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Why talk about parallelism now?
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Why is this a Problem?

Sophistication

Pa
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Nearest Neighbor
[Google et al.]

Basic Regression
[Cheng et al.]

Graphical Models
[Mendiburu et al.]

Support Vector Machines
[Graf et al.]

Want to be
here



Why is it hard?
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Algorithmic Efficiency Parallel Efficiency

Implementation
Efficiency

Eliminate wasted
computation

Expose independent
computation

Map computation to
real hardware



The Key Insight
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Statistical Structure
••Graphical Model Structure
••Graphical Model Parameters

Computational Structure
••Chains of Computational Dependences
••Decay of Influence

Parallel Structure
••Parallel Dynamic Scheduling
••State Partitioning for Distributed Computation
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The Result

Nearest Neighbor
[Google et al.]

Basic Regression
[Cheng et al.]

Support Vector Machines
[Graf et al.]

Goal
Splash Belief Propagation

Graphical Models
[Gonzalez et al.]

Sophistication
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Graphical Models
[Mendiburu et al.]
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Graphical Models and Parallelism
Graphical models provide a common language for general 

purpose parallel algorithms in machine learning

A parallel inference algorithm would improve:
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Protein Structure 
Prediction

Inference is a key step in Learning 
Graphical Models

Computer VisionMovie 
Recommendation



Overview of Graphical Models
Graphical represent of local statistical dependencies
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Observed Random Variables
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Local Dependencies

Noisy Picture

Inference
What is the probability 
that this pixel is black?

“True” Pixel Values

Continuity Assumptions



Synthetic Noisy Image Problem

Overlapping Gaussian noise
Assess convergence and 
accuracy

Noisy Image Predicted Image



Protein Side-Chain Prediction
Model side-chain interactions as a graphical model
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What is the most likely orientation?
Inference



Protein Side-Chain Prediction
276 Protein Networks:
Approximately:

700 Variables
1600 Factors
70 Discrete orientations

Strong Factors 
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Smokes(A) è Cancer(A) Smokes(B) è Cancer(B)

Friends(A,B) And Smokes(A) 
è Smokes(B)

Markov Logic Networks
Represent Logic as a graphical model
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Cancer(A) Cancer(B)

Smokes(A) Smokes(B)

Friends(A,B)A: Alice
B: Bob

True/False?

Pr(Cancer(B) = True | 
Smokes(A) = True & Friends(A,B) = True) = ?

Inference



Markov Logic Networks
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Smokes(A) è Cancer(A) Smokes(B) è Cancer(B)

Friends(A,B) And Smokes(A) 
è Smokes(B)

Cancer(A) Cancer(B)

Smokes(A) Smokes(B)

Friends(A,B)A: Alice
B: Bob

True/False?UW-Systems Model
8K Binary Variables
406K Factors

Irregular degree 
distribution:

Some vertices with high 
degree
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The Inference Problem

NP-Hard in General 
Approximate Inference:

Belief Propagation
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Smokes(A) è Cancer(A) Smokes(B) è Cancer(B)

Friends(A,B) And Smokes(A) 
è Smokes(B)

Cancer(A) Cancer(B)

Smokes(A) Smokes(B)

Friends(A,B)A: Alice
B: Bob

True/False?

What is the probability 
that Bob Smokes given

Alice Smokes?

What is the best 
configuration of the 
protein side-chains?

What is the probability
that each pixel is black?



Belief Propagation (BP)
Iterative message passing algorithm

Naturally Parallel Algorithm
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Parallel Synchronous BP
Given the old messages all new messages can be 
computed in parallel:
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New
Messages

Old
Messages

CPU 2

CPU 1

CPU 3

CPU n

Map-Reduce Ready!



Sequential Computational Structure
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Hidden Sequential Structure

20



Hidden Sequential Structure

Running Time:

21

EvidenceEvidence

Time for a single
parallel iteration Number of Iterations



Optimal Sequential Algorithm

Forward-Backward

Naturally Parallel
2n2/p

p ≤ 2n
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Running
Time

2n

Ga
p

p = 1
Optimal Parallel

n
p = 2



Key Computational Structure

Naturally Parallel
2n2/p

p ≤ 2n
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Running
Time

Optimal Parallel
n

p = 2

Ga
p Inherent Sequential Structure

Requires Efficient Scheduling
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Parallelism by Approximation

τε represents the 
minimal sequential 
structure

25

True Messages

τε -Approximation

1 2 3 4 5 6 7 8 9 10

1



Tau-Epsilon Structure
Often τε decreases quickly:
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Markov Logic
Networks

Protein Networks
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Running Time Lower Bound
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Theorem: 
Using p processors it is not possible to obtain a τε
approximation in time less than:

Parallel
Component

Sequential
Component



A single processor can only make  k-τε +1 vertices left 
aware in k-iterations

Consider one direction using p/2 processors (p≥2):
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1 n

τε τε τε τε τε τε τε

τε
…

n - τε

We must make n - τε vertices τε left-aware

Proof: Running Time Lower Bound



Optimal Parallel Scheduling
Processor 1 Processor 2 Processor 3
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Theorem: 
Using p processors this algorithm achieves a τε
approximation in time:



Proof: Optimal Parallel Scheduling
All vertices are left-aware of the left most vertex on their processor

After exchanging messages

After next iteration:

After k parallel iterations each vertex is (k-1)(n/p) left-aware
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Proof: Optimal Parallel Scheduling
After k parallel iterations each vertex is (k-1)(n/p) left-
aware
Since all vertices must be made τε left aware:

Each iteration takes O(n/p) time:
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Comparing with SynchronousBP
Processor 1 Processor 2 Processor 3
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Synchronous Schedule Optimal Schedule

Gap



Outline
Overview
Graphical Models: Statistical Structure
Inference: Computational Structure
τε - Approximate Messages: Statistical Structure
Parallel Splash

Dynamic Scheduling
Partitioning

Experimental Results
Conclusions

33



The Splash Operation
Generalize the optimal chain algorithm:

to arbitrary cyclic graphs:

~
34

1) Grow a BFS Spanning tree
with fixed size

2) Forward Pass computing all
messages at each vertex

3) Backward Pass computing all 
messages at each vertex



Local State

CPU 2

Local State

CPU 3

Local State

CPU 1

Running Parallel Splashes

Partition the graph
Schedule Splashes locally
Transmit the messages along the boundary of 
the partition 35

Splash Splash
Splash

Key Challenges:
1) How do we schedules Splashes?
2) How do we partition the Graph?



Local State

Scheduling Queue
Where do we Splash?

Assign priorities and use a scheduling queue to 
select roots:

Splash

Splash

?
?

?

CPU 1

How do we assign priorities?



Message Scheduling
Residual Belief Propagation [Elidan et al., UAI 06]: 

Assign priorities based on change in inbound messages

1
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Message

Message
Message

2

Message

Message
Message

Large Change
Small Change

Small Change

Large Change

Small Change:
Expensive No-Op

Large Change:
Informative Update



Problem with Message Scheduling
Small changes in messages do not imply small 
changes in belief:
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Small change in
all message

Large change in
belief 

Message

Message

Belief Message

Message



Problem with Message Scheduling
Large changes in a single message do not imply 
large changes in belief:
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Large change in
a single message

Small change
in belief

Message

Belief MessageMessage

Message



Belief Residual Scheduling
Assign priorities based on the cumulative change 
in belief:

1 1
+

1
+rv =

Message
Change

40

A vertex whose belief has 
changed substantially 

since last being updated
will likely produce 

informative new messages.



Message vs. Belief Scheduling
Belief Scheduling improves 

accuracy and convergence
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Splash Pruning
Belief residuals can be used to dynamically
reshape and resize Splashes:

Low
Beliefs

Residual



Splash Size
Using Splash Pruning our algorithm is able to 
dynamically select the optimal splash size
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Example

Synthetic Noisy Image

Factor Graph

Vertex Updates

Many
Updates

Few
Updates

Algorithm identifies and focuses 
on hidden sequential structure
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Parallel Splash Algorithm

Partition factor graph over processors
Schedule Splashes locally using belief residuals
Transmit messages on boundary

Local State

CPU 1

Splash

Local State

CPU 2

Local State

CPU 3

Splash

Fast Reliable Network

Splash

45

Scheduling
Queue

Scheduling
Queue

Scheduling
Queue

Given a uniform partitioning of the chain 
graphical model, Parallel Splash will run in 
time:

retaining optimality.

Theorem:



CPU 1 CPU 2

Partitioning Objective
The partitioning of the factor graph determines:

Storage, Computation, and Communication
Goal: 

Balance Computation and Minimize Communication

46

Ensure
BalanceComm.

cost



The Partitioning Problem
Objective:

Depends on:

NP-Hard à METIS fast partitioning heuristic 

Work:
Comm:

47

Minimize 
Communication

Ensure Balance

Update counts are not known!



Unknown Update Counts 
Determined by belief scheduling
Depends on: graph structure, factors, …
Little correlation between past & future update 
counts
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Noisy Image Update Counts
Simple Solution:

Uninformed Cut



Uniformed Cuts

Greater imbalance & lower communication cost 

Update Counts Uninformed Cut Optimal Cut
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Over-Partitioning
Over-cut graph into k*p partitions and randomly assign CPUs

Increase balance
Increase communication cost (More Boundary)

CPU 1

CPU 2

CPU 1 CPU 2 CPU 2

CPU 1 CPU 1 CPU 2

CPU 1 CPU 2 CPU 1

CPU 2 CPU 1 CPU 2

Without Over-Partitioning k=6
50



Over-Partitioning Results
Provides a simple method to trade between work 
balance and communication cost
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CPU Utilization
Over-partitioning improves CPU utilization:
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Parallel Splash Algorithm

Over-Partition factor graph 
Randomly assign pieces to processors

Schedule Splashes locally using belief residuals
Transmit messages on boundary

Local State

CPU 1

Splash

Local State

CPU 2

Local State

CPU 3

Splash

Fast Reliable Network

Splash
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Scheduling
Queue

Scheduling
Queue

Scheduling
Queue
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Experiments
Implemented in C++ using MPICH2 as a 
message passing API

Ran on Intel OpenCirrus cluster: 120 processors 
15 Nodes with 2 x Quad Core Intel Xeon Processors
Gigabit Ethernet Switch

Tested on Markov Logic Networks obtained from 
Alchemy [Domingos et al. SSPR 08]

Present results on largest UW-Systems and smallest 
UW-Languages MLNs
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Parallel Performance (Large Graph)

0

20

40

60

80

100

120

0 30 60 90 120

Sp
ee

du
p

Number of CPUs

No Over-Part

5x Over-Part

56

UW-Systems
8K Variables
406K Factors

Single Processor 
Running Time:

1 Hour
Linear to Super-
Linear up to 120 
CPUs

Cache efficiency

Linear

Be
tte

r



Parallel Performance (Small Graph)

UW-Languages
1K Variables
27K Factors

Single Processor 
Running Time:

1.5 Minutes
Linear to Super-
Linear up to 30 
CPUs

Network costs 
quickly dominate 
short running-time
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Summary
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Algorithmic Efficiency Parallel Efficiency

Implementation
Efficiency

Independent 
Parallel Splashes

Splash Structure 
+

Belief Residual 
Scheduling

Distributed Queues
Asynchronous Communication

Over-Partitioning

Experimental results on large factor graphs:
Linear to super-linear speed-up using up to 120 
processors



Sophistication
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Parallel Splash 
Belief Propagation

We are here

Conclusion



Questions

61



Protein Results
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3D Video Task
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Distributed Parallel Setting

Opportunities:
Access to larger systems: 8 CPUs à 1000 CPUs
Linear Increase:

RAM, Cache Capacity, and Memory Bandwidth

Challenges:
Distributed state, Communication and Load Balancing
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Fast Reliable Network

Node

CPU Bus
MemoryCache

Node

CPU Bus
MemoryCache


