GraphX: Unifying Table and
Graph Analytics

Presented by Joseph Gonzalez

Joint work with Reynold Xin, Daniel Crankshaw, Ankur Dave,
Michael Franklin, and lon Stoica

IPDPS 2014

PageRank

PageRank: ldentifying Leaders

R[] =015+ » wjR[j]

Rank of
user i Weighted sum of

neighbors’ ranks

Update ranks in parallel

terate until convergence

Mean Field Algorithm

Sum over
Neighbors

A

|
bi(zi) o< ¢;(x;) exp (Z f(xi,b)

71EN;

f(@i,b) = bi(z;)log ¢ j(wi, z;)

Recommending Products

L ow-Rank Matrix Factorization:

f(3)

Users

Users
)
=)

\H

=
User Factors (U)
() SJO1DB SIAOA|

Movies l]

lterate:

S (ry —wT Fl)T 4 Alfwl]|3

jENDrs(2)

7| = arg min
fli] = arg min

5

The Graph-Parallel Pattern

o
Model / Alg.

State

Computation depends
only on the neighbors

Many Graph-Parallel Algorithms

SOCIAL NETWORK
ANALYSIS

MACHINE
LEARNING GRAPH

ALGORITHMS

Graph-Parallel Systems

C\ / L/

S 43?-30'

) (]

@

T ORI (N

Ve VS -

R \
regel s=ais Grapnhlab

oogle AP A C H E
GIRAPH

Expose specialized APIs to simplify graph
brogramming.

“Inhink like a Vertex."

- Pregel [SIGMOD'| 0]

The Pregel (Push) Abstraction

Vertex-Programs interact by sending messages.

Pregel PageRank(i, messages) :
" // Receive all the messages
total = ©
foreach(msg in messages) :

total = total + msg
o J

/ // Update the rank of this vertex
R[i] = ©.15 + total

\

f // Send new messages to neighbors
foreach(j in out_neighbors[i]) :
Send msg(R[i]) to vertex j

Malewicz et al.

10

The GraphlLab (Pull) Abstraction

Vertex Programs directly access adjacent vertices and edges

GraphLab_PageRank (i)

" // Compute sum over neighbors

total = ©

foreach(j in neighbors(i)):
total = total + R[J] * wy;

o

(// Update the PageRank
R[i] = ©.15 + total

Data movement 1s managed by the system
and not the user.

[terative Bulk Synchronous Execution

Compute Communicate

JaldJeq

Graph-Parallel Systems

C\ / L/

RPN Ly

o ()

@

OB "’.': { §

Ve v -

TS \
regel &=ain Grapnlab

oogle AP A CH E
GIRAPH

Expose specialized APIs to simplify graph
brogramming.

Exploit graph structure to achieve orders-of-
magnitude performance gains over more general
data-parallel systems.

PageRank on the Live-Journal Graph

MahoutHadoop N <o

0 200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for 10 iterations)

Spark is 4x faster than Hadoop
GraphlLab is | 6x faster than Spark

Triangle Counting on Twitter
40M Users, 1.4 Billion Links

Counted: 34.8 Billion Triangles

mElslolels) 1536 Machines
YOWIYVARRl 423 Minutes

64 Machines
Graphlab | |5 Seconds -

15
S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11

PageRank

lables

Top 20 Pages

Text
Table
Word Topics
\/\/orleopic
Discussion User Community
Table Community Topic

]
[

Graphs

Hyperlinks PageRank

G

Term-Doc Topic Model
Graph (LDA)

=

Community
Editor Graph Detection

M K

Separate Systems to Support Each View
lable View

" N

Graph View

(X 1]

:a‘o"'o

.‘!!o Q) "

@z 2%
See b

= W

a0t S)

8 a!
& SON G308

o
Pregel GraphlLa b\

AAAAAA

GIRAPH

Dependency Graph

Result

Having separate systems
for each view s
difficult to use and inefficient

Difficult to Program and Use

Users must Learn, Deploy, and Manage
multiple systems

@ (T \ O
1t % & 0:_:;) :;; {
‘g é‘ uIVE SPQF K Fowed Gra O NnLa b\'

AAAAAA

L eads to brittle and often
complex interfaces

21

Inefficient

Extensive data movement and duplication across

the network and file system

Sl

<

. CﬂaphLab\

ﬁ @8 b

HDFS

Limited reuse internal data-structures
across stages

g

-

22

GraphX Solution: Tables and Grap

NS 4l

views of the same physical da

Ld

L

Table View Graph View

Representation

Fach view has its own operators

that

exploit the semantics of the view
to achieve efficient execution

Graphs = Relational Algebra

|. Encode graphs as distributed tables
2. Express graph computation In relational algebra

3. Recast graph systems optimizations as:

|, Distributed join optimization
2. Incremental materialized maintenance

Integrate Graph and Achieve performance
Table data processing parity with specialized
systems. systems.

Distributed Graphs as Distributed Tables
Property Graph V_EEEX R%J;ligg Edge lable
Part, | @
o0 o= oo
. \ [:Pglo e
ZD%CW{ Heur%x E @ @
\ P N [Ae6)
¢ & o i
(o)

Part. 2 G/ @ @

Table Operators

Table operators are inherited from Spark:

map reduce sample
filter count take
groupBy fold first

sort reduceByKey partitionBy
union groupByKey mapwith
join cogroup pipe
leftOuterJoin Cross save

rightouterJoin Z1ip

Graph Operators

class Graph [v, E] {

?

def Graph(vertices: Table[(1d, V) 1,
edges: Tablel (1d, 1d, E)])

27

Iriplets Join Vertices and tdges
The triplets operator joins vertices and edges:

SELECT s.Id, d.Id'=eP, e.P, d.P Edges

FRONiRdges ASe o
JOINGrtices A@svérlices A

ON e(gicld = s. I@g@@ dstld @—Iﬂ—@
The m%plets OperEor AUER ad] ac

SELECT t.dstld, reduce(map(t)) AS sum
FROM triplets AS t GROUPBY t.dstld

Calculate the number of older
followers for each user?

val olderFollowerAge = graph
.mrTriplets(

e => // Map
1f(e.src.age < e.dst.age) {
(e.srcid, 1)

else { Empty }

’(a,b) =>a + b // Reduce
)

.vertices

23

B

-xample: Oldest Follower

19

30

42

75

We express enhanced Pregel and Graphlab
abstractions using the GraphX operators
in less than 50 lines of codel

30

Enhanced Pregel in GraphX

PR (; _ (Require Message
pregelPR(1, W)\ Combiners

// Receive all the messages

total = 0
foreach(msg i%%t) :

total = total + msg

// Update the rank of this vertex
R[i] = 0.15 + total ~

combineMsg(a, Remove Message

b):
/ W& f. .
B 4 e

ret el R Q1AL 47]) to vertex

N Vertex Program)

Malewicz et al. [PODC09, SIGMOD' | 0] 31

PageRank in GraphX

// Load and initialize the graph
val graph = GraphBuilder.text(“hdfs://web.txt”)

val prGraph = graph.joinVertices(graph.outDegrees)

// Implement and Run PageRank
val pageRank =

prGraph.pregel{initialMessage = 0.0, 1iter 1@)(
koldv, msgSum) => 0.15 + 0.85 x msgSum,}

triplet => triplet.src.pr / triplet.src.deg,}

/(msgA, msgB) => msgA + msgB)}

32

Join Elimination

|dentify and bypass joins for unused triplet fields

sendMsg(i>j, R[il, RI[j1, E[i,i1):

14000
12000
10000
8000
6000
4000
2000

Communication (MB)

// Compute single message
return msg(R[i]l/E[i,j])

PageRank on Twitter co-tyyce Way Join

“"]oin Elimination

/M

/

M—

Factor of 2 reduction in communication

5 10 |5 20
lteration

33

We express the Pregel and Graphlab like
abstractions using the GraphX operators
in less than 50 lines of codel

By composing these operators we can
construct entire graph-analytics pipelines.

34

-xample Analytics Pipeline

// Load raw data tables

val verts = sc.textFile(“hdfs://users.txt”).map(parserV)
val edges = sc.textFile(“hdfs://follow.txt”).map(parserE)
// Build the graph from tables and restrict to recent links
val graph = new Graph(verts, edges)

val recent = graph.subgraph(edge => edge.date > LAST_MONTH)
// Run PageRank Algorithm

val pr = graph.PageRank(tol = 1.0e-5)

// Extract and print the top 25 users

val topUsers = verts.join(pr).top(25).collect

topUsers.foreach(u => println(u.name + “\t’ + u.pr))

The GraphX Stack
(Lines of Code)

Connected [Shortest § SVD | ALS K-core
Comp. (10) fPath (10)] (40) | (40) (51

Pregel (28) + GraphlLab (50)

Triangle
Count
(45)

PageRank
()

GraphX (3575)

Spark

Performance Comparisons

Live-Journal: 69 Million Edges

Mahout/Hadoop 1340
Naive Spark 354

0 200 400 600 800 1000 1200 1400 1600

Runtime (in seconds, PageRank for |0 iterations)

GraphX is roughly 3x slower than Graphlab

GraphX scales to larger graphs

Twitter Graph: |.5 Billion Edges

Giraph — 749
GraphX # 451

Graphlab _— 203

0 200 400 600 800

Runtime (in seconds, PageRank for 10 iterations)

GraphXis roughly 2x slower than Graphlab
» Scala + Java overhead: Lambdas, GC time, ...
» No shared memory parallelism: 2x increase in comm.

PageRank Is just one stage.. ..

What about a pipeline!

A Small Pipeline in GraphX

Raw Wikipedia Hyperlinks PageRank Top 20 Pages
—) «__ 3> C—p >
& -l
Spark | , | . . . 1492
Giraph + Spark | , 1 605
GraphX | 342
Graphlab + Spark | 375

0 200 400 600 800 1000 1200 1400 1600
Total Runtime (in Seconds)

Timed end-to-end GraphX is faster than Graphlab

Status
Part of Apache Spark

GraphX Programming Guide - Spark 0.9.0 Documentation

® 06
<> | [&) (2] [+] < spark.incubator.apache.org 3

Spof”(\zus_o Overview Programming Guides~ APIDocs~ Deploying~ More~

==GraphA”

GraphX is the new (alpha) Spark API for graphs and graph-parallel computation. At a high-level, GraphX extends the Spark RDD by introducing
the Resilient Distributed Property Graph: a directed multigraph with properties attached to each vertex and edge. To support graph computation,
GraphX exposes a set of fundamental operators (e.g., subgraph, joinVertices, and mapReduceTriplets) as well as an optimized variant of the
Pregel API. In addition, GraphX includes a growing collection of graph algorithms and builders to simplify graph analytics tasks.

Background on Graph-Parallel Computation

From social networks to language modeling, the growing scale and importance of graph data has driven the development of numerous new
graph-parallel systems (e.g., Giraph and GraphLab). By icting the types of that can be and ing new
techniques to partition and distribute graphs, these systems can efficiently execute sophisticated graph algorithms orders of magnitude faster

than more general data-parallel systems.

Data-Parallel Graph-Parallel
W’hadmmp & !
sprK . Pregel
Table | Property Graph
+ S |

In production at several large technology
companies

G

raphX: Unifiec

Analytics

N\

Blurs the distinction between
lables and Graphs

ew AP

A P

G|

Enabling users to eas

express

Y
L

the entire grap

New System

Combines Data-Parallel
Graph-Parallel Systems

Spoﬁgz

RAPH { Q
GraphLab'

\

iently
dipeline

and effic
analytics

A Case for Algebra in Graphs

A standard algebra is essential for graph systems:
e e.g.:SQL =2 proliferation of relational system
By embedding graphs in relational algebra:

* |ntegration with tables and preprocessing

* |everage advances In relational systems

* Graph opt. recast to relational systems opt.

Conclusions

Composable domain specific views and operators
Single system that efficiently spans the pipeline
Graphs through the lens of database systems

» Graph-Parallel Pattern = Triplet joins in relational alg.
» Graph Systems = Distributed join optimizations

Joseph E. Gonzalez
e lesonzal@eecs.berkeley.edu

I a b http://tinyurl.com/ampsgraphx

44

[hanks!
http://amplab.cs.berkeley.edu/projects/graphx/

ankurd@eecs.berkeley.edu
crankshaw@eecs.berkeley.edu
~xin@eecs.berkeley.edu

|jegonzal@eecs.berkeley.edu

Recommending Products

L ow-Rank Matrix Factorization:

Users

Users
)
=)

\'w
=
User Factors (U)

Movies l]

lterate:

flt] = arg min
weR ,
jENDrs(2)

S (rij = wTfl])” + Allwl]

f(3)

46

() SJO1DB SIAOA|

2
2

Mean Field Algorithm

Sum over
Neighbors

A

|
bi(zi) o< ¢;(x;) exp (Z f(xi,b)

71EN;

f(@i,b) = bi(z;)log ¢ j(wi, z;)

GraphX System Design

Caching for lterative mririplets

Table (izTgi'e

e ()
g (a0
P <)
©: ()
o (a(®)
g (a ()
e ()
O-| (P

Incremental Updates for Iterative mrlriplets

Vertex Edge Table
ROD) o0
Mirror
Change ——> % “ache @
g ionc
¢ e ©
@ 0] (o)
P Sl 100
Q=
Change —> % @ @ -®
0§ o)
e 0§ .

Aggregation for [terative mrlriplets

Change —

Change

Change —

Change

Change —

Change

Vertex
Table

(RDD)

Local
Aggregate

Local
Aggregate

o

Edge Table

Mirror
Cache

0=
0
)

(RDD)

Mirror
Cache

Q=

—>Ej@

6=

)))& @Q@g@
HEOEIEOOE

-0

Reduction in Comm

10000
S 1000
E oo
O
O
Y 10
o
§
Z

0.1

Due to Cachec

UM

L

pC

ication

ates

Connected Components on Twitter Graph

Most vertices are within 8 hops
of all vertices in their comp.

0 2 4 6 8
[teration

Benefit of Indexing Active Edges

Connected Components on Twitter Graph

30
g =¢=Scan
8 25
S ““*Indexed
g 20
L
o |5 Q
= Scan All Edges
g=
S 10
é (4 .)
5 -
0

O

2 4 6 8 10 12 |4 |6

lteration

Additional Query Optimizations

Indexing and Bitmaps:

» To accelerate joins across graphs

» To efficiently construct sub-graphs

Substantial Index and Data Reuse;
» Reuse routing tables across graphs and sub-graphs

» Reuse edge adjacency information and indices

54

