
Carnegie Mellon

Parallel Splash
Belief Propagation

Joseph E. Gonzalez
Yucheng Low

Carlos Guestrin
David O’Hallaron

Computers which worked on this project:

BigBro1, BigBro2, BigBro3, BigBro4, BigBro5, BigBro6, BiggerBro, BigBroFS
Tashish01, Tashi02, Tashi03, Tashi04, Tashi05, Tashi06, …, Tashi30,

parallel, gs6167, koobcam (helped with writing)

Why talk about parallelism now?
19

88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

Change in the Foundation of ML

Future Sequential
Performance

Lo
g(

Sp
ee

d
in

 G
Hz

)

2

Future Parallel Performance

Release Date

3

Why is this a Problem?

Sophistication

Pa
ra

lle
lis

m

Nearest Neighbor
[Google et al.]

Basic Regression
[Cheng et al.]

Graphical Models
[Mendiburu et al.]

Support Vector Machines
[Graf et al.]

Want to be
here

Why is it hard?

4

Algorithmic Efficiency Parallel Efficiency

Implementation
Efficiency

Eliminate wasted
computation

Expose independent
computation

Map computation to
real hardware

The Key Insight

5

Statistical Structure
••Graphical Model Structure
••Graphical Model Parameters

Computational Structure
••Chains of Computational Dependences
••Decay of Influence

Parallel Structure
••Parallel Dynamic Scheduling
••State Partitioning for Distributed Computation

6

The Result

Nearest Neighbor
[Google et al.]

Basic Regression
[Cheng et al.]

Support Vector Machines
[Graf et al.]

Goal
Splash Belief Propagation

Graphical Models
[Gonzalez et al.]

Sophistication

Pa
ra

lle
lis

m

Graphical Models
[Mendiburu et al.]

Outline
Overview
Graphical Models: Statistical Structure
Inference: Computational Structure
τε - Approximate Messages: Statistical Structure
Parallel Splash

Dynamic Scheduling
Partitioning

Experimental Results
Conclusions

7

Graphical Models and Parallelism
Graphical models provide a common language for general

purpose parallel algorithms in machine learning

A parallel inference algorithm would improve:

8

Protein Structure
Prediction

Inference is a key step in Learning
Graphical Models

Computer VisionMovie
Recommendation

Overview of Graphical Models
Graphical represent of local statistical dependencies

9

Observed Random Variables

La
te

nt
 P

ixe
l V

ar
ia

bl
es

Local Dependencies

Noisy Picture

Inference
What is the probability
that this pixel is black?

“True” Pixel Values

Continuity Assumptions

Synthetic Noisy Image Problem

Overlapping Gaussian noise
Assess convergence and
accuracy

Noisy Image Predicted Image

Protein Side-Chain Prediction
Model side-chain interactions as a graphical model

11

What is the most likely orientation?
Inference

Protein Side-Chain Prediction
276 Protein Networks:
Approximately:

700 Variables
1600 Factors
70 Discrete orientations

Strong Factors

12

0
0.05
0.1

0.15

6 14 22 30 38 46
Degree

Example Degree Distribution

Smokes(A) è Cancer(A) Smokes(B) è Cancer(B)

Friends(A,B) And Smokes(A)
è Smokes(B)

Markov Logic Networks
Represent Logic as a graphical model

13

Cancer(A) Cancer(B)

Smokes(A) Smokes(B)

Friends(A,B)A: Alice
B: Bob

True/False?

Pr(Cancer(B) = True |
Smokes(A) = True & Friends(A,B) = True) = ?

Inference

Markov Logic Networks

14

Smokes(A) è Cancer(A) Smokes(B) è Cancer(B)

Friends(A,B) And Smokes(A)
è Smokes(B)

Cancer(A) Cancer(B)

Smokes(A) Smokes(B)

Friends(A,B)A: Alice
B: Bob

True/False?UW-Systems Model
8K Binary Variables
406K Factors

Irregular degree
distribution:

Some vertices with high
degree

Outline
Overview
Graphical Models: Statistical Structure
Inference: Computational Structure
τε - Approximate Messages: Statistical Structure
Parallel Splash

Dynamic Scheduling
Partitioning

Experimental Results
Conclusions

15

The Inference Problem

NP-Hard in General
Approximate Inference:

Belief Propagation

16

Smokes(A) è Cancer(A) Smokes(B) è Cancer(B)

Friends(A,B) And Smokes(A)
è Smokes(B)

Cancer(A) Cancer(B)

Smokes(A) Smokes(B)

Friends(A,B)A: Alice
B: Bob

True/False?

What is the probability
that Bob Smokes given

Alice Smokes?

What is the best
configuration of the
protein side-chains?

What is the probability
that each pixel is black?

Belief Propagation (BP)
Iterative message passing algorithm

Naturally Parallel Algorithm

17

Parallel Synchronous BP
Given the old messages all new messages can be
computed in parallel:

18

New
Messages

Old
Messages

CPU 2

CPU 1

CPU 3

CPU n

Map-Reduce Ready!

Sequential Computational Structure

19

Hidden Sequential Structure

20

Hidden Sequential Structure

Running Time:

21

EvidenceEvidence

Time for a single
parallel iteration Number of Iterations

Optimal Sequential Algorithm

Forward-Backward

Naturally Parallel
2n2/p

p ≤ 2n

22

Running
Time

2n

Ga
p

p = 1
Optimal Parallel

n
p = 2

Key Computational Structure

Naturally Parallel
2n2/p

p ≤ 2n

23

Running
Time

Optimal Parallel
n

p = 2

Ga
p Inherent Sequential Structure

Requires Efficient Scheduling

Outline
Overview
Graphical Models: Statistical Structure
Inference: Computational Structure
τε - Approximate Messages: Statistical Structure
Parallel Splash

Dynamic Scheduling
Partitioning

Experimental Results
Conclusions

24

Parallelism by Approximation

τε represents the
minimal sequential
structure

25

True Messages

τε -Approximation

1 2 3 4 5 6 7 8 9 10

1

Tau-Epsilon Structure
Often τε decreases quickly:

26

Markov Logic
Networks

Protein Networks

M
es

sa
ge

 A
pp

ro
xi

m
at

io
n

Er
ro

r
in

 L
og

 S
ca

le

Running Time Lower Bound

27

Theorem:
Using p processors it is not possible to obtain a τε
approximation in time less than:

Parallel
Component

Sequential
Component

A single processor can only make k-τε +1 vertices left
aware in k-iterations

Consider one direction using p/2 processors (p≥2):

28

1 n

τε τε τε τε τε τε τε

τε
…

n - τε

We must make n - τε vertices τε left-aware

Proof: Running Time Lower Bound

Optimal Parallel Scheduling
Processor 1 Processor 2 Processor 3

29

Theorem:
Using p processors this algorithm achieves a τε
approximation in time:

Proof: Optimal Parallel Scheduling
All vertices are left-aware of the left most vertex on their processor

After exchanging messages

After next iteration:

After k parallel iterations each vertex is (k-1)(n/p) left-aware

30

Proof: Optimal Parallel Scheduling
After k parallel iterations each vertex is (k-1)(n/p) left-
aware
Since all vertices must be made τε left aware:

Each iteration takes O(n/p) time:

31

Comparing with SynchronousBP
Processor 1 Processor 2 Processor 3

32

Synchronous Schedule Optimal Schedule

Gap

Outline
Overview
Graphical Models: Statistical Structure
Inference: Computational Structure
τε - Approximate Messages: Statistical Structure
Parallel Splash

Dynamic Scheduling
Partitioning

Experimental Results
Conclusions

33

The Splash Operation
Generalize the optimal chain algorithm:

to arbitrary cyclic graphs:

~
34

1) Grow a BFS Spanning tree
with fixed size

2) Forward Pass computing all
messages at each vertex

3) Backward Pass computing all
messages at each vertex

Local State

CPU 2

Local State

CPU 3

Local State

CPU 1

Running Parallel Splashes

Partition the graph
Schedule Splashes locally
Transmit the messages along the boundary of
the partition 35

Splash Splash
Splash

Key Challenges:
1) How do we schedules Splashes?
2) How do we partition the Graph?

Local State

Scheduling Queue
Where do we Splash?

Assign priorities and use a scheduling queue to
select roots:

Splash

Splash

?
?

?

CPU 1

How do we assign priorities?

Message Scheduling
Residual Belief Propagation [Elidan et al., UAI 06]:

Assign priorities based on change in inbound messages

1

37

Message

Message
Message

2

Message

Message
Message

Large Change
Small Change

Small Change

Large Change

Small Change:
Expensive No-Op

Large Change:
Informative Update

Problem with Message Scheduling
Small changes in messages do not imply small
changes in belief:

38

Small change in
all message

Large change in
belief

Message

Message

Belief Message

Message

Problem with Message Scheduling
Large changes in a single message do not imply
large changes in belief:

39

Large change in
a single message

Small change
in belief

Message

Belief MessageMessage

Message

Belief Residual Scheduling
Assign priorities based on the cumulative change
in belief:

1 1
+

1
+rv =

Message
Change

40

A vertex whose belief has
changed substantially

since last being updated
will likely produce

informative new messages.

Message vs. Belief Scheduling
Belief Scheduling improves

accuracy and convergence

41

0%

20%

40%

60%

80%

100%

Belief
Residuals

Message
Residual

% Converged in 4Hrs

Be
tte

r

0.02

0.03

0.04

0.05

0.06

0 50 100

L1
 E

rr
or

 in
 B

el
ie

fs

Time (Seconds)

Error in Beliefs
Message Scheduling

Belief Scheduling

Splash Pruning
Belief residuals can be used to dynamically
reshape and resize Splashes:

Low
Beliefs

Residual

Splash Size
Using Splash Pruning our algorithm is able to
dynamically select the optimal splash size

43

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60

Ru
nn

in
g

Ti
m

e
(S

ec
on

ds
)

Splash Size (Messages)

Without Pruning

With Pruning

Be
tte

r

Example

Synthetic Noisy Image

Factor Graph

Vertex Updates

Many
Updates

Few
Updates

Algorithm identifies and focuses
on hidden sequential structure

44

Parallel Splash Algorithm

Partition factor graph over processors
Schedule Splashes locally using belief residuals
Transmit messages on boundary

Local State

CPU 1

Splash

Local State

CPU 2

Local State

CPU 3

Splash

Fast Reliable Network

Splash

45

Scheduling
Queue

Scheduling
Queue

Scheduling
Queue

Given a uniform partitioning of the chain
graphical model, Parallel Splash will run in
time:

retaining optimality.

Theorem:

CPU 1 CPU 2

Partitioning Objective
The partitioning of the factor graph determines:

Storage, Computation, and Communication
Goal:

Balance Computation and Minimize Communication

46

Ensure
BalanceComm.

cost

The Partitioning Problem
Objective:

Depends on:

NP-Hard à METIS fast partitioning heuristic

Work:
Comm:

47

Minimize
Communication

Ensure Balance

Update counts are not known!

Unknown Update Counts
Determined by belief scheduling
Depends on: graph structure, factors, …
Little correlation between past & future update
counts

48

Noisy Image Update Counts
Simple Solution:

Uninformed Cut

Uniformed Cuts

Greater imbalance & lower communication cost

Update Counts Uninformed Cut Optimal Cut

49
0

1

2

3

4

Denoise UW-Syst.

Work Imbalance

0.5
0.6
0.7
0.8
0.9

1
1.1

Denoise UW-Syst.

Communication Cost

Uninformed
OptimalBe

tte
r

Be
tte

r

Too Much Work

Too Little Work

Over-Partitioning
Over-cut graph into k*p partitions and randomly assign CPUs

Increase balance
Increase communication cost (More Boundary)

CPU 1

CPU 2

CPU 1 CPU 2 CPU 2

CPU 1 CPU 1 CPU 2

CPU 1 CPU 2 CPU 1

CPU 2 CPU 1 CPU 2

Without Over-Partitioning k=6
50

Over-Partitioning Results
Provides a simple method to trade between work
balance and communication cost

51

1

1.5

2

2.5

3

3.5

4

0 5 10 15
Partition Factor k

Communication Cost

1.5

2

2.5

3

3.5

0 5 10 15
Partition Factor k

Work Imbalance

Be
tte

r

Be
tte

r

CPU Utilization
Over-partitioning improves CPU utilization:

52

0
10
20
30
40
50
60
70

0 100 200

Ac
tiv

e
CP

U
s

Time (Seconds)

UW-Systems MLN

0
10
20
30
40
50
60
70

0 20 40
Time (Seconds)

Denoise

No Over-Part

10x Over-Part

Parallel Splash Algorithm

Over-Partition factor graph
Randomly assign pieces to processors

Schedule Splashes locally using belief residuals
Transmit messages on boundary

Local State

CPU 1

Splash

Local State

CPU 2

Local State

CPU 3

Splash

Fast Reliable Network

Splash

53

Scheduling
Queue

Scheduling
Queue

Scheduling
Queue

Outline
Overview
Graphical Models: Statistical Structure
Inference: Computational Structure
τε - Approximate Messages: Statistical Structure
Parallel Splash

Dynamic Scheduling
Partitioning

Experimental Results
Conclusions

54

Experiments
Implemented in C++ using MPICH2 as a
message passing API

Ran on Intel OpenCirrus cluster: 120 processors
15 Nodes with 2 x Quad Core Intel Xeon Processors
Gigabit Ethernet Switch

Tested on Markov Logic Networks obtained from
Alchemy [Domingos et al. SSPR 08]

Present results on largest UW-Systems and smallest
UW-Languages MLNs

55

Parallel Performance (Large Graph)

0

20

40

60

80

100

120

0 30 60 90 120

Sp
ee

du
p

Number of CPUs

No Over-Part

5x Over-Part

56

UW-Systems
8K Variables
406K Factors

Single Processor
Running Time:

1 Hour
Linear to Super-
Linear up to 120
CPUs

Cache efficiency

Linear

Be
tte

r

Parallel Performance (Small Graph)

UW-Languages
1K Variables
27K Factors

Single Processor
Running Time:

1.5 Minutes
Linear to Super-
Linear up to 30
CPUs

Network costs
quickly dominate
short running-time

57

0

10

20

30

40

50

60

0 30 60 90 120

Sp
ee

du
p

Number of CPUs

No Over-Part

5x Over-Part

Linear

Be
tte

r

Outline
Overview
Graphical Models: Statistical Structure
Inference: Computational Structure
τε - Approximate Messages: Statistical Structure
Parallel Splash

Dynamic Scheduling
Partitioning

Experimental Results
Conclusions

58

Summary

59

Algorithmic Efficiency Parallel Efficiency

Implementation
Efficiency

Independent
Parallel Splashes

Splash Structure
+

Belief Residual
Scheduling

Distributed Queues
Asynchronous Communication

Over-Partitioning

Experimental results on large factor graphs:
Linear to super-linear speed-up using up to 120
processors

Sophistication

Pa
ra

lle
lis

m

Parallel Splash
Belief Propagation

We are here

Conclusion

Questions

61

Protein Results

62

3D Video Task

63

Distributed Parallel Setting

Opportunities:
Access to larger systems: 8 CPUs à 1000 CPUs
Linear Increase:

RAM, Cache Capacity, and Memory Bandwidth

Challenges:
Distributed state, Communication and Load Balancing

64

Fast Reliable Network

Node

CPU Bus
MemoryCache

Node

CPU Bus
MemoryCache

