing systems
- Key Contributions:
 - Formalized the graph-parallel setting
 - Isolates computation from movement of data
 - Strong serializability guarantees
 - Evaluation on a wide range of algorithms

Thus far... GraphLab provided exciting scaling performance

But...

We couldn't scale up to Altavista Webgraph from 2002 1.4B vertices, 6.6B edges

Parallel Algorithms for Probabilistic Inference

GraphLab & PowerGraph

Parallel Hardware

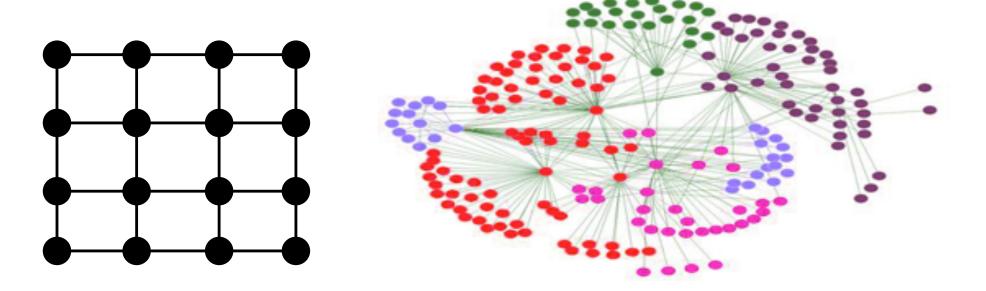
Joint Work With

Yucheng Low Aapo Kyrola Haijie Gu Danny Bickson Carlos Guestrin Joe Hellerstein Guy Blelloch David O'Hallaron

> Published Results OSDI'12

Natural Graphs Graphs derived from natural phenomena

Properties of Natural Graphs

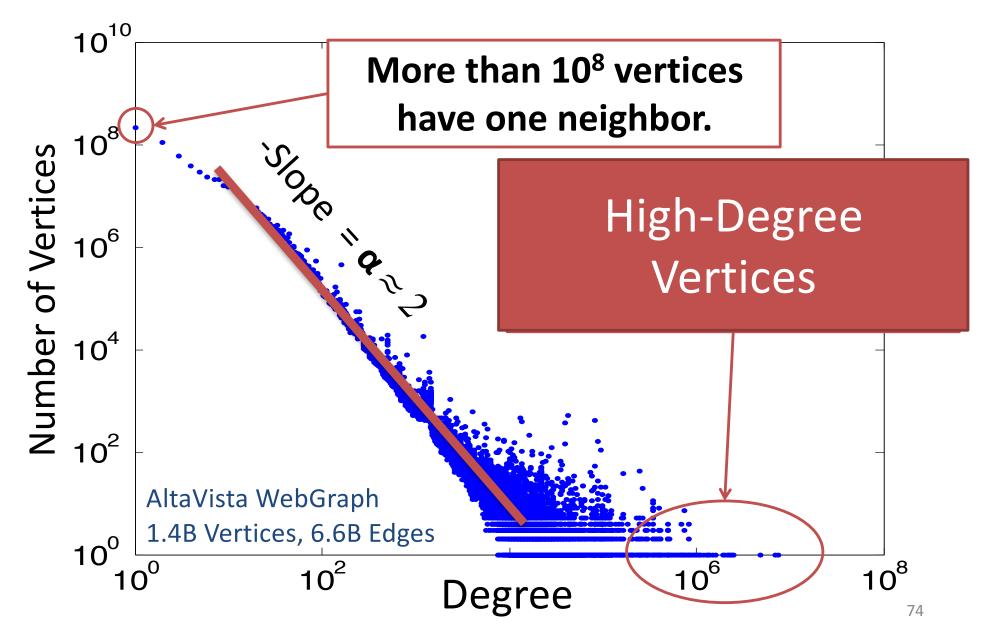


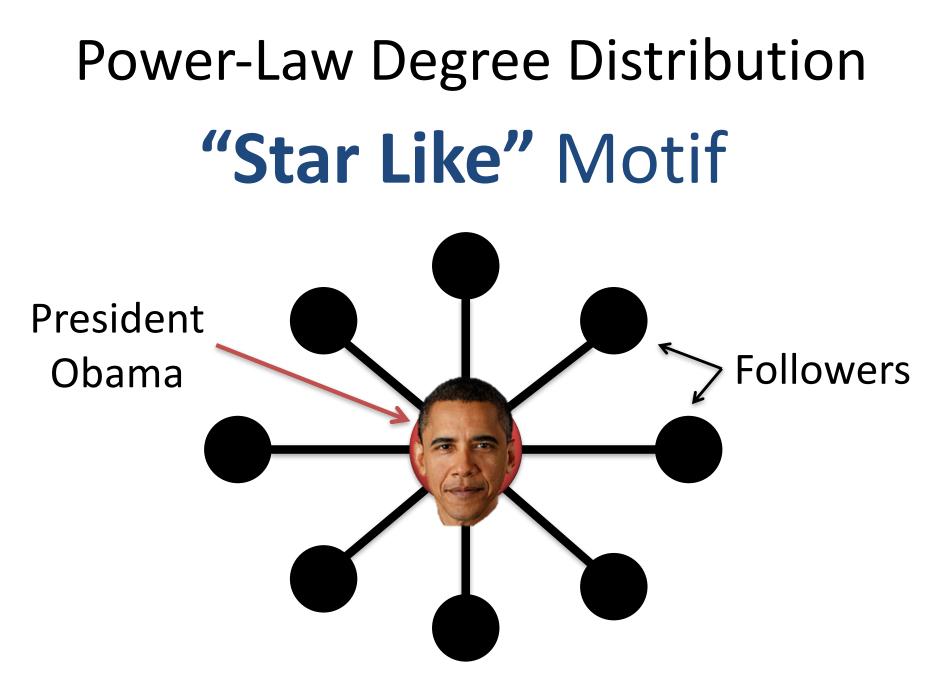
Regular Mesh

Natural Graph

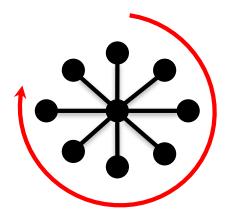
Power-Law Degree Distribution

Power-Law Degree Distribution

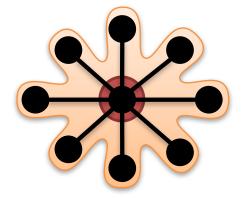




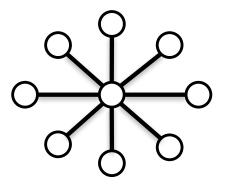
Challenges of High-Degree Vertices



Sequentially process edges



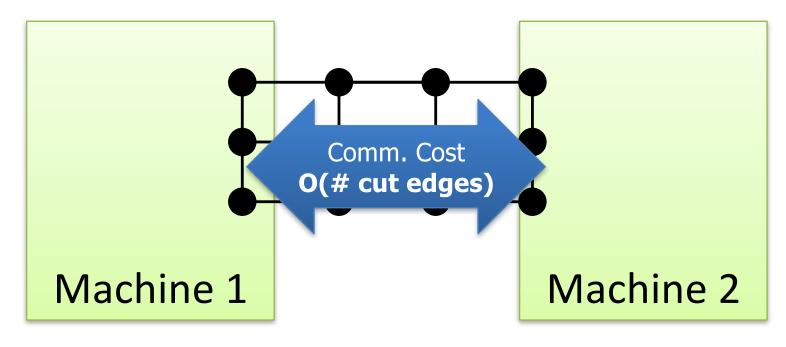
Touches a large fraction of graph



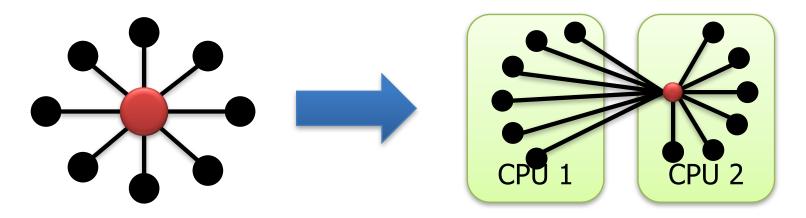
Edge meta-data too large for single machine

Graph Partitioning

- Graph parallel abstractions rely on partitioning:
 - Minimize communication
 - Balance computation and storage



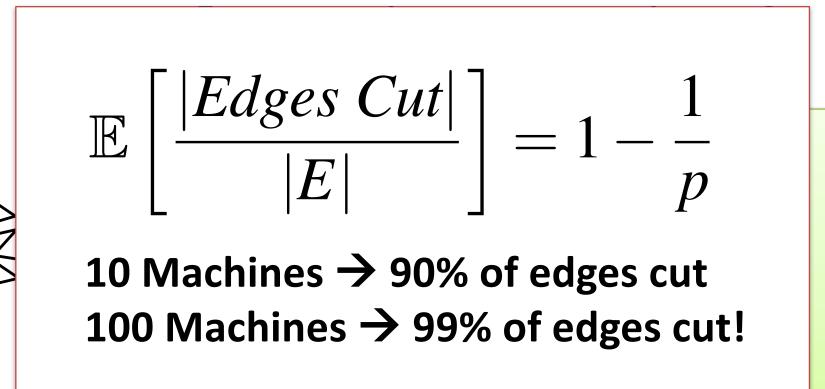
Power-Law Graphs are Difficult to Partition



- Power-Law graphs do not have **low-cost** balanced cuts [Leskovec et al. 08, Lang 04]
- Traditional graph-partitioning algorithms perform poorly on Power-Law Graphs.
 [Abou-Rjeili et al. 06]

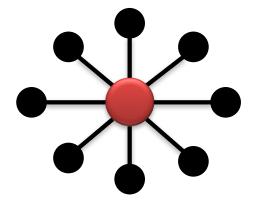
Random Partitioning

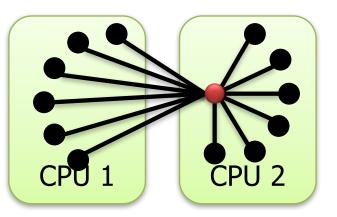
 GraphLab resorts to random (hashed) partitioning on natural graphs



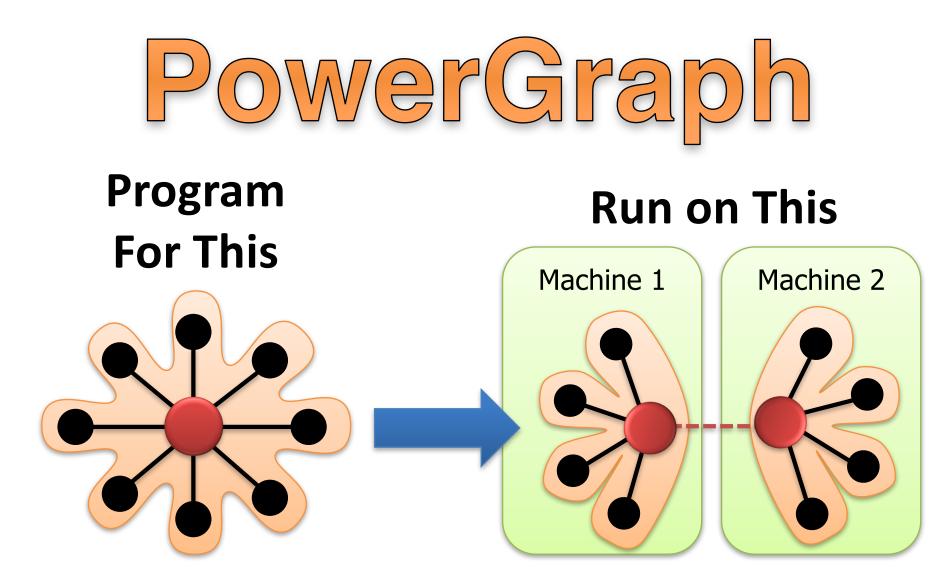
In Summary

GraphLab is not well suited for natural graphs





Low quality partitioning

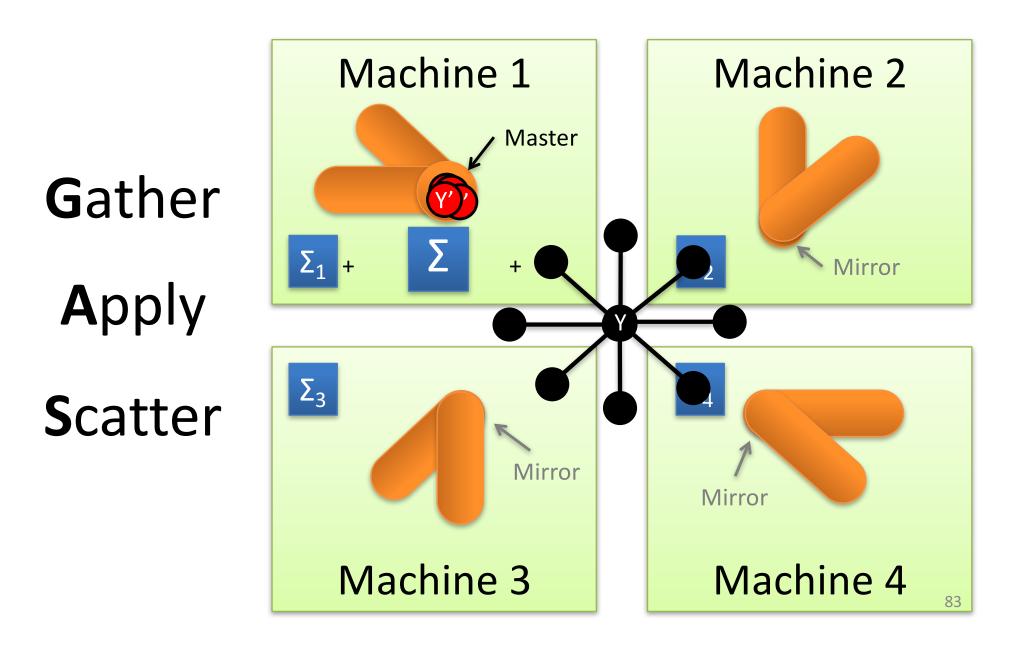


- Split High-Degree vertices
- New Abstraction → <u>Equivalence</u> on Split Vertices

A Common Pattern for Vertex-Programs

<pre>GraphLab_PageRank(i) // Compute sum over neighbors total = 0 foreach(j in neighbors(i)): total = total + R[j] * W_{ji}</pre>	Gather Information About Neighborhood
<pre>// Update the PageRank R[i] = total</pre>	Update Vertex
<pre>// Trigger neighbors to run again priority = R[i] - oldR[i] if R[i] not converged then signal neighbors(i) with priority</pre>	Signal Neighbors & Modify Edge Data

GAS Decomposition



Minimizing Communication in PowerGraph

New Theorem: For any edge-cut we can directly construct a vertex-cut which requires strictly less communication and storage.

Percolation theory suggests that power law graphs have **good vertex cuts**. [Albert et al. 2000]

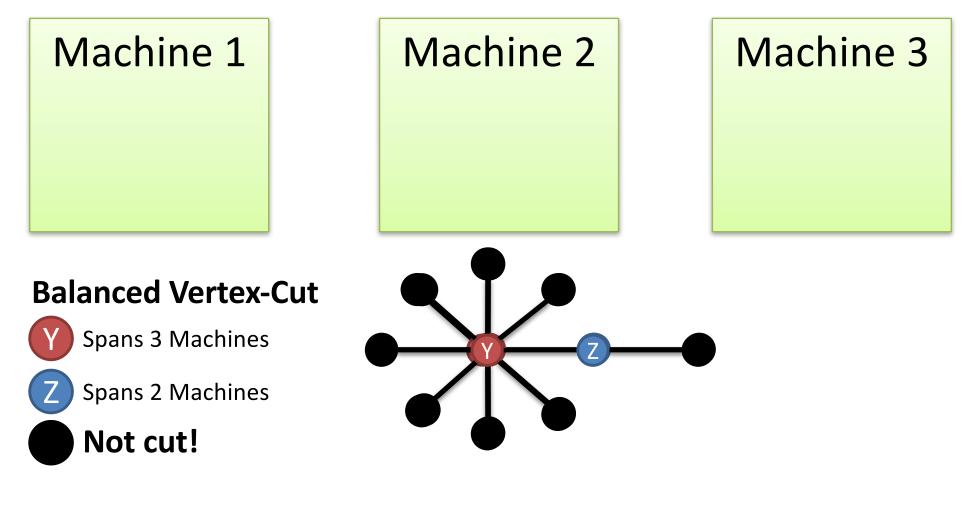
Constructing Vertex-Cuts

- Evenly assign edges to machines

 Minimize machines spanned by each vertex
- Assign each edge as it is loaded
 Touch each edge only once
- Propose two **distributed** approaches:
 - Random Vertex Cut
 - Greedy Vertex Cut

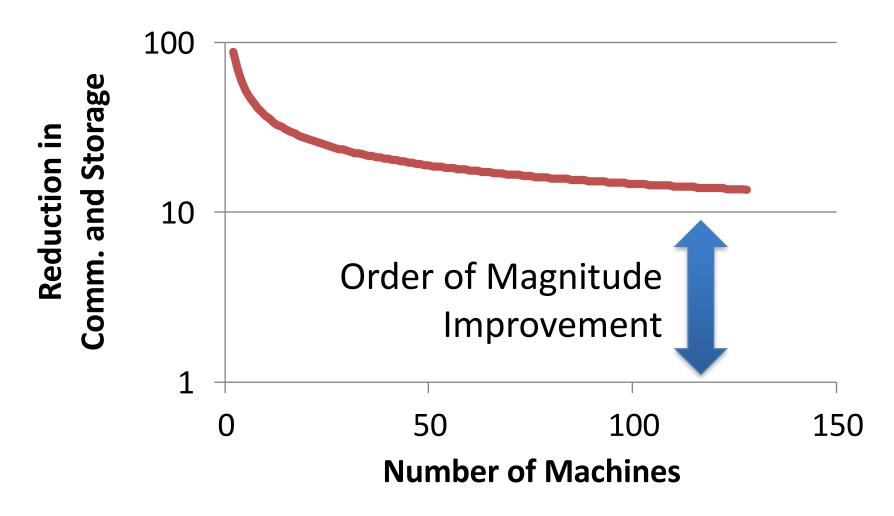
Random Vertex-Cut

Randomly assign edges to machines



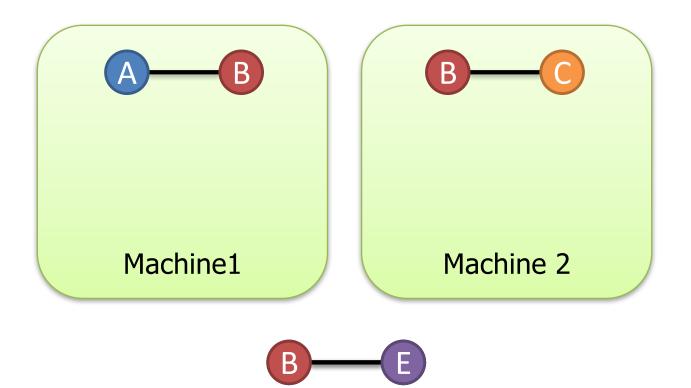
Random Vertex-Cuts vs. Edge-Cuts

• Expected improvement from vertex-cuts:

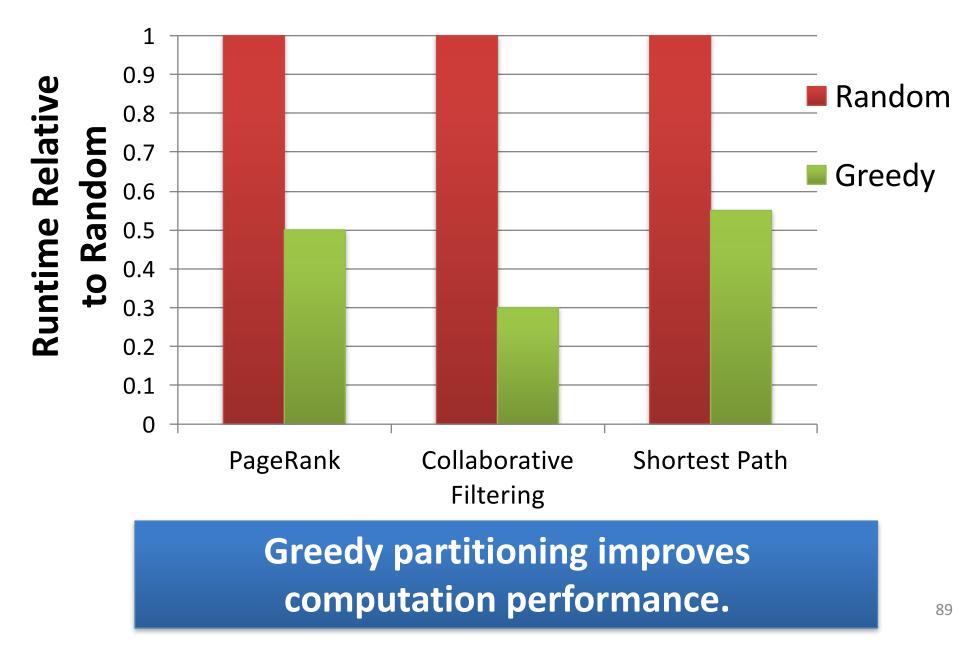


Greedy Vertex-Cuts

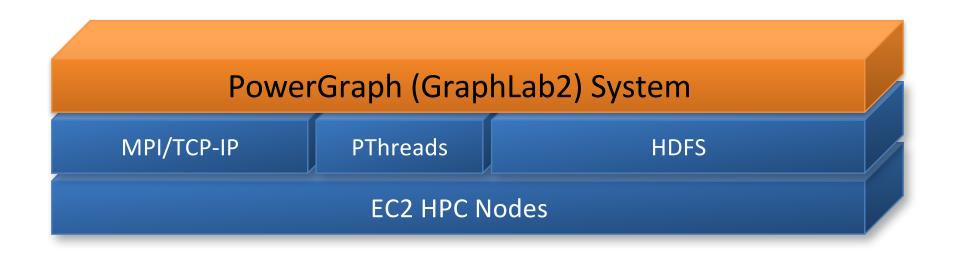
• Place edges on machines which already have the vertices in that edge.



Greedy Vertex-Cuts Improve Performance



System Design



- Implemented as C++ API
- Uses HDFS for Graph Input and Output
- Fault-tolerance is achieved by check-pointing
 Snapshot time < 5 seconds for twitter network

PageRank on the Twitter Follower Graph Natural Graph with 40M Users, 1.4 Billion Links Communication 40 35 30 Total Network (GB) 25 20 15 10 5 0 **PowerGraph** GraphLab Pregel (Piccolo) **Reduces Communication** 91 32 Nodes x 8 Cores (EC2 HPC cc1.4x)

PowerGraph is Scalable

Yahoo Altavista Web Graph (2002):

One of the largest publicly available web graphs

1.4 Billion Webpages, 6.6 Billion Links

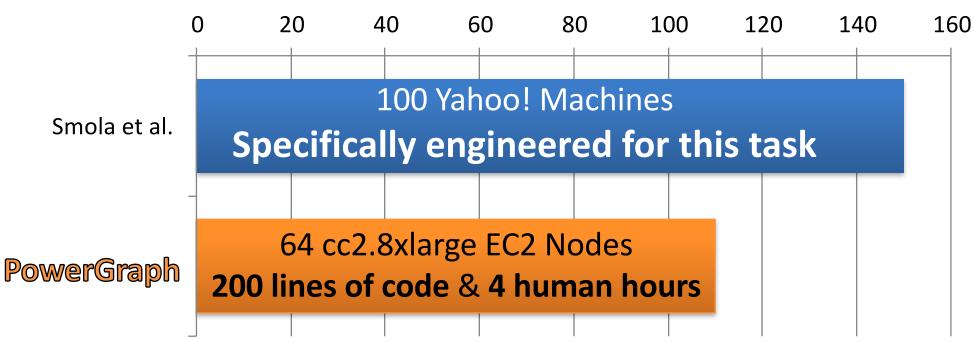
7 Seconds per Iter. 1B links processed per second 30 lines of user code

Topic Modeling

English language Wikipedia

- 2.6M Documents, 8.3M Words, 500M Tokens
- Computationally intensive algorithm

Million Tokens Per Second



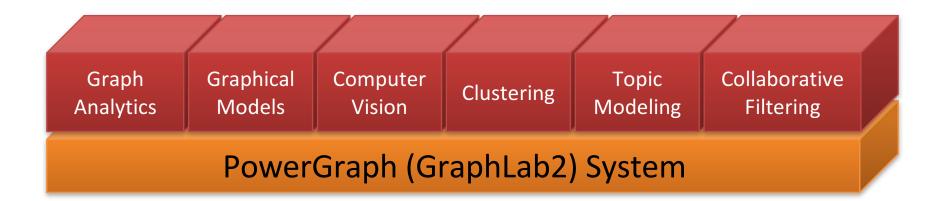
Triangle Counting on The Twitter Graph

Identify individuals with strong communities.

Broadcast O(degree²) messages per Vertex

S. Suri and S. Vassilvitskii, "Counting triangles and the curse of the last reducer," WWW'11

Machine Learning and Data-Mining Toolkits



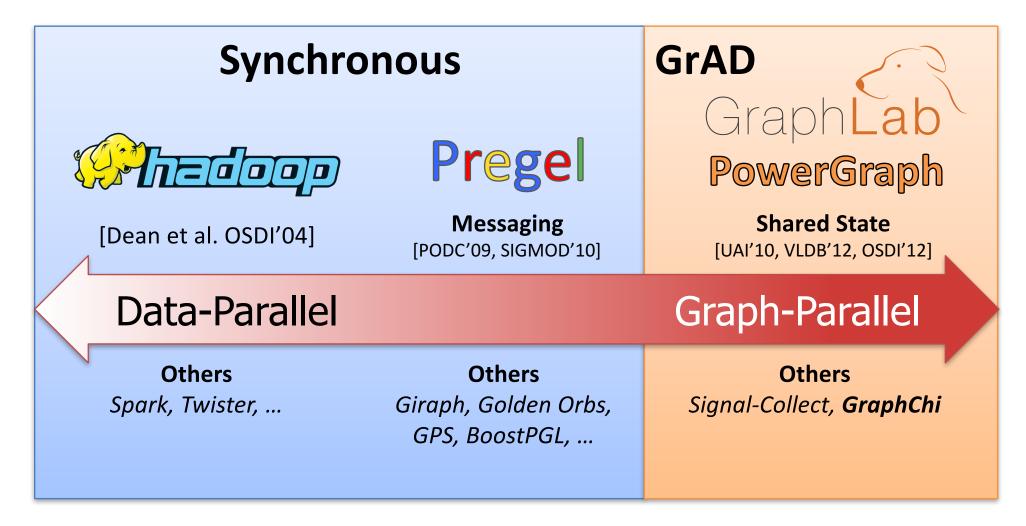
Demonstrates the Applicability of the GrAD Methodology

Summary: PowerGraph

- Identify the challenges of Natural Graphs

 High-degree vertices, Low-quality edge-cuts
- Solution PowerGraph System
 - GAS Decomposition: split vertex programs
 - Vertex-partitioning: distribute natural graphs
- PowerGraph theoretically and experimentally outperforms existing graph-parallel systems.

Related High-Level Abstractions



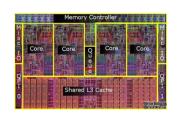
Massive Structured Problems

Probabilistic Graphical Models

Parallel and Distributed Algorithms for Probabilistic Inference

GraphLab & PowerGraph

Advances Parallel Hardware



Thesis Statment

Efficient **parallel** and **distributed** systems for probabilistic reasoning follow the **GrAD Methodology**

- 1. <u>Graphically</u> decomposition:
 - Expose parallelism and distribute state
- 2. <u>A</u>synchronous scheduling
 - Improved convergence and correctness
- 3. **Dynamic** prioritization
 - Eliminated wasted work

Observations

- Graphical models encode statistical, computational, and parallel structure
- Tradeoff: Convergence and Parallelism

 Many things can be computed in parallel
 Not all parallel computation is productive
- Approximation → Increased Parallelism
 - $-\tau_{\varepsilon}$ -approximation, approximate sampling
- Power of high-level abstractions
 - Enables the exploration of GrAD methodology

Future: Declarative Models

Models are *recursive relationships* – BP, Gibbs Sampling, PageRank, ...

$$\begin{aligned} \text{My Interests} \\ A[x_i] &= a \left(\sum_{j \in \mathcal{N}[i]} g(A[x_i], A[x_i, x_j], A[x_j]) \right) \end{aligned}$$

"Closeness" number of overlapping posts $A[x_i, x_j] = s(A[x_i], A[x_i, x_j], A[x_j])$

• System determines the optimal schedule

Future: Online Probabilistic Reasoning

The world is rapidly evolving:

Make friends and rate movies in real-time

- How do we define and maintain models?
 - Declarative specification: time invariant
 - τ_{ε} -approximation: small change \rightarrow local effect
- Exploit *Power-Law* structure in change
 - Popular items are rated more frequently
 - Exploit burstiness for better caching

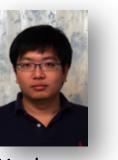
Contributions & Broader Impact

- Theoretically and experimentally characterized
 - Importance of dynamic asynchronous scheduling
 - Effect of model structure and parameters on parallelism
 - Effect of **approximation accuracy** on parallelism
 - Tradeoff between parallelism and convergence
- Developed two graph-parallel abstractions
 - GraphLab: vertex-centric view of computation
 - PowerGraph: Distributed vertex-centric view of computation
- Fostered a community around GraphLab/PowerGraph

 Substantial industry and academic interest
- Built a foundation for the future design of scalable systems for probabilistic reasoning

Thank You!

Sue Ann Hong



Yucheng Low

Aapo Kyrola

Haijie Gu

Danny Bickson

Gretto

Andreas Krause

Carlos Guestrin

Alex

Smola

Jeff Bilmes

David O'Hallaron

Guy Blelloch

Joe Hellerstein

The Select Lab & My Family