
Joseph E. Gonzalez
jegonzal@cs.berkeley.edu; Assistant Professor @ UC Berkeley
joseph@dato.com; Co-Founder @ Dato Inc.

Intelligent Services
Serving Machine Learning

Contemporary Learning Systems

TrainingData Models
Big Big

Contemporary Learning Systems

MLlib

Create

MLC
LIBSVMVW Oryx 2

BIDMach

TrainingData Model

What happens after we train a model?

Dashboards and
Reports

Conference
Papers Drive Actions

TrainingData Model

What happens after we train a model?

Dashboards and
Reports

Conference
Papers Drive Actions

Suggesting Items
at Checkout

Fraud
Detection

Cognitive
Assistance

Internet of
Things

Low-Latency Personalized Rapidly Changing

TrainData Model

TrainData Model

Actions

9

Machine
Learning

Intelligent
Services

The Life of a Query in an Intelligent Service

W
eb

	S
er
vi
ng
	T
ie
r

User

Product
Info

In
te
lli
ge
nt
	S
er
vi
ce

User
Data

Model
Info

Lookup
Model

Feature
Lookup

Feature
Lookup

Top-K
Query

Request:
Items like x

New Page
Images …

Top
Items

Content Request

Feedback:
Preferred Item

Feedback

μ σ

ρ∑

∫
α

β
math

Essential Attributes of Intelligent Services

Responsive
Intelligent applications

are interactive

Adaptive
ML models out-of-date the

moment learning is done

Manageable
Many models

created by multiple people

Responsive: Now and Always
Compute predictions in < 20ms for complex

under heavy query load with system failures.

Models Queries

To
p

K

Features
SELECT * FROM
users JOIN items,
click_logs, pages
WHERE …

Experiment: End-to-end Latency in Spark MLlib

To JSON HTTP Req. Feature Trans.

Evaluate
Model

Encode PredictionHTTP Response4

(a) Basic Models (b) Forests and DNNs
Figure 2: Distribution of Feature Latency in Milliseconds

Figure 3: Cold Start

workloads generated from the newsgroups dataset, one with 200
tasks and one with 10,000 tasks. These two workloads have the
same amount of training data per-task, but lead to different aggre-
gate training datasets for training the feature functions. Figure 5a
demonstrates that when the feature functions have not fully con-
verged, retraining the features can lead to significant improvements
in overall prediction accuracy. However, as the features are trained
on larger aggregate datasets, they converge and improvements in
prediction accuracy come almost exclusively from retraining the
per-task ensemble models. We repeated the 200-task experiment
with a digits benchmark dataset and find that on the comparatively

simpler feature models in digits, even aggregate data from 200 tasks
is enough for the feature functions to converge.

We also evaluated the cost of retraining a feature function on
the aggregate dataset compared with just training a single merge
operator. Figure 6 shows that retraining merge operators can be
performed in milliseconds, approximately the same latency as mak-
ing a prediction. Retraining the feature functions as well increases
the model retrain latency by 4 orders of magnitude even for simple
models on relatively small aggregate datasets.

Feature functions should be retrained periodically as additional
aggregate training data accumulates. However, retraining even
simplest feature models with every new training point provides little
improvement in accuracy and leads to a huge increase in the training
cost. These results provide substantial support for our decision to
separate model training into the dual components of shared rich
feature models and simple high-resolution ensemble models and
treat training of each component separately.

5.4 Feature Caching
To understand the ability of caching to improve prediction latency,

we measured the distribution of cache-lookup latencies for compar-
ison to the feature evaluation latencies in Figure 2. We measured
the distribution of cache lookup time over 1000 trials. Each feature
cache lookup uses the feature’s hash function to compute the key
then checks for the computed key’s presence in the feature hash. We
used a Python dict for the cache and the SHA1 hash of the entire
input as the hash function. The cache was pre-populated with about
40 MB (2,434,805 keys), including a random subset of digit feature
vectors from the digits benchmark. For each trial, we looked up the

Co
un

t o
ut

 o
f 1

00
0

Latency measured in milliseconds

NOP (Avg = 5.5, P99 = 20.6)

Single Logistic Regression
(Avg = 21.8, P99 = 38.6)

Decision Tree
(Avg = 22.4, P99 = 63.8)

One-vs-all LR (10-class)
(Avg = 137.7, P99 = 217.7)

100 Tree Random Forrest
(Avg = 50.5, P99 = 73.4)

500 Tree Random Forrest
(Avg = 172.56, P99 = 268.7)

500 Tree Random Forrest
(Avg = 172.6, P99 = 268.7)

AlexNet CNN
(Avg = 418.7, P99 = 549.8)

End-to-end Latency for Digits Classification
784 dimension input

Served using MLlib and Dato Inc.

4.3 21.8 22.4

137.7
50.5

172.6

418.7

0
50

100
150
200
250
300
350
400
450

Predict
Avg

Is "4" LR Decision
Tree

10-Class
LR

100
Random
Forrest

500
Random
Forrest

C++
AlexNet

La
te

nc
y

in
M

illi
se

co
nd

s

Adaptive to Change at All Scales

Months Rate of Change Minutes

Population Granularity of Data Session

Shopping
for Mom

Shopping
for Me

Adaptive to Change at All Scales

Months Rate of Change Minutes

Population Granularity of Data Session

Shopping
for Mom

Shopping
for Me

Population
Law of Large Numbers

à Change Slow

Rely on efficient offline retraining
à High-throughput Systems

Months

Adaptive to Change at All Scales

Months Rate of Change Minutes

Population Granularity of Data Session

Small Data à Rapidly Changing

Low Latency à Online Learning

Sensitive to feedback bias

Shopping
for Mom

Shopping
for Me

The Feedback Loop
I once looked at cameras on
Amazon …

Similar cameras
and accessories

Opportunity for
Bandit Algorithms

Bandits present new challenges:
• computation overhead
• complicates caching + indexing

Exploration / Exploitation Tradeoff
Systems that can take actions can

adversely bias future data.

Opportunity for Bandits!

Bandits present new challenges:
• Complicates caching + indexing
• tuning + counterfactual reasoning

Management: Collaborative Development
Teams of data-scientists working on similar tasks
Ø“competing” features and models
Complex model dependencies:

Cat Photo
isCat

Cuteness
Predictor

Cat Classifier Animal
Classifier Cute!

isAnimal

Predictive Services

UC Berkeley AMPLab
Daniel Crankshaw, Xin Wang, Joseph Gonzalez

Peter Bailis, Haoyuan, Zhao Zhang,
Michael J. Franklin, Ali Ghodsi,

and Michael I. Jordan

Predictive Services

UC Berkeley AMPLab
Daniel Crankshaw, Xin Wang, Joseph Gonzalez

Peter Bailis, Haoyuan, Zhao Zhang,
Michael J. Franklin, Ali Ghodsi,

and Michael I. Jordan

Active Research Project

Velox Model Serving System
Focuses on the multi-task learning (MTL) domain

[CIDR’15, LearningSys’15]

Spam
Classification

f1() !

f2() !

Content Rec.
Scoring

Session 1:

f1() !
Session 2:

f2() !

Localized
Anomaly Detection

f1() !

f2() !

Velox Model Serving System
Personalized Models (Mulit-task Learning)

[CIDR’15, LearningSys’15]

Input Output

“Separate” model for
each user/context.

Personalized Models (Mulit-task Learning)

Split

Personalization
Model

Feature
Model

Velox Model Serving System
[CIDR’15, LearningSys’15]

Hybrid Offline + Online Learning

Split

Personalization
Model

Feature
Model

Update the user weights online:
• Simple to train + more robust model
• Address rapidly changing user statistics

Update feature functions offline using batch solvers
• Leverage high-throughput systems (Apache Spark)
• Exploit slow change in population statistics

f(x; ✓)T wu

(a) Total Concept Drift (b) Partial Concept Drift (c) Stationary Tasks
Figure 4: Online updates with concept drift

(a) Newsgroups 200 Tasks (b) Newsgroups 10,000 Tasks (c) Digits 200 Tasks
Figure 5: Retraining Feature Functions: We compared retraining just the per-task ensemble models with retraining the per-task ensembles
and the shared feature functions for three different workloads.

Figure 6: Retrain latency: Retraining shared features is several
orders of magnitude more expensive than retraining only the task-
specific ensemble.

input 10 times to simulate all 10 feature values for the digits bench-
mark being found in the cache. Even on this relatively unoptimized
cache implementation the maximum cache lookup time was 598µs.
In comparison, even the cheapest feature functions we evaluated
take at least 20 ms to compute, meaning that a cache hit provides
anywhere from 33-1000x speedup over feature evaluation.

To better understand the range of cache-hit rates across different
levels of materialization, we need a realistic access workload with
temporal information. As a proxy for an edit fraud prediction task
we analyzed the Wikipedia edit history through 3 January, 2008 [18]
as a proxy for a live serving workload.

We treat each article title as a unqiue hash-key and create a pre-
diction task for each editor as identified by their username. With
this workload proxy, we compare the cache hit rate for three caching

Figure 7: Cache lookup latency: The distribution of cache lookup
latency for looking up 10 features of an MNIST digit image in a
40 MB in-memory cache. Note that the latency is measured in mi-
croseconds, compared to the feature evaluation latencies measured
in milliseconds.

strategies. Prediction caching uses a separate cache for each pre-
diction task (each editor in this case) so every previously-unseen
article-editor combination causes a cache miss. Furthermore, every
time a task model is updated, the prediction cache must be com-
pletely evicted, although for this experiment we treated the edit
history as a prediction-only workload. Feature caching uses a single
cache for each feature function, so a cache miss only occurs when
a new article is edited. Within the context of feature-caching, we
compared the cache hit rate of feature cache shared between two
model-services with separate caches for each service. The compari-
son of cache hit rates for these strategies is in Figure 8.

Primary Observation: Smart materialization at a lower layer of

Hybrid Online + Offline Learning Results
(a) Total Concept Drift (b) Partial Concept Drift (c) Stationary Tasks

Figure 4: Online updates with concept drift

(a) Newsgroups 200 Tasks (b) Newsgroups 10,000 Tasks (c) Digits 200 Tasks
Figure 5: Retraining Feature Functions: We compared retraining just the per-task ensemble models with retraining the per-task ensembles
and the shared feature functions for three different workloads.

Figure 6: Retrain latency: Retraining shared features is several
orders of magnitude more expensive than retraining only the task-
specific ensemble.

input 10 times to simulate all 10 feature values for the digits bench-
mark being found in the cache. Even on this relatively unoptimized
cache implementation the maximum cache lookup time was 598µs.
In comparison, even the cheapest feature functions we evaluated
take at least 20 ms to compute, meaning that a cache hit provides
anywhere from 33-1000x speedup over feature evaluation.

To better understand the range of cache-hit rates across different
levels of materialization, we need a realistic access workload with
temporal information. As a proxy for an edit fraud prediction task
we analyzed the Wikipedia edit history through 3 January, 2008 [18]
as a proxy for a live serving workload.

We treat each article title as a unqiue hash-key and create a pre-
diction task for each editor as identified by their username. With
this workload proxy, we compare the cache hit rate for three caching

Figure 7: Cache lookup latency: The distribution of cache lookup
latency for looking up 10 features of an MNIST digit image in a
40 MB in-memory cache. Note that the latency is measured in mi-
croseconds, compared to the feature evaluation latencies measured
in milliseconds.

strategies. Prediction caching uses a separate cache for each pre-
diction task (each editor in this case) so every previously-unseen
article-editor combination causes a cache miss. Furthermore, every
time a task model is updated, the prediction cache must be com-
pletely evicted, although for this experiment we treated the edit
history as a prediction-only workload. Feature caching uses a single
cache for each feature function, so a cache miss only occurs when
a new article is edited. Within the context of feature-caching, we
compared the cache hit rate of feature cache shared between two
model-services with separate caches for each service. The compari-
son of cache hit rates for these strategies is in Figure 8.

Primary Observation: Smart materialization at a lower layer of

Similar Test Error Substantially Faster Training

User Pref. Change

Hybrid
Offline Full Hybrid

Offline Full

Evaluating the Model

Split

Cache
Feature Evaluation

Input

Evaluating the Model

Split

Cache
Feature Evaluation

Input

Feature Caching
Across Users

Anytime Feature
Evaluation

Approximate
Feature Hashing

Feature Caching

Feature Hash Table

h(x)Hash input:

f(x; ✓)

Compute feature:
f(x; ✓)

New input: x

LSH Cache Coarsening

Hash new input: h(z) Use Wrong Value!
à LSH hash fn.

New input
z 6= x

Feature Hash Table

f(x; ✓)

LSH Cache Coarsening

Feature Hash Table

Hash new input:

f(x; ✓)

h(z) Use Value Anyways!
à Req. LSH

x ⇡ z) h(x) = h(z)
Locality-Sensitive Hashing:

f(x; ✓) ⇡ f(z; ✓)) h(x) = h(z)

Locality-Sensitive Caching:

Anytime Predictions
Compute features asynchronously:

if a particular element does not arrive use estimator instead

Always able to render a prediction by the latency deadline

f1(x; ✓)wu1 + E [f2(x; ✓)] wu2 + f3(x; ✓)wu3__ __ __

Figure 10: Cash miss rate against accuracy

This work builds on related work in the machine learning and
database systems communities. Most closely related, is the work of
Agarwal et al. [1] and Crankshaw et al. [9]. The work by Agarwal
et al. describes the design of LASER, the general purpose machine
learning framework developed to train and serve models at LinkedIn.
Likewise the work by Crankshaw et al. describes an early prototype
of the Velox model serving framework developed as part of the
Berkeley Data Analytics stacks.

To support personalized modeling, both introduced a multitask
formulation that leverages statistical sharing across users. The work
by Agarwal et al. focuses on a restricted class of regularized bi-
variate linear models, while the work by Crankshaw et al. a restricted
version of the model formulation in Eq. (3) Inspired by these earlier
systems, we introduced a general framework that is capable of
expressing both the LASER and Velox model formulations as well
as a broader class of bandit algorithms needed to support competing
feature functions.

To address latency both the LASER and Velox systems focused
primarily on caching. The work by Agarwal et al. proposed a richer
feature cache capable of caching at many stages within a feature
function as well as a similar anytime feature evaluation strategy to
the one adopted here. In contrast this work, introduces cache equiv-
alence classes and feature coarsening to tradeoff a small reduction
in accuracy for a substantial improvement in cache efficiency.

Each of these works differ considerably in how they approach
learning. The work by Agarwal et al. focuses on batch distributed
offline retraining of both task specific and shared weights using
ADMM. More closely related is the work by Crankshaw et al.
which similarly suggests using a hybrid online and offline train-
ing mechanism but does not provide an algorithm. In this work
we explore hybrid online and offline learning with both supervised
and unsuperivsed feature training. In the supervised setting we
leverage additional side information (e.g., , the topic of the news
article) to construct predictive features. In the unsuperivised setting
we describe a simple alternating minimization heuristic capable of
automatic personalization of generic black-box learning algorithms.

In the context of more general database systems this work builds
on the the work of MauveDB [11] and LongView [2] which first
proposed model serving and management within data-management
systems. MauveDB first cast the the inference task as views on a
model explored various materialization and caching strategies in-
cluding materialization and caching of intermediate state analogous
to our feature caching. LongView explored a similar setting but
introduced a query optimizer capable of trading off accuracy and
computationally efficiency.

In the machine learning community perhaps the most closely

related work is in the context of multi-task learning. Yu et al. [29]
introduced an alternating formulation of the multi-task learning
for scalable inference based on a bilinear model similar to that
of [1]. Stern et al. [27] introduced a scalable Bayesian framework
for multitask learning that was later extended by Graepel et al. [16]
to manage ad serving for Bing search. Similar to our work, this
work also addressed evolving user interests. However in all three
cases the system design was largely focused on the offline setting.

7. CONCLUSION
In this work we introduce the Centipede model serving system

capable of both serving and training a wide range of machine learn-
ing models at interactive latencies. We identified several of the key
challenges and opportunities around low latency serving, continu-
ous online learning, collaborative development, and fine-grained
personalization. Centipede addresses these challenges by leveraging
advances in ensembles and multitask learning in conjunction with
techniques in any-time algorithms to dynamically trade-off latency
and accuracy.

We introduced a simple framework which decomposes models
into two basic operators: feature and merge. By exploiting the
structure of these operators we were able to improve cache effi-
ciency and automatically tradeoff accuracy and latency. To address
collaborative model development, we recast competing models as
meta-features and leveraged the online learning capabilities of the
merge operator to adaptively seek the best model as the data evolves.
By framing personalized machine learning in the context of multi-
task learning with shared feature functions we are able to address
the trade-off between the power of data aggregation to support rich
models and the desire to capture rapidly evolving dynamics at the
level of individuals. Finally, by exploiting the decomposition of
online learning for merge operators and offline learning for feature
operators we were able to achieve efficient model retraining.

To evaluate Centipede, we introduce a new model serving bench-
mark that builds on widely adopted benchmark datasets in machine
learning. We characterize the accuracy and latency tradeoffs of Cen-
tipede using the benchmark and demonstrated substantial reductions
in latency through the proposed caching strategies and substantial
gains in accuracy through the new model formulation.

N
o Coarsening

Coarsening + Anytime Predictions

O
ve

rly
 C

oa
rs

en
ed More Features

Approx. Expectation

Better

Best

Coarser Hash
fi(x; ✓) ⇡
E [fi(x; ✓)]

Checkout our poster!

fi(x; ✓) ⇡
fi(z; ✓)

Spark
Streaming Spark

SQL

Graph
X ML

library

BlinkDB MLbase Velox
Training Management + Serving

Spark

HDFS, S3, …
Tachyon

Model
Manager

Prediction
Service

Mesos

Part of Berkeley Data Analytics Stack

Predictive Services

UC Berkeley AMPLab
Daniel Crankshaw, Xin Wang,

Peter Bailis, Haoyuan, Zhao Zhang,
Michael J. Franklin, Ali Ghodsi,

and Michael I. Jordan

Dato Predictive Services

ØElastic scaling and load balancing of docker.io containers

ØAWS Cloudwatch Metrics and Reporting

ØServes Dato Create models, scikit-learn, and custom python

ØDistributed shared caching: scale-out to address latency

ØREST management API: Demo?

Production ready model serving and management system

Predictive Services

UC Berkeley AMPLab
Daniel Crankshaw, Xin Wang, Joseph Gonzalez

Peter Bailis, Haoyuan, Zhao Zhang,
Michael J. Franklin, Ali Ghodsi,

and Michael I. Jordan

Caching, Bandits, &
Management

Online/Offline Learning
Latency vs. Accuracy

Key Insights:

Responsive Adaptive Manageable

TrainData Model

Actions

Future of Learning Systems

Thank You

Joseph E. Gonzalez
jegonzal@cs.berkeley.edu, Assistant Professor @ UC Berkeley
joseph@dato.com, Co-Founder @ Dato

