Parallel Splash Belief Propagation

Joseph E. Gonzalez Yucheng Low Carlos Guestrin David O'Hallaron

Computers which worked on this project:

BigBro1, BigBro2, BigBro3, BigBro4, BigBro5, BigBro6, BiggerBro, BigBroFS Tashish01, Tashi02, Tashi03, Tashi04, Tashi05, Tashi06, ..., Tashi30, parallel, gs6167, koobcam (helped with writing)

Select Lab

Carnegie Mellon

Release Date

Sophistication

Statistical Structure

- ••Graphical Model Structure
- ••Graphical Model Parameters

Computational Structure

Chains of Computational DependencesDecay of Influence

Parallel Structure

- ••Parallel Dynamic Scheduling
- ••State Partitioning for Distributed Computation

The Result

Sophistication

- Overview
- Graphical Models: Statistical Structure
- Inference: Computational Structure
- τ_{ε} Approximate Messages: Statistical Structure
- Parallel Splash
 - Dynamic Scheduling
 - Partitioning
- Experimental Results
- Conclusions

Graphical Models and Parallelism

Graphical models provide a common language for **general purpose** parallel algorithms in machine learning

A parallel inference algorithm would improve:

Protein Structure Prediction

Movie Recommendation

Computer Vision

Inference is a key step in **Learning** Graphical Models

act Sense Overview of Graphical Models

Graphical represent of local statistical dependencies

"True" Pixel Values

Continuity Assumptions

Inference

What is the probability that this pixel is black?

Observed Random Variables

Synthetic Noisy Image Problem

Noisy Image

- Overlapping Gaussian noise
- Assess convergence and accuracy

Protein Side-Chain Prediction

Model side-chain interactions as a graphical model

Protein Side-Chain Prediction

- 276 Protein Networks:
- Approximately:
 - 700 Variables
 - 1600 Factors
 - 70 Discrete orientations
- Strong Factors

Jearn Markov Logic Networks

- UW-Systems Model
 - 8K Binary Variables
 - 406K Factors
- Irregular degree distribution:
 - Some vertices with high degree

Overview

Graphical Models: Statistical Structure

Inference: Computational Structure

- τ_{ε} Approximate Messages: Statistical Structure
- Parallel Splash
 - Dynamic Scheduling
 - Partitioning
- Experimental Results
- Conclusions

The Inference Problem

What is the best configuration of the protein side-chains?

- NP-Hard in General
- Approximate Inference:
 - Belief Propagation

Iterative message passing algorithm

Naturally Parallel Algorithm

Act Parallel Synchronous BP

 Given the old messages all new messages can be computed in parallel:

Sequential Computational Structure

Hidden Sequential Structure

Hidden Sequential Structure

• Running Time:

act Optimal Sequential Algorithm

Key Computational Structure

Gap

Inherent **Sequential** Structure Requires Efficient Scheduling

- Overview
- Graphical Models: Statistical Structure
- Inference: Computational Structure
- τ_{ε} Approximate Messages: Statistical Structure
- Parallel Splash
 - Dynamic Scheduling
 - Partitioning
- Experimental Results
- Conclusions

Parallelism by Approximation

• Often τ_{ϵ} decreases quickly:

Running Time Lower Bound

Theorem:

Using *p* processors it is not possible to obtain a τ_{ϵ} approximation in time less than:

act Proof: Running Time Lower Bound

• Consider one direction using p/2 processors ($p \ge 2$):

act Optimal Parallel Scheduling

Theorem:

Using *p* processors this algorithm achieves a τ_{ϵ} approximation in time:

$$O\left(\frac{n}{p} + \tau_{\epsilon}\right)$$

act Proof: Optimal Parallel Scheduling

All vertices are left-aware of the left most vertex on their processor

• After *k* parallel iterations each vertex is (*k*-1)(*n*/*p*) **left-aware**

Proof: Optimal Parallel Scheduling

- After k parallel iterations each vertex is (k-1)(n/p) leftaware
- Since all vertices must be made τ_{ε} left aware:

$$(k-1)\frac{n}{p} = \tau_{\epsilon} \Rightarrow k = \frac{p}{n}\tau_{\epsilon} + 1$$

• Each iteration takes O(n/p) time:

$$\frac{2n}{p}\left(\frac{p}{n}\tau_{\epsilon}+1\right) \in O\left(\frac{n}{p}+\tau_{\epsilon}\right)$$

act Comparing with SynchronousBP

- Overview
- Graphical Models: Statistical Structure
- Inference: Computational Structure
- τ_{ε} Approximate Messages: Statistical Structure
- Parallel Splash
 - Dynamic Scheduling
 - Partitioning
- Experimental Results
- Conclusions

Generalize the optimal chain algorithm:

to arbitrary cyclic graphs:

- 1) Grow a BFS Spanning tree with fixed size
- 2) Forward Pass computing all messages at each vertex
- 3) Backward Pass computing all messages at each vertex

- Schedule Splashes locally
- Transmit the messages along the boundary of the partition

Where do we Splash?

 Assign priorities and use a scheduling queue to select roots:

Act Message Scheduling

- Residual Belief Propagation [Elidan et al., UAI 06]:
 - Assign priorities based on change in inbound messages

Problem with Message Scheduling

 Small changes in messages do not imply small changes in belief:

Problem with Message Scheduling

 Large changes in a single message do not imply large changes in belief:

Belief Residual Scheduling

 Assign priorities based on the cumulative change in belief:

A vertex whose belief has changed substantially since last being updated will likely produce informative new messages.

Belief Scheduling improves accuracy

 Belief residuals can be used to dynamically reshape and resize Splashes:

 Using Splash Pruning our algorithm is able to dynamically select the optimal splash size

Synthetic Noisy Image

Vertex Updates

Algorithm identifies and focuses on hidden sequential structure

Parallel Splash Algorithm

Fast Reliable Network

Theorem:

Given a uniform partitioning of the chain graphical model, Parallel Splash will run in time:

$$O\left(\frac{n}{p} + \tau_{\epsilon}\right)$$

retaining optimality.

۱q

Partitioning Objective

- The partitioning of the factor graph determines:
 - Storage, Computation, and Communication
- Goal:
 - Balance Computation and Minimize Communication

The Partitioning Problem

• NP-Hard \rightarrow METIS fast partitioning heuristic

Jean Unknown Update Counts

- Determined by belief scheduling
- Depends on: graph structure, factors, ...
- Little correlation between past & future update counts

Jeann Uniformed Cuts

Greater imbalance & lower communication cost

learn Over-Partitioning

- Over-cut graph into k^*p partitions and randomly assign CPUs
 - Increase balance
 - Increase communication cost (More Boundary)

Without Over-Partitioning

act Over-Partitioning Results

 Provides a simple method to trade between work balance and communication cost

Over-partitioning improves CPU utilization:

sense Parallel Splash Algorithm learn

Over-Partition factor graph

act

- Randomly assign pieces to processors
- Schedule Splashes locally using belief residuals
- Transmit messages on boundary

- Overview
- Graphical Models: Statistical Structure
- Inference: Computational Structure
- τ_{ε} Approximate Messages: Statistical Structure
- Parallel Splash
 - Dynamic Scheduling
 - Partitioning
- Experimental Results
- Conclusions

- Implemented in C++ using MPICH2 as a message passing API
- Ran on Intel OpenCirrus cluster: 120 processors
 - 15 Nodes with 2 x Quad Core Intel Xeon Processors
 - Gigabit Ethernet Switch
- Tested on Markov Logic Networks obtained from Alchemy [Domingos et al. SSPR 08]
 - Present results on largest UW-Systems and smallest UW-Languages MLNs

sense Parallel Performance (Large Graph)

• UW-Systems

learn

- 8K Variables
- 406K Factors
- Single Processor **Running Time:**
 - I Hour
- Linear to Super-Linear up to 120 **CPUs**
 - Cache efficiency

sense Parallel Performance (Small Graph)

• UW-Languages

learn

- IK Variables
- 27K Factors
- Single Processor **Running Time:**
 - 1.5 Minutes
- Linear to Super-Linear up to 30 **CPUs**
 - Network costs quickly dominate short running-time

- Overview
- Graphical Models: Statistical Structure
- Inference: Computational Structure
- τ_{ε} Approximate Messages: Statistical Structure
- Parallel Splash
 - Dynamic Scheduling
 - Partitioning
- Experimental Results
- Conclusions

- Experimental results on large factor graphs:
 - Linear to super-linear speed-up using up to 120 processors

Sophistication

sense learn act **3D Video Task**

Distributed Parallel Setting

Opportunities:

- Access to larger systems: 8 CPUs \rightarrow 1000 CPUs
- Linear Increase:
 - RAM, Cache Capacity, and Memory Bandwidth
- Challenges:
 - Distributed state, Communication and Load Balancing