Parallel Splash
Belief Propagation

Joseph E. Gonzalez
Yucheng Low
Carlos Guestrin
David O’Hallaron

Computers which worked on this project:
BigBrol, BigBro2, BigBro3, BigBro4, BigBro5, BigBro6, BiggerBro, BigBroFS

Tashish01, Tashi02, Tashi03, Tashi04, Tashi05, Tashi06, ..., Tashi30,
parallel, gs6167, koobcam (helped with writing)

S e l e Ct La b Carnegie Mellon

Selise

&« Change in the Foundation of ML
N e
N
T
< \
=
D Future Sequential
o Performance
7p)
S | R
O
—
2 2 3 % 82 % 2 3 3 8 8 9

Release Date

I Why is this a Problem?

Nearest Neighbor
[Google et al.]

Basic Regression

Parallelism

dels
[Mendiburu et al.

Sophistication

L' Why is it hard?

Algorithmic Efficiency Parallel Efficiency
Eliminate wasted Expose independent
computation computation
Implementation
Efficiency

Map computation to
real hardware

e The Key Insight

Statistical Structure

eeGraphical Model Structure
eeGraphical Model Parameters

\.

Computational Structure

eeChains of Computational Dependences
eeDecay of Influence

\.

r _ NS

7

Parallel Structure

eeParallel Dynamic Scheduling
eeState Partitioning for Distributed Computation

\.

Teim The Result

Nearest Neighbor
[Google et al.]

Basic Regression

Parallelism

Sophistication

Sei.cc

Team Qutline

¢ Overview

| » Graphical Models: Statistical Structure

¢ Inference: Computational Structure
¢ 7.- Approximate Messages: Statistical Structure

¢ Parallel Splash

e Dynamic Scheduling
¢ Partitioning

¢ Experimental Results
¢ Conclusions

Sed [K™} w7

e Graphical Models and Parallelism

Graphical models provide a common language for general
purpose parallel algorithms in machine learning

» A parallel inference algorithm would improve:

Protein Structure Movie Computer Vision
Prediction Recommendation

Inference is a key step in Learning
Graphical Models

S€eiicc

Jle<m Overview of Graphical Models

o Graphical represent of local statistical dependencies

Observed Random Variables

“True” Pixel Values

Continuity Assumptions

Inference

What is the probability
that this pixel is black?

—
o
Q)
=
O
D

o
@
)
Q
®
2
0,
o)
n

]
_q\
i

|-
L
\ﬂ
-
q
2o
)
o

C

()
)

(¢
—

Je<iiv Synthetic Noisy Image Problem

Noisy Image Predicted Image

[,

» Overlapping Gaussian noise

» Assess convergence and
accuracy

sense
Iea n

Protein Side-Chain Prediction

» Model side-chain interactions as a graphical model

Inference
What is the most likely orientation?

%)
o
®

O
=
o
>

11

S€eiicc

< Protein Side-Chain Prediction

o 276 Protein Networks:

o Approximately:
o /00 Variables
o 1600 Factors
¢ /0 Discrete orientations

» Strong Factors

Example Degree Distribution

0.15

0.1 -
0.05 -
0 -

6 14 22 30 38 46
Degree

12

Sed [fo) w7

Jle<m Markov Logic Networks

» Represent Logic as a graphical model

A: Alice i True/False?
8- Bob Friends(A,B) / :

|

_____| Friends(A,B) And Smokes(A)
@ > Smokes(B) Smokes(B)

-~

Smokes(A) =» Cancer(A) Smokes(B) =» Cancer(B)

/
D

Cancer(B)

Inference
Pr(Cancer(B) = True | |
Smokes(A) = True & Friends(A,B) = True) = ?
13

S€eiicc

Jle<im Markov Logic Networks

o UW-Systems Model
» 8K Binary Variables
» 406K Factors

» Irregular degree
distribution:

o Some vertices with high
degree

A: Alice @EEGEEVE! True/False?
B: Bob rue/Felse:

|
Friends(A,B) And Smokes(A)
@ = = Smokes(B) o
\ /
Smokes(A) = Cancer(A) Smokes(B) = Cancer(B)
D
=10
=
O
o
&
o 5 -
>
Cn h‘
o
-l
. | . ||
20 100 130
Degree

14

S€eiicc

Teaim Qutline

¢ Overview
o Graphical Models: Statistical Structure

‘ » Inference: Computational Structure

¢ 7.- Approximate Messages: Statistical Structure

¢ Parallel Splash

e Dynamic Scheduling
¢ Partitioning

¢ Experimental Results
¢ Conclusions

15

Se/.sc

ez The Inference Problem

What is the probability
that Bob Smokes given
Alice Smokes?

What is the probability
that each pixel is black?

What is the best
configuration of the
protein side-chains?

¢ NP-Hard in General

» Approximate Inference:
« Belief Propagation

16

Sei.cc

Jlei Belief Propagation (BP)

» [terative message passing algorithm

17

Selise

Jle<™ Parallel Synchronous BP

» Given the old messages all new messages can be
computed in parallel:

4 4)
>=]
>=]
>=]

000 000
Old J New
\Messages \Messages/

18

Selise

e Sequential Computational Structure

19

Se ISE

Je<m Hidden Sequential Structure

20

S€eiicc

Jle<m Hidden Sequential Structure

Ewdence Evidence
N N N i 8
/
\ N N LS N

21

Selicc

e« Optimal Sequential Algorithm

Running
Time

Naturally Parallel

T 7T f”-\ f"-\:f"-\:
Re 2 Ko 2 Ko 2 Ko 2 K _ v

- ~a ~ o ~ N

2n¢/p

22

Selicc

e Key Computational Structure

Running
Time
Naturally Parallel
’f-N‘ ,f"s‘ ,f"s‘ ,f"s‘ ,f"s‘ 2n2/p
k_&’ k_&’ k_&’ k_&' p S 2n

Inherent Sequential Structure
Requires Efficient Scheduling

Otimal Parallel

23

S€eiicc

Teaim Qutline

¢ Overview
» Graphical Models: Statistical Structure
» Inference: Computational Structure

» 7,- Approximate Messages: Statistical Structure

¢ Parallel Splash

e Dynamic Scheduling
¢ Partitioning

¢ Experimental Results
e Conclusions

24

Seiicc

Je<im Parallelism by Approximation

True Messages

T, ~Approximation ! ! T T T T T

» T, represents the Img—10 — my_10ll; < €
minimal sequential
structure

25

S€eiicc

. Tau-Epsilon Structure

» Often T, decreases quickly:

Message Approximation Error
in Log Scale

>

10

10 T

10 7

_/

A
N
Markov Logic l
Networks
5 10 15 20 25 30 35

40

Protein Networks

26

Seiisc

Je=" Running Time Lower Bound

Theorem:
Using p processors it is not possible to obtain a .

approximation in time less than:

Parallel Sequential
Component Component

27

[fo) w7

S ’ m =
e Proof: Running Time Lower Bound

» Consider one direction using p/2 processors (p=2):
T, n- T

¢ * ¢ o
O —0 0 00 0 606

28

Seiicc

e« Optimal Parallel Scheduling

Processor 1 Processor 2 Processor 3

Theorem:
Using p processors this algorithm achieves a .

approximation in time:

0, (B —|—7’€>
P

29

e Proof: Optimal Parallel Scheduling

o All vertices are left-aware of the left most vertex on their processor

30

12T Proof: Optimal Parallel Scheduling

» After k parallel iterations each vertex is (k-1)(n/p) left-
aware

» Since all vertices must be made 7, left aware:

(k—l)E:TeikngG—l—l

P n

» Each iteration takes O(n/p) time:

2
= (BTE—I—l) EO(E—I—T€>
p \n p

31

Sei.cc

e Comparing with SynchronousBP

Processor 1 Processor 2 Processor 3

ll

0»
--

Synchronous Schedule Optimal Schedule
O NTe O n I 7_6
p p

32

Teim Qutline

o Overview

» Graphical Models: Statistical Structure

» Inference: Computational Structure

» 7,- Approximate Messages: Statistical Structure

» Parallel Splash
o Dynamic Scheduling
« Partitioning

¢ Experimental Results
¢ Conclusions

33

S€eiicc

Jle<m The Splash Operation

» Generalize the optimal chain algorithm:

lllllllllllllllllllllllllllllllllll

o L 4
llllllllllllllllllllllllllllllllll

to arbitrary cyclic graphs:

1) Grow a BFS Spanning tree
with fixed size

2) Forward Pass computing all
messages at each vertex

3) Backward Pass computing all
messages at each vertex

Sei.cc

Je< Running Parallel Splashes

» Schedule Splashes locally

» Transmit the messages along the boundary of
the partition

35

Seé/.sc

e« \Where do we Splash?

» Assign priorities and use a scheduling queue to
select roots:

-

130 e HL
AN ﬂiyp",‘ _
“spl

N L Y

Local State

Sei.cc

< Message Scheduling

» Residual Belief Propagation [Elidan et al., UAI 06]:
» Assign priorities based on change in inbound messages

Small Change Large Changrj

;Small Change] n Large CQH/HQQJ
"\/ w i
i Message l h

Message l

37

?euw

& Problem with Message Scheduling

» Small changes in messages do not imply small

changes in belief:

Small change in
all message

i B

Message

Large change in
belief

i B

Message

Message
38

?e.dw

& Problem with Message Scheduling

» Large changes in a single message do not imply
large changes in belief:

Large change in
a single message

I~ B

Message

Small change
in belief

mll

Message

Message
39

Seiicc

Jle<im Belief Residual Scheduling

» Assign priorities based on the cumulative change

in belief:
r, = l I —| I +
1

A vertex whose belief has
changed substantially
since last being updated
will likely produce

informative new messages.

LL-Ja

A

M.

Message
Change

1

"l lan
[}

.

40

S€eiicc

teai Message vs. Belief Scheduling

Belief Scheduling improves

dCCuracy
Error in Beliefs % Converged in 4Hrs
0.06 - -+-Message Scheduling 1009% -
& « :
< 0.05 - -#-Belief Scheduling 80% -
| A
Q 60% -
2| S 0.04 - °
Pl o 40% -
u 0.03 -
v 20% -
-l
0.02] 0% -
0 50 100 Belief Message

Time (Seconds) Residuals Residual

41

S€eiicc

Jle<m Splash Pruning

» Belief residuals can be used to dynamically

reshape and resize Splashes:

rF==

\

Low -~

Beliefs
Residual
4

Seiicc

e Splash Size

» Using Splash Pruning our algorithm is able to
dynamically select the optimal splash size

—-Without Pruning
-=\With Pruning \

350

o
o
|

U1
o
|

= = N N W
o O
o O
L 1

!
+
b

<€

Better
Running Time (Seconds)
Ul
o

o

0 10 20 30 40 50 60
Splash Size (Messages)

43

Se/.sc

e Example

Many
Updates

.....
oM

Synthetic Noisy Image
Few
Updates

Vertex Updates

Algorithm identifies and focuses
on hidden sequential structure

Factor Graph
44

Se/.sc

e« Parallel Splash Algorithm
| Fast Reliable Network |

_

. Theorem: 9

Given a uniform partitioning of the chain
graphical model, Parallel Splash will run in

time: L

retaining optimality.

45

Seiicc

Jle< Partitioning Objective

» The partitioning of the factor graph determines:
» Storage, Computation, and Communication

¢ Goal:
» Balance Computation and Minimize Communication

Ensure

Comm.
Balance

cost

\---— ‘------_,

’—_-_-_-_--

46

e The Partitioning Problem
Conl\14|i:11iun|:iiz:tion

» Objective:

minimize: g Cij
(¢,7)€Cut Edges

subj. to: Z w; < % Z W,

1€Largest Block veV

Ensure Balance

» Depends on: Update counts are not known!
TWOrk: w; = | Updates, x Size(z) x Degree(7)
Comm: |ci;; = (Updates; + Updates;) x MessageSize(i, j)

» NP-Hard - METIS fast partitioning heuristic

47

Se duv

Je<m Unknown Update Counts

» Determined by belief scheduling
» Depends on: graph structure, factors, ...

o Little correlation between past & future update
counts

—
o
. N

8 8 &
ate Counts

Noisy Ima

10’

pdate Counts

48

Seiicc

Teaim Uniformed Cuts

Uninformed Cut Update Counts ___Optimal Cut
TOJ Mudh-Work— i .
N —L
1 _'__._l_'——_
e Work

o Greater imbalance & lower communication cost

Work Imbalance Communication Cost
4 - 1.1 -
| - 3 - | - 1]
g L1 09 - ® Uninformed
ol 2 - | 08 - .
0 ol o5 ® Optimal
17 0.6 -

0.5 -

Denoise UW-Syst. Denoise UW-Syst. 49

Selicc

Jesim Qver-Partitioning

o Over-cut graph into k*p partitions and randomly assign CPUs
¢ Increase balance
¢ Increase communication cost (More Boundary)

P —— \
i T
CPU 1
k=6

50

Without Over-Partitioning

Seiicc

Je<im Qver-Partitioning Results

» Provides a simple method to trade between work
balance and communication cost

Work Imbalance Communication Cost
3.5 - 4 -
3.5 -
3 _
5 | 3
=] L

2125 212.5 -
\ A3 v 2
1.5 -

1-5 | | | 1 : I |

0 5 10 15 0 5 10 15

Partition Factor k Partition Factor k

51

Iesim CPU Utilization

» Over-partitioning improves CPU utilization:

UW-Systems MLN Denoise
70 - 70 -
60 ¢ ~ IR
§ 50 - 50 - ——No Over-Part
©40 - 40 1 10x Over-Part
2 30 - 30 -
wid
< 20 | 20 -
10 - 10 -
O I | 0 T M
0 100 200 0 20 40

Time (Seconds) Time (Seconds)

52

Parallel Splash Algorithm

-

~
Scheduhng

Queue

il g

(:PLJI

Local State

4)
(]DU 2

Scheduhng
Queue

| =

Local State

» Over-Partition factor graph
o Randomly assign pieces to processors

» Schedule Splashes locally using belief residuals

» Transmit messages on boundary

-~

~
Scheduhng

Queue

(]DU 3

Local State

53

Teim Qutline

» Overview

» Graphical Models: Statistical Structure

» Inference: Computational Structure

» 7.- Approximate Messages: Statistical Structure

» Parallel Splash
o Dynamic Scheduling
o Partitioning

» Experimental Results

¢ Conclusions

54

Se/.sc

Jeaiit Experiments

» Implemented in C++ using MPICH2 as a
message passing API

» Ran on Intel OpenCirrus cluster: 120 processors

o 15 Nodes with 2 x Quad Core Intel Xeon Processors
» Gigabit Ethernet Switch

» Tested on Markov Logic Networks obtained from
Alchemy [Domingos et al. SSPR 08]

» Present results on largest UW-Systems and smallest
UW-Languages MLNs

55

Se/.sc
&= Parallel Performance (Large Graph)

o UW-Systems
» 8K Variables
¢ 406K Factors
» Single Processor
Running Time:
o 1 Hour

» Linear to Super-
Linear up to 120
CPUs

» Cache efficiency

A 120

£1 100
()
o

Linear

30 60 90 120
Number of CPUs

56

selisc
lear

e Parallel Performance (Small Graph)

» UW-Languages
» 1K Variables
o 2/K Factors

» Single Processor
Running Time:
¢ 1.5 Minutes

¢ Linear to Super-
Linear up to 30
CPUs
o Network costs

quickly dominate
short running-time

/
Linear ——>I'

30 60 90 120
Number of CPUs

57

Teiim Qutline

» Overview

» Graphical Models: Statistical Structure

» Inference: Computational Structure

» 7.- Approximate Messages: Statistical Structure

» Parallel Splash
o Dynamic Scheduling
« Partitioning

» Experimental Results

¢ Conclusions

58

Seiicc

Jeai Summary

Algorithmic Efficiency Parallel Efficiency
Splash Structure Independent
= Parallel Splashes
Belief Residual
Scheduling
Implementation
Efficiency

Distributed Queues
Asynchronous Communication
Over-Partitioning

» Experimental results on large factor graphs:

» Linear to super-linear speed-up using up to 120

Processors
59

S€eiicc

Team Conclusion

We are here — |

Parallel Splash
Belief Propagation

Parallelism

Wi
€ Wel'e h er
e

Sophistication

Seiisc
Iea d/a

Questions

61

Iem

- Protein Results

Relative Speedup

Linear Speedup 3

N W & 9] o ~ Qo (o) o
l

1 2 3 4 S 6 7 8

Number of Cores

62

selisc
leain
act

3D Video Task

©))

(9))

w

Relative Speedup
A

N

Splash BP
Linear Speedup
i MapReduce BP
- e Residual BP 2P \ :
1 2 3 4 5 6 7 8

Number of Cores

63

A< Distributed Parallel Setting

4 N e N
CPU @ & CPU @ a
Node Node
_ Y, J

o Opportunities:
» Access to larger systems: 8 CPUs - 1000 CPUs

¢ Linear Increase:
« RAM, Cache Capacity, and Memory Bandwidth

» Challenges:
» Distributed state, Communication and Load Balancing

64

