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Contemporary Learning Systems
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What happens dfter we train a model!
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The Life of a Query in an Intelligent Service
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—ssential Attributes of Intelligent Services

Responsive  Adaptive Manageable

Intelligent applications ML models out-of-date the Many models
are interactive moment learning Is done created by multiple people



REesSpPONSIVE: Now and Always

Compute predictions in < 20ms for complex

Models Queries Features

\

SELECT * FROM
users JOIN items,
click_logs, pages
WHERE ...

Top K

under heavy query load with system [ailures.



Experiment: End-to-end Latency in Spark MLIib
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Count out of 1000
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One-vs-all LR (10-class) -
(Avg = 137.7,P99 = 217.7)
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End-to-end Latency for Digits Classification
/84 dimension input
Served using MLlib and Dato Inc.
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Latency in Milliseconds
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Adaptive to Change at All Scales

Population Granularity of Data Session
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Adaptive to Change at All Scales

Population

Law of Large Numbers
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Adaptive to Change at All Scales

Small Data = Rapidly Changing oo
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Ihe Feedback Loop

| once looked at cameras on

Amazon ...
Similar cameras
| and accessories
Opportunity for
Bandit Algorithms

Bandits present new challenges:
* computation overhead
* complicates caching + indexing




—xploration /

-xploitation Tradeoft

Systems that can take can

future

Opportunity for Bandits!

Bandits present new challenges:
* Complicates caching + indexing
* tuning + counterfactual reasoning



Management: Collaborative Development

Teams of data-scientists working on similar tasks

» “competing” features and models

Complex model dependencies:

Cat Photo

Cat Classifier Animal
Classifier

(isanimal )

Cuteness
Predictor
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Active Research Project



Velox Model Serving System

CIDR'I5, LearningSys' | 5]

Focuses on the multi-task learning (MTL) domain

Spam Content Rec. Localized
Classification Scoring Anomaly Detection
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Velox Model Serving System

Personalized Models (Mulit-task Learning)

[CIDR'I5, LearningSys' [ 5]

— 3

> Output

“Separate” model for
each user/context.



Velox Model Serving System

: , [CIDR'I5, LearningSys' 5]
Personalized Models (Mulit-task Learning)

Feature Personalization
Model Model




Hybrid Offline + Online Learning

Update feature functions offline using batch solvers
* Leverage high-throughput systems (Apache Spark)
* bxplort slow change In population statistics

Wy

Update the user weights online:
* Simple to train + more robust model
* Address rapidly changing user statistics




ybrid Online + Offline Learning Results

Similar Test Error

‘ P User Pref. Change

20 25 30 35 40 45 50
train points per task



cvaluating the Model
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cvaluating the Model
Cache
Feature Caching Feature Evaluation / @
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~eature Caching

New input: &
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L SH Cache Coarsening
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L SH Cache Coarsening

Locality-Sensritive Hashing:

r~z = h(xr)="h(z)

Locality-Sensitive Caching:

f(x;0) = f(2;0) = h(z) = h(z)



Anytime Predictions

Compute features asynchronously:

Wyl + &qu =+ Wy 3

T a particular element does not arrive use estimator instead

Always able to render a prediction by the latency deadline



Coarsening + Anytime Predictions
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Checkout our poster!




Part of Berkeley Data Analytics Stack

Training Management + Serving

HDFS, 53, ...
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Dato Predictive Services

Production ready model serving and management system

» Elastic scaling and load balancing of dockerio containers
»AWS Cloudwatch Metrics and Reporting

»Serves Dato Create models, scikit-learn, and custom python
» Distributed shared caching: scale-out to address latency

»REST management API: Demo?
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Predictive Services

Responsive  Adaptive  Manageable

Key Insights:

Caching, Bandits, & Online/Offline Learning
Management Latency vs. Accuracy



Future of Learning Systems
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Thank You

Joseph E. Gonzalez

Jegonzal@cs.berkeley.edu, Assistant Professor @ UC Berkeley
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