Intelligent Services Serving Machine Learning

Joseph E. Gonzalez

jegonzal@cs.berkeley.edu; Assistant Professor @ UC Berkeley joseph@dato.com; Co-Founder @ Dato Inc.

Contemporary Learning Systems

Contemporary Learning Systems

What happens after we train a model?

What happens after we train a model?

Suggesting Items at Checkout

fraud

Crook

Con men prov

Drneve

Cognitive Assistance

Low-Latency

Personalized

Rapidly Changing

Machine Intelligent Learning Services

The Life of a Query in an Intelligent Service

Essential Attributes of Intelligent Services

Responsive

Intelligent applications are interactive

Adaptive

ML models out-of-date the moment learning is done

Manageable

Many models created by multiple people

Responsive: Now and Always

Compute predictions in < 20ms for complex

under heavy query load with system failures.

Experiment: End-to-end Latency in Spark MLlib

End-to-end Latency for Digits Classification 784 dimension input Served using MLlib and Dato Inc.

Latency measured in milliseconds

Avg Tree LR Random Random AlexNet Forrest Forrest

Adaptive to Change at All Scales

Adaptive to Change at All Scales

Granularity of Data

Population

Rely on efficient offline retraining → High-throughput Systems

Months

Rate of Change

Minutes

Adaptive to Change at All Scales

opulation Granularity of Dat

Session

Small Data -> Rapidly Changing

Low Latency \rightarrow Online Learning

Sensitive to feedback bias

Shopping for Me

Shopping for Mom

1onths

Rate of Change

Minutes

The Feedback Loop

I once looked at cameras on Amazon ...

and accessories Opportunity for Bandit Algorithms

Bandits present new challenges:

- computation overhead
- complicates caching + indexing

Similar cameras

Exploration / Exploitation Tradeoff

Systems that can take *actions* can *adversely bias* future *data*.

Opportunity for Bandits!

Bandits present new challenges:

- Complicates caching + indexing
- tuning + counterfactual reasoning

Management: Collaborative Development

UC Berkeley AMPLab

Daniel Crankshaw, Xin Wang, Joseph Gonzalez Peter Bailis, Haoyuan, Zhao Zhang, Michael J. Franklin, Ali Ghodsi, and Michael I. Jordan

UC Berkeley AMPLab

Daniel Crankshaw, Xin Wang, Joseph Gonzalez Peter Bailis, Haoyuan, Zhao Zhang, Michael J. Franklin, Ali Ghodsi, and Michael I. Jordan

Predictive Services

Active Research Project

Velox Model Serving System

Focuses on the multi-task learning (MTL) domain

Spam Classification

Content Rec. Scoring

Session I: $f_1(p)$ \rightarrow

Session 2:

Localized Anomaly Detection

Velox Model Serving System

Personalized Models (Mulit-task Learning)

Velox Model Serving System

Personalized Models (Mulit-task Learning)

Hybrid Offline + Online Learning

Update feature functions offline using batch solvers

- Leverage high-throughput systems (Apache Spark)
- Exploit slow change in population statistics

Update the user weights online:

 $f(x;\theta)^T w_u$

- Simple to train + more robust model
- Address rapidly changing user statistics

Hybrid Online + Offline Learning Results

Evaluating the Model

Evaluating the Model

Feature Caching

New input: ${\mathcal X}$ Compute feature: $f(x; \theta)$ Store result in table Hash input: h(x) $f(x;\theta)$

Feature Hash Table

LSH Cache Coarsening

Feature Hash Table

LSH Cache Coarsening

Locality-Sensitive Hashing:

$x \approx z \quad \Rightarrow \quad h(x) = h(z)$

Locality-Sensitive Caching:

 $f(x;\theta) \approx f(z;\theta) \implies f(h(x)) = h(z)$

→ Req. LSH

Feature Hash Table

Anytime Predictions

Compute features asynchronously:

$$w_{u1} + w_{u2} + w_{u3}$$

if a particular element does not arrive use estimator instead

Always able to render a prediction by the latency deadline

Coarsening + Anytime Predictions

Checkout our poster!

Part of Berkeley Data Analytics Stack

VELOX 🚴

UC Berkeley AMPLab

Daniel Crankshaw, Xin Wang, Peter Bailis, Haoyuan, Zhao Zhang, Michael J. Franklin, Ali Ghodsi, and Michael I. Jordan

Dato Predictive Services

Production ready model serving and management system

Elastic scaling and load balancing of docker.io containers
AWS Cloudwatch Metrics and Reporting

Serves Dato Create models, scikit-learn, and custom python

Distributed shared caching: scale-out to address latency

► REST management API: Demo?

Daniel Crankshaw, Xin Wang, Joseph Gonzalez Peter Bailis, Haoyuan, Zhao Zhang, Michael J. Franklin, Ali Ghodsi, and Michael I. Jordan

Predictive Services

Responsive Adaptive Manageable

Key Insights:

Caching, Bandits, & Management Online/Offline Learning Latency vs. Accuracy

Future of Learning Systems

Joseph E. Gonzalez

jegonzal@cs.berkeley.edu, Assistant Professor @ UC Berkeley

joseph@dato.com, Co-Founder @ Dato