GraphX: Unifying Table and Graph Analytics

Presented by Joseph Gonzalez

Joint work with Reynold Xin, Daniel Crankshaw, Ankur Dave, Michael Franklin, and Ion Stoica

IPDPS 2014

Graphs are Central to Analytics

PageRank: Identifying Leaders

$$R[i] = 0.15 + \sum_{j \in \text{Nbrs}(i)} w_{ji} R[j]$$

Rank of user *i*

Weighted sum of neighbors' ranks

Update ranks in parallel

Iterate until convergence

Mean Field Algorithm

Recommending Products

Low-Rank Matrix Factorization:

Iterate:

$$f[i] = \arg\min_{w \in \mathbb{R}^d} \sum_{j \in \text{Nbrs}(i)} (r_{ij} - w^T f[j])^2 + \lambda ||w||_2^2$$

The Graph-Parallel Pattern

Many Graph-Parallel Algorithms

- Collaborative Filtering
- MACHINE

LEARNING

- Community Detection
 SOCIAL NETWORK
 - K-CANALYSISON
- - Personalized PageRank
 Shortest Path

 - **ALGORITHMS**

Graph-Parallel Systems

Expose specialized APIs to simplify graph programming.

"Think like a Vertex."

- Pregel [SIGMOD'10]

The Pregel (Push) Abstraction

Vertex-Programs interact by sending messages.

```
Pregel_PageRank(i, messages) :
  // Receive all the messages
 total = 0
 foreach( msg in messages) :
    total = total + msg
  // Update the rank of this vertex
  R[i] = 0.15 + total
  // Send new messages to neighbors
 foreach(j in out neighbors[i]) :
    Send msg(R[i]) to vertex j
```


The GraphLab (Pull) Abstraction

Vertex Programs directly access adjacent vertices and edges

```
GraphLab_PageRank(i)

// Compute sum over neighbors
total = 0
foreach( j in neighbors(i)):
  total = total + R[j] * w<sub>ji</sub>

// Update the PageRank
R[i] = 0.15 + total
```

Data movement is managed by the system and not the user.

Iterative Bulk Synchronous Execution

Graph-Parallel Systems

Expose specialized APIs to simplify graph programming.

Exploit graph structure to achieve orders-ofmagnitude performance gains over more general data-parallel systems.

PageRank on the Live-Journal Graph

Spark is 4x faster than Hadoop GraphLab is 16x faster than Spark

Triangle Counting on Twitter

40M Users, 1.4 Billion Links

Counted: 34.8 Billion Triangles

Hadoop [WWW']]

1536 Machines423 Minutes

GraphLab

64 Machines15 Seconds

 $1000 \times Faster$

PageRank

Tables

Graphs

Separate Systems to Support Each View

Graph View

Having separate systems for each view is difficult to use and inefficient

Difficult to Program and Use

Users must Learn, Deploy, and Manage multiple systems

Leads to brittle and often complex interfaces

Inefficient

Extensive data movement and duplication across the network and file system

Limited reuse internal data-structures across stages

GraphX Solution: Tables and Graphs are views of the same physical data

Each view has its own operators that exploit the semantics of the view to achieve efficient execution

Graphs -> Relational Algebra

- I. Encode graphs as distributed tables
- 2. Express graph computation in relational algebra
- 3. Recast graph systems optimizations as:
 - I. Distributed join optimization
 - 2. Incremental materialized maintenance

Integrate Graph and Table data processing systems.

Achieve performance parity with specialized systems.

Distributed Graphs as Distributed Tables

Table Operators

Table operators are inherited from Spark:

map	reduce	sample
filter	count	take
groupBy	fold	first
sort	reduceByKey	partitionBy
union	groupByKey	mapWith
join	cogroup	pipe
leftOuterJoin	cross	save
rightOuterJoin	zip	

Graph Operators

```
class Graph [ V, E ] {
   def Graph(vertices: Table[ (Id, V) ],
              edges: Table[ (Id, Id, E) ])
   def vertices: Table[ (Id, V) ]
   def edges: Table[ (Id, Id, E) ]
   def triplets: Table [ ((Id, V), (Id, V), E) ]
   def reverse: Graph[V, E]
   def subgraph(pV: (Id, V) => Boolean,
                 pE: Edge[V, E] \Rightarrow Boolean): Graph[V, E]
   def mapV(m: (Id, V) \Rightarrow T): Graph[T, E]
   def mapE(m: Edge[V, E] \Rightarrow T): Graph[V, T]
   def joinV(tb]: Table [(Id, T)]): Graph[(V, T), E]
   def joinE(tbl: Table [(Id, Id, T)]): Graph[V, (E, T)]
   def mrTriplets(mapF: (Edge[V, E]) \Rightarrow List[(Id, T)],
                    reduceF: (T, T) \Rightarrow T: Graph[T, E]
```

Triplets Join Vertices and Edges

The triplets operator joins vertices and edges:

SELYECTS s.ld, d.ld, index, e.P, d.P Edges

FROM edges AS E AS SOCIO B

JOIN Pertices AS SOCIO Edges

ON escld = s.los And De.dstld = B.los And De.dstld = B

SELECT t.dstld, reduce(map(t)) AS sum FROM triplets AS t GROUPBY t.dstld

Example: Oldest Follower

Calculate the number of older followers for each user?

```
val olderFollowerAge = graph
   .mrTriplets(
    e => // Map
    if(e.src.age < e.dst.age) {
        (e.srcId, 1)
        else { Empty }
    ,
        (a,b) => a + b // Reduce
    )
    .vertices
```


We express enhanced Pregel and GraphLab abstractions using the GraphX operators in less than 50 lines of code!

Enhanced Pregel in GraphX

```
messageSum
pregelPR(i,
                               // Receive all the messages
                               total = 0
                               foral = 0
foreach( msg in messageList):
                                                    total = total + msg
                             // Update the rank of this vertex
R[i] = 0.15 + total combineMsg(a, b):
                       ndus of the stilles sages the sages or the sages of the s
```

Require Message Combiners

Remove Message
Computation
from the
Vertex Program

PageRank in GraphX

```
// Load and initialize the graph
val graph = GraphBuilder.text("hdfs://web.txt")
val prGraph = graph.joinVertices(graph.outDegrees)
// Implement and Run PageRank
val pageRank =
  prGraph.pregel(initialMessage = 0.0, iter = 10)(
    (oldV, msgSum) \Rightarrow 0.15 + 0.85 * msgSum,
    triplet => triplet.src.pr / triplet.src.deg,
    (msgA, msgB) => msgA + msgB)
```

Join Elimination

Identify and bypass joins for unused triplet fields

```
sendMsg(i→j, R[i], R[j], E[i,j]):
  // Compute single message
  return msg(R[i]/E[i,j])
```


We express the Pregel and GraphLab *like* abstractions using the GraphX operators in less than 50 lines of code!

By composing these operators we can construct entire graph-analytics pipelines.

Example Analytics Pipeline

```
// Load raw data tables
val verts = sc.textFile("hdfs://users.txt").map(parserV)
val edges = sc.textFile("hdfs://follow.txt").map(parserE)
// Build the graph from tables and restrict to recent links
val graph = new Graph(verts, edges)
val recent = graph.subgraph(edge => edge.date > LAST_MONTH)
// Run PageRank Algorithm
val pr = graph.PageRank(tol = 1.0e-5)
// Extract and print the top 25 users
val topUsers = verts.join(pr).top(25).collect
topUsers.foreach(u => println(u.name + '\t' + u.pr))
```

The GraphX Stack (Lines of Code)

Performance Comparisons

Live-Journal: 69 Million Edges

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 3x slower than GraphLab

GraphX scales to larger graphs

Twitter Graph: 1.5 Billion Edges

Runtime (in seconds, PageRank for 10 iterations)

GraphX is roughly 2x slower than GraphLab

- » Scala + Java overhead: Lambdas, GC time, ...
- » No shared memory parallelism: 2x increase in comm.

PageRank is just one stage....

What about a pipeline?

A Small Pipeline in GraphX

Timed end-to-end GraphX is faster than GraphLab

Status

Part of Apache Spark

In production at several large technology companies

GraphX: Unified Analytics

New API

Blurs the distinction between Tables and Graphs

New System

Combines Data-Parallel Graph-Parallel Systems

Enabling users to easily and efficiently express the entire graph analytics pipeline

A Case for Algebra in Graphs

A standard algebra is essential for graph systems:

• e.g.: SQL → proliferation of relational system

By embedding graphs in relational algebra:

- Integration with tables and preprocessing
- Leverage advances in relational systems
- Graph opt. recast to relational systems opt.

Conclusions

Composable domain specific views and operators

Single system that efficiently spans the pipeline

Graphs through the lens of database systems

- » Graph-Parallel Pattern → Triplet joins in relational alg.
- » Graph Systems → Distributed join optimizations

Joseph E. Gonzalez jegonzal@eecs.berkeley.edu

http://tinyurl.com/ampgraphx

Thanks!

http://amplab.cs.berkeley.edu/projects/graphx/

ankurd@eecs.berkeley.edu crankshaw@eecs.berkeley.edu rxin@eecs.berkeley.edu jegonzal@eecs.berkeley.edu

Recommending Products

Low-Rank Matrix Factorization:

Iterate:

$$f[i] = \arg\min_{w \in \mathbb{R}^d} \sum_{j \in \text{Nbrs}(i)} (r_{ij} - w^T f[j])^2 + \lambda ||w||_2^2$$

Mean Field Algorithm

GraphX System Design

Caching for Iterative mrTriplets

Incremental Updates for Iterative mrTriplets

Aggregation for Iterative mrTriplets

Reduction in Communication Due to Cached Updates

Connected Components on Twitter Graph

Benefit of Indexing Active Edges

Connected Components on Twitter Graph

Additional Query Optimizations

Indexing and Bitmaps:

- » To accelerate joins across graphs
- » To efficiently construct sub-graphs

Substantial Index and Data Reuse:

- » Reuse routing tables across graphs and sub-graphs
- » Reuse edge adjacency information and indices