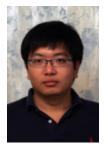
Big Learning with Graphs

Joseph Gonzalez jegonzal@cs.cmu.edu



Yucheng Low

Aapo Kyrola

Haijie Gu

Danny Bickson

Arthur Gretto

Carlos Guestrin

Alex Smola

Joe Hellerstein

David O'Hallaron

Guy Blelloch

The Age of Big Data

28 Million Wikipedia Pages

6 Billion Flickr Photos

900 Million Facebook Users

72 Hours a Minute
YouTube

The New York Times

SundayReview

WORLD U.S. N.Y. / REGION BUSINESS TEC

NEWS ANALYSIS

The Age of Big Data

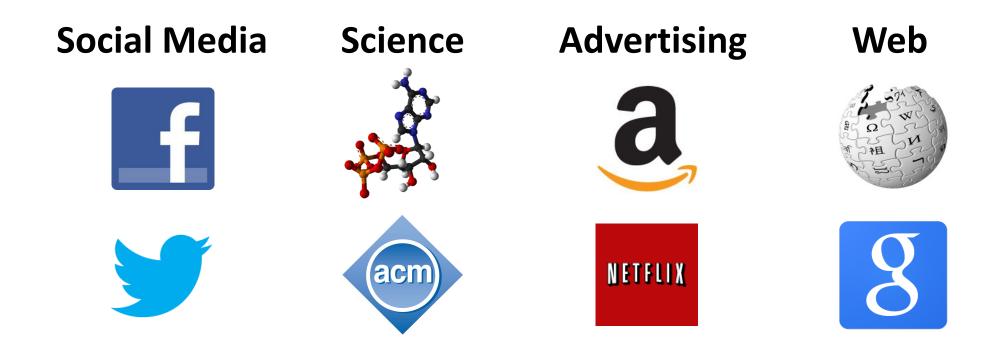
By STEVE LOHR

Published: February 11, 2012

"...growing at 50 percent a year..."

"... data a new class of economic asset, like currency or gold."

Big Data Big Graphs

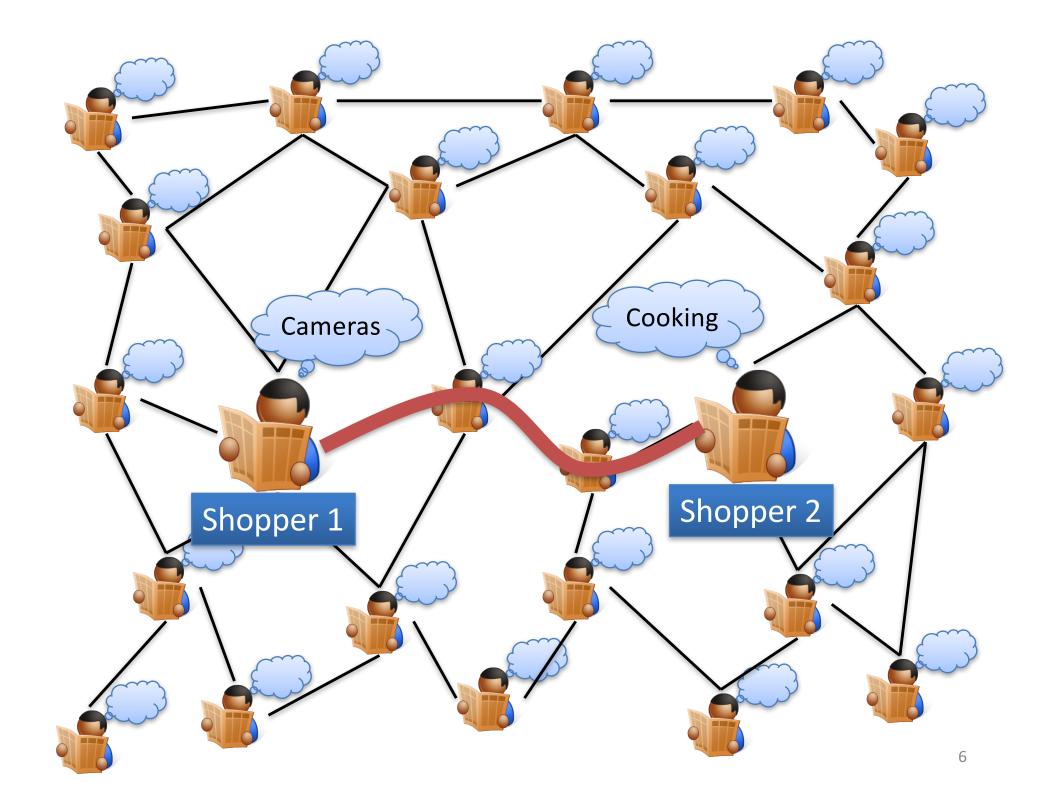


Graphs encode relationships between:

People Products Ideas
Facts Interests

• Big: billions of vertices and edges and rich metadata

Big graphs present exciting new **opportunities** ...



Big-Graphs are Essential to **Data-Mining** and **Machine Learning**

- Identify influential people and information
- Find communities
- Target ads and products
- Model complex data dependencies

Big Learning with Graphs

Understanding and using large-scale **Structured** data.

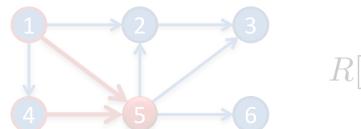
Examples

PageRank (Centrality Measures)

Iterate:

$$R[i] = \alpha + (1 - \alpha) \sum_{(j,i) \in E} \frac{1}{L[j]} R[j]$$

- Where:
 - $-\alpha$ is the random reset probability
 - -L[j] is the number of links on page j



$$R[5] = \alpha + (1 - \alpha) \left(\frac{1}{3}R[1] + \frac{1}{1}R[4]\right)$$

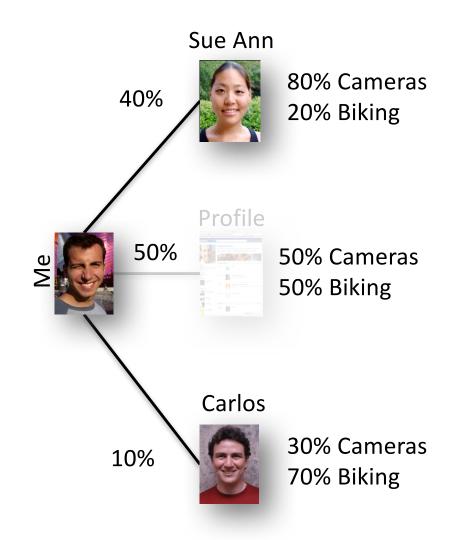
Label Propagation (Structured Prediction)

Social Arithmetic:

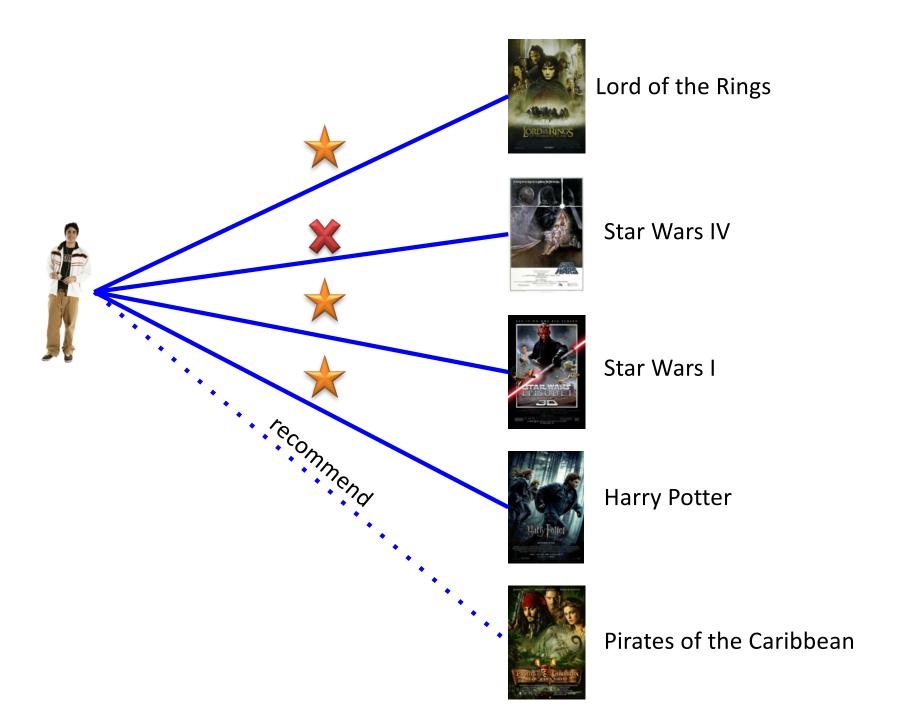
50% What I list on my profile 40% Sue Ann Likes 10% Carlos Like

I Like: 60% Cameras, 40% Biking

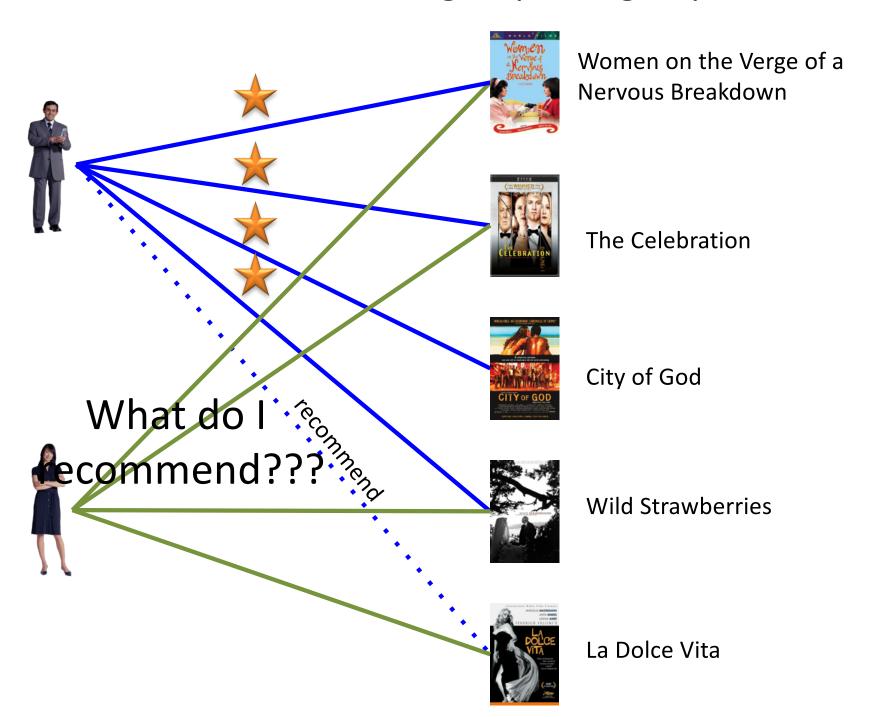
- Recurrence Algorithm: $Likes[i] = \sum_{j \in Friends[i]} W_{ij} \times Likes[j]$
 - iterate until convergence
- Parallelism:
 - Compute all *Likes[i]* in parallel



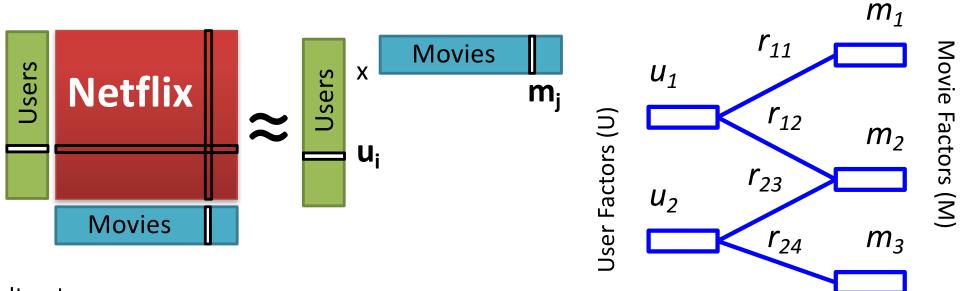
Collaborative Filtering: Independent Case



Collaborative Filtering: Exploiting Dependencies



Matrix Factorization Alternating Least Squares (ALS)



Iterate:

$$u_i = \arg\min_{w} \sum_{j \in N[i]} (r_{ij} - m_j \cdot w)^2$$

$$m_j = \arg\min_{w} \sum_{i \in N[j]} (r_{ij} - u_i \cdot w)^2$$

Many More Algorithms

Collaborative Filtering

- Alternating Least Squares
- Stochastic Gradient Descent
- Tensor Factorization
- SVD

Structured Prediction

- Loopy Belief Propagation
- Max-Product Linear Programs
- Gibbs Sampling

Semi-supervised ML

- Graph SSL
- CoEM

Graph Analytics

- PageRank
- Single Source Shortest Path
- Triangle-Counting
- Graph Coloring
- K-core Decomposition
- Personalized PageRank

Classification

- Neural Networks
- Lasso

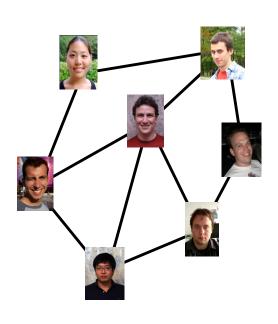
• • •

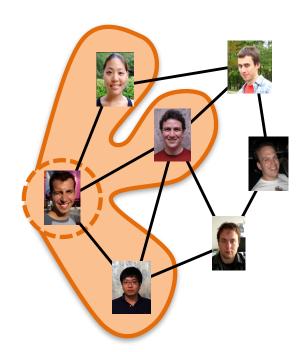
Graph Parallel Algorithms

Dependency **Graph**

Local Updates

Iterative Computation





My Interests

Friends
Interests

What is the right tool for Graph-Parallel ML

Data-Parallel

Graph-Parallel

Map Reduce

Feature Extraction

Cross Validation

Computing Sufficient Statistics

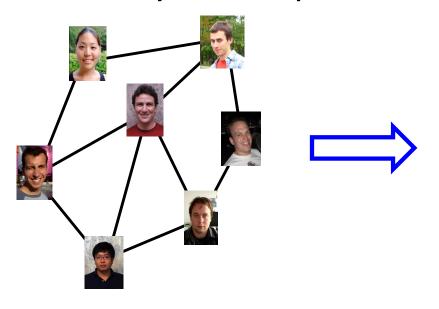
Map Reduce?

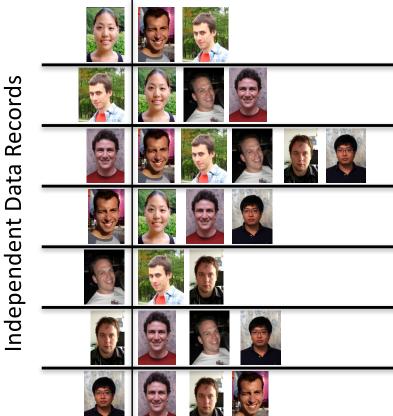
Collaborative Filtering
Graph Analytics
Structured Prediction
Clustering

Why not use *Map-Reduce* for **Graph Parallel** algorithms?

Data Dependencies are Difficult

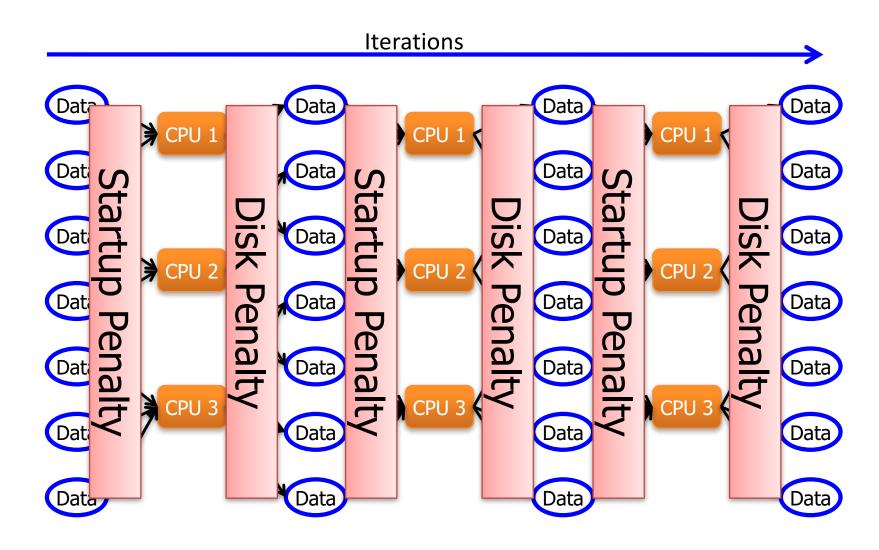
- Difficult to express dependent data in Map Reduce
 - Substantial data transformations
 - User managed graph structure
 - Costly data replication





Iterative Computation is Difficult

System is not optimized for iteration:



Map-Reduce for Data-Parallel ML

Excellent for large data-parallel tasks!

Data-Parallel

Graph-Parallel

Map Reduce

Feature Extraction Cross Validation

Computing Sufficient Statistics

MPI/Pthreads

Collaborative Filtering
Graph Analytics
Structured Prediction
Clustering

We could use

Threads, Locks, & Messages

"low level parallel primitives"

Threads, Locks, and Messages

- Graduate students repeatedly solve the same parallel design challenges:
 - Implement and debug complex parallel system
 - Tune for a specific parallel platform
 - Six months later the conference paper contains:

"We implemented _____ in parallel."

- The resulting code:
 - is difficult to maintain
 - is difficult to extend
 - couples learning model to parallel implementation

Addressing Graph-Parallel ML

We need alternatives to Map-Reduce

Data-Parallel

Graph-Parallel

Map Reduce

Feature Extraction Cross Validation

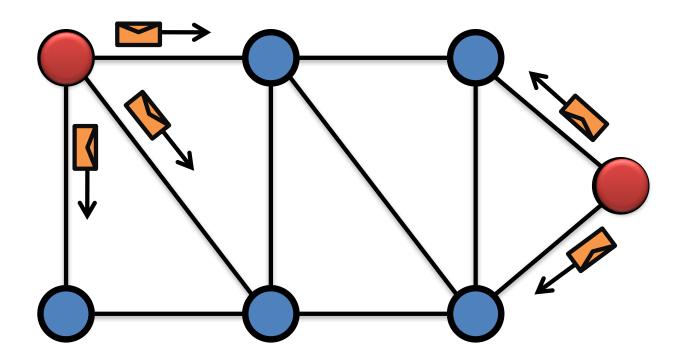
Computing Sufficient
Statistics

Pregel

Collaborative Filtering
Graph Analytics
Structured Prediction
Clustering

Pregel Abstraction

- User-defined Vertex-Program on each vertex
- Vertex-programs interact along edges in the Graph
 - Programs interact through Messages
- Parallelism: Multiple vertex programs run simultaneously



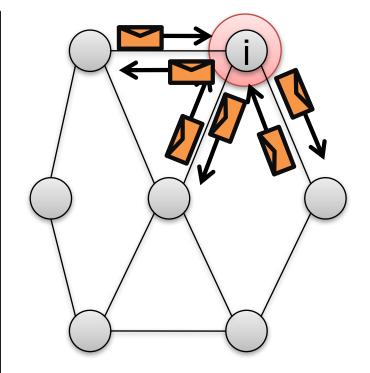
The Pregel Abstraction

Vertex-Programs communicate through messages

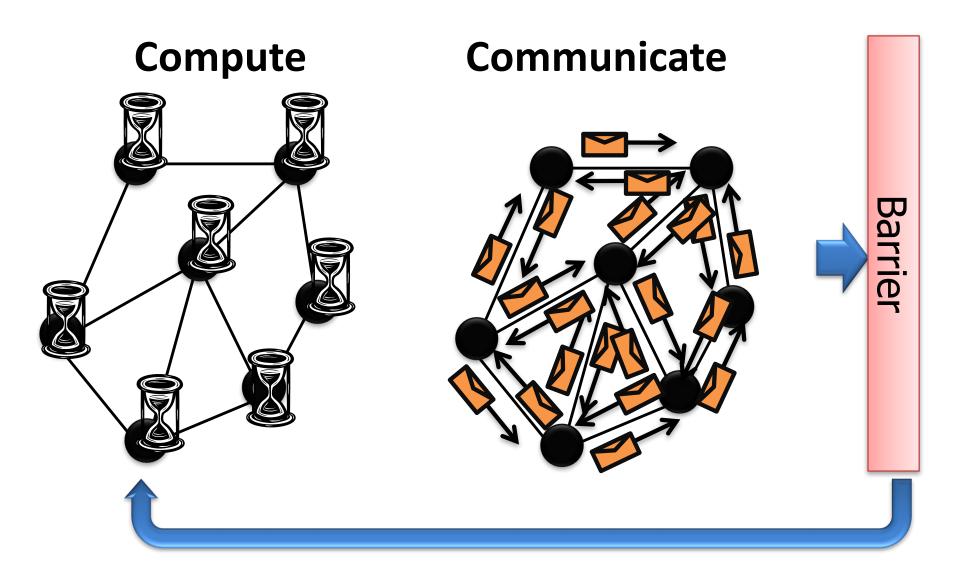
```
void Pregel_PageRank(i, msgs) :
    // Receive all the messages
    float total = sum(m in msgs)

// Update the rank of this vertex
R[i] = β + (1-β)*total

// Send Messages to neighbors
    foreach(j in out_neighbors[i]) :
        SendMsg(nbr, R[i] * w<sub>ij</sub>)
```



Pregel is Bulk Synchronous Parallel



Open Source Implementations

- Giraph: http://incubator.apache.org/giraph/
- Golden Orb: http://goldenorbos.org/
- Stanford GPS: http://infolab.stanford.edu/gps/

An asynchronous variant:

GraphLab: http://graphlab.org/

Tradeoffs of the BSP Model

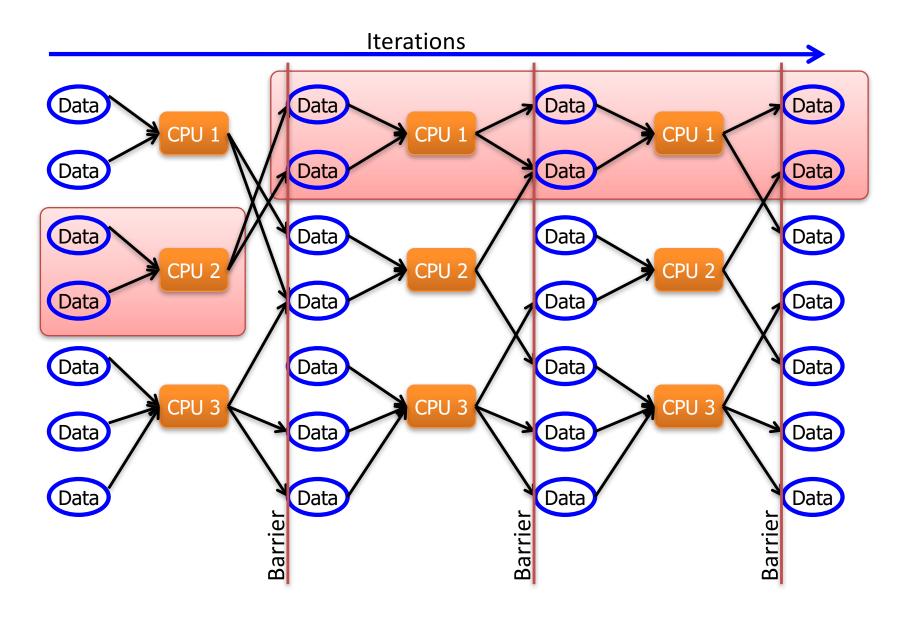
• Pros:

- Graph Parallel
- Relatively easy to implement and reason about
- Deterministic execution

Cons:

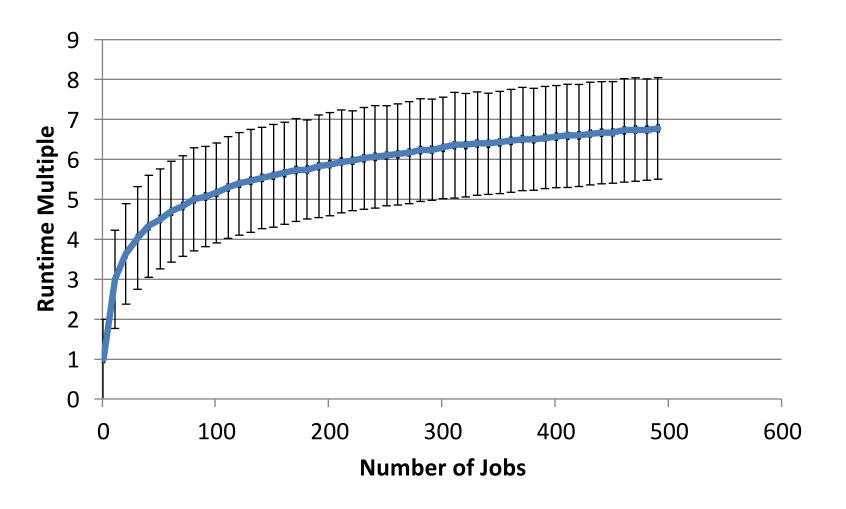
- User must architect the movement of information
 - Send the correct information in messages
- Bulk synchronous abstraction inefficient

Curse of the Slow Job



Curse of the Slow Job

Assuming runtime is drawn from an exponential distribution with mean 1.

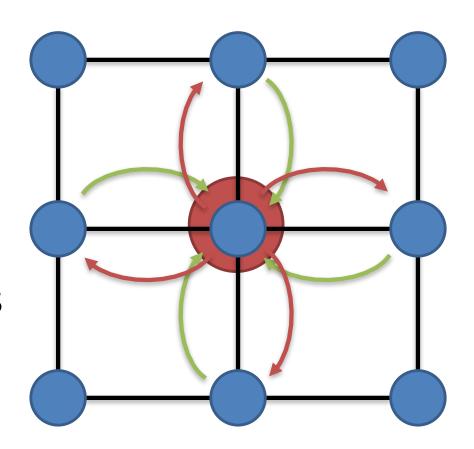


http://www.www2011india.com/proceeding/proceedings/p607.pdf

Bulk synchronous parallel model **provably inefficient** for some graph-parallel tasks

Example: Loopy Belief Propagation (Loopy BP)

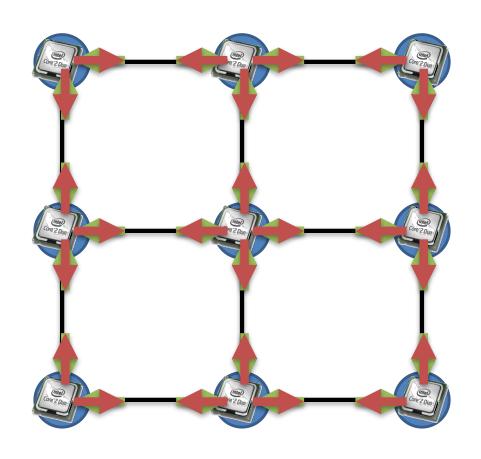
- Iteratively estimate the "beliefs" about vertices
 - Read in messages
 - Updates marginal estimate (belief)
 - Send updated out messages
- Repeat for all variables until convergence



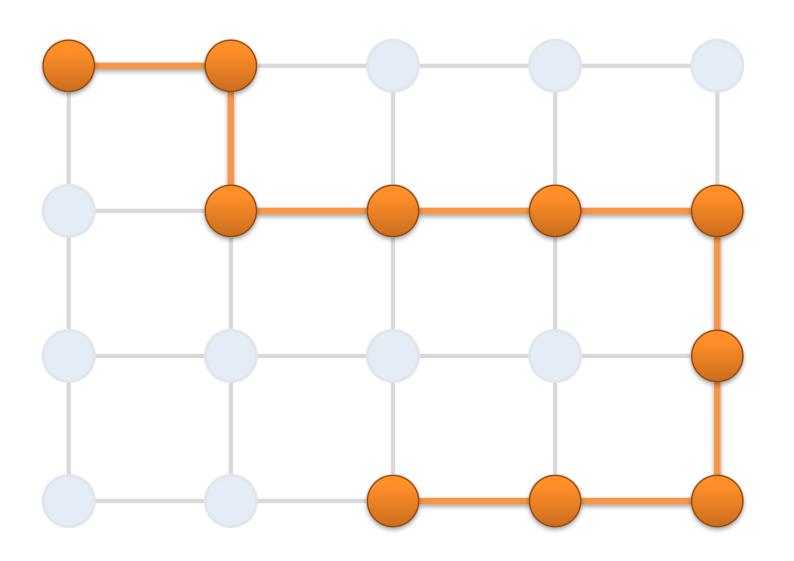
Bulk Synchronous Loopy BP

- Often considered embarrassingly parallel
 - Associate processor with each vertex
 - Receive all messages
 - Update all beliefs
 - Send all messages
- Proposed by:
 - Brunton et al. CRV'06
 - Mendiburu et al. GECC'07
 - Kang, et al. LDMTA'10

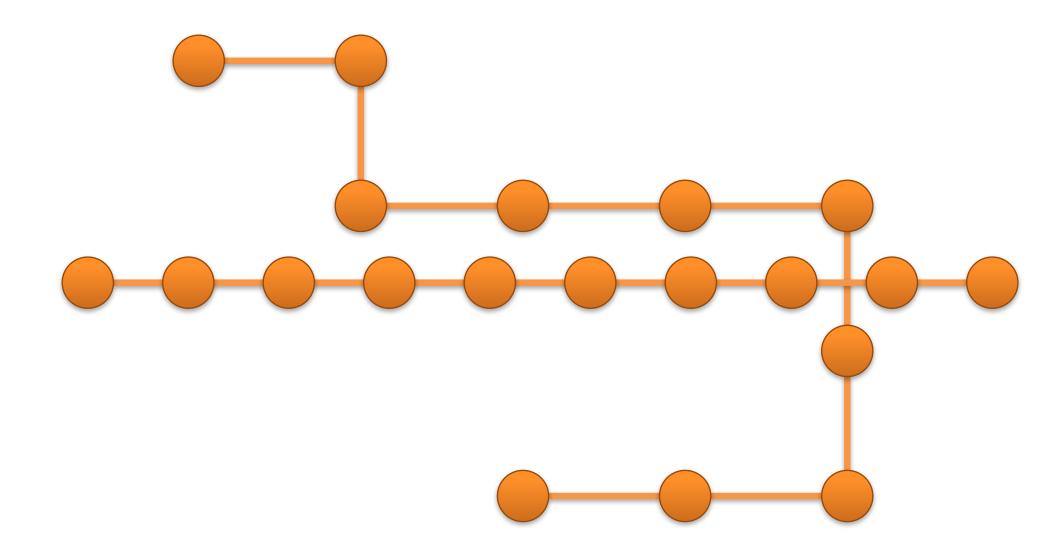
– ...



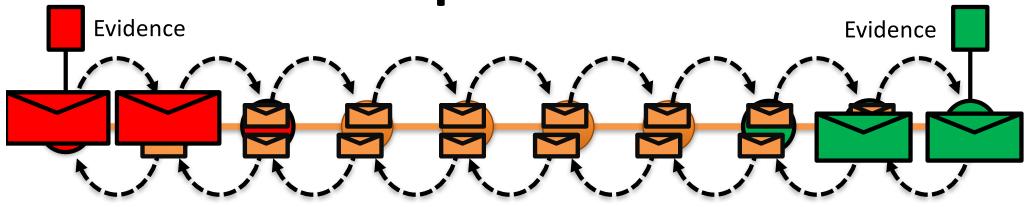
Sequential Computational Structure



Hidden Sequential Structure



Hidden Sequential Structure



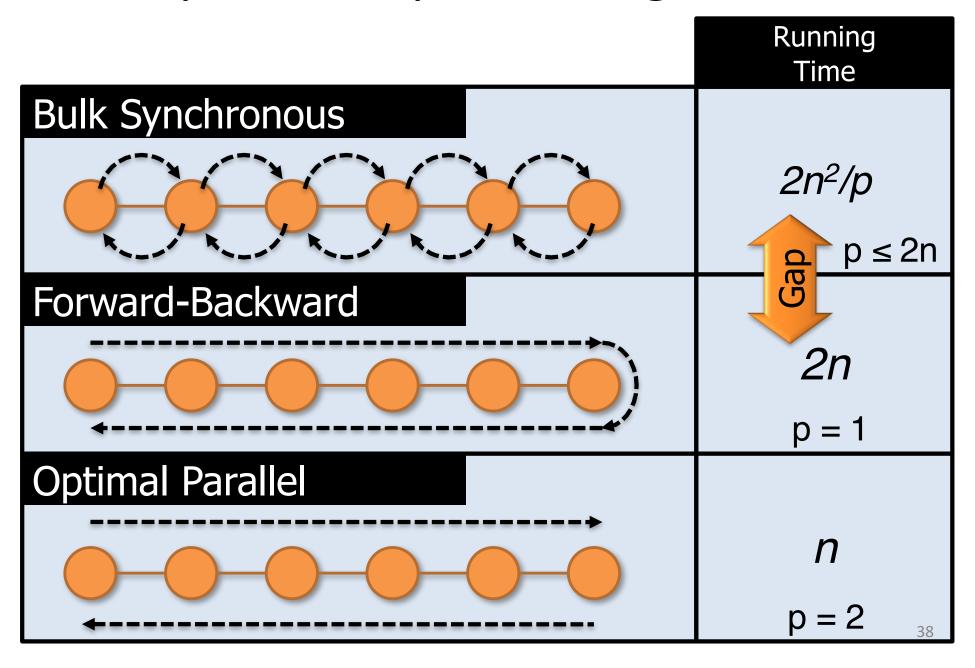
Running Time:

$$\frac{2n \text{ Messages Calculations}}{p \text{ Processors}} \times (n \text{ Iterations to Converge}) = \frac{2n^2}{p}$$

Time for a single parallel iteration

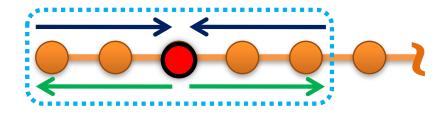
Number of Iterations

Optimal Sequential Algorithm



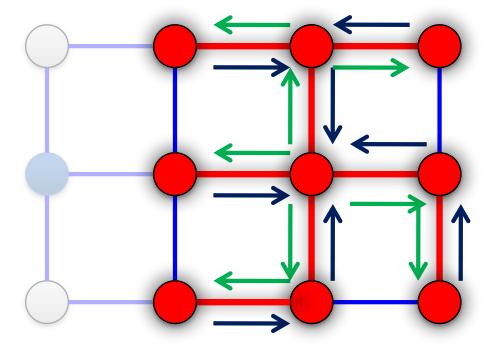
The Splash Operation

Generalize the optimal chain algorithm:



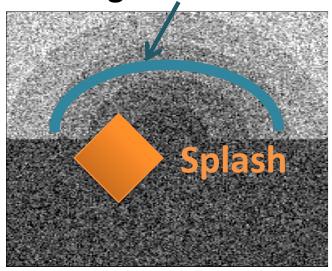
to arbitrary cyclic graphs:

- 1) Grow a BFS Spanning tree with fixed size
- 2) Forward Pass computing all messages at each vertex
- Backward Pass computing all messages at each vertex

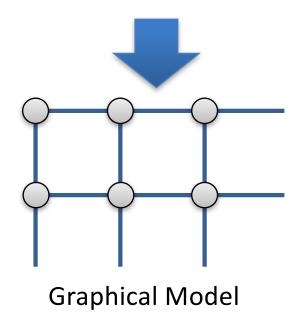


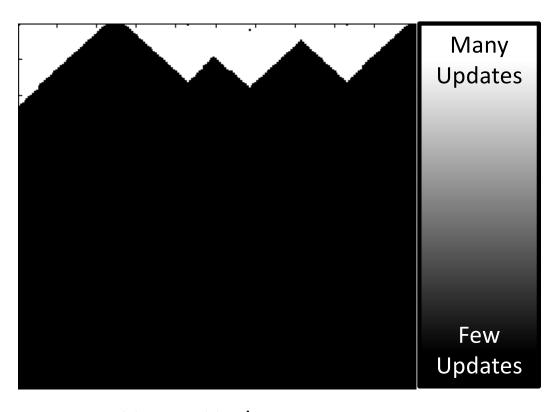
Prioritize Computation

Challenge = Boundaries



Synthetic Noisy Image

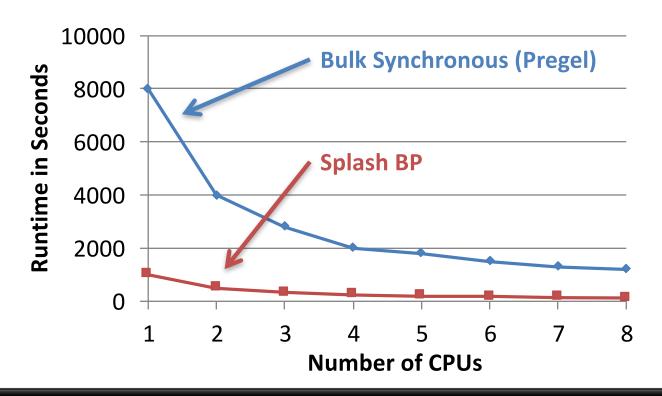




Vertex Updates

Algorithm identifies and focuses on hidden sequential structure

Comparison of Splash and Pregel Style Computation



Limitations of bulk synchronous model can lead to *provably* inefficient parallel algorithms

The Need for a New Abstraction

Need: Asynchronous, Dynamic Parallel Computations

Data-Parallel

Graph-Parallel

Map Reduce

Feature Extraction Cross

Validation

Computing Sufficient Statistics

Graphical Models

Gibbs Sampling Belief Propagation Variational Opt.

Collaborative Filtering

Tensor Factorization

Semi-Supervised Learning

Label Propagation CoEM

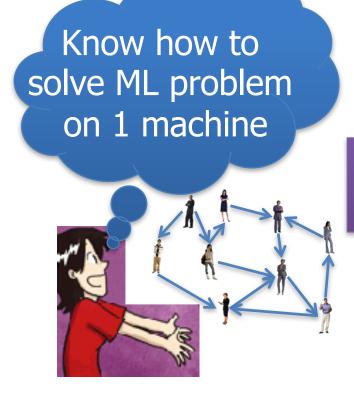
Data-Mining

PageRank Triangle Counting

The **GraphLab** Goals

- Designed specifically for ML
 - Graph dependencies
 - Iterative
 - Asynchronous
 - Dynamic

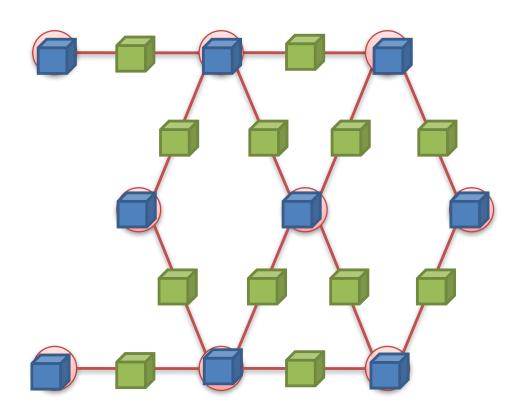
- Simplifies design of parallel programs:
 - Abstract away hardware issues
 - Automatic data synchronization
 - Addresses multiple hardware architectures



Efficient parallel predictions

Data Graph

Data associated with vertices and edges



Graph:

Social Network

Vertex Data:

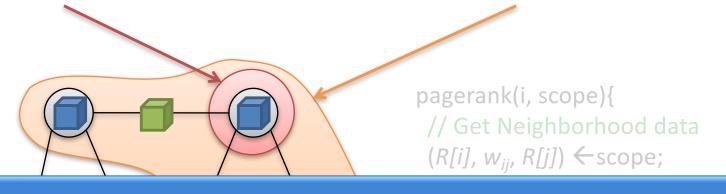
- User profile text
- Current interests estimates

Edge Data:

Similarity weights

Update Functions

User-defined program: applied to **vertex** transforms data in **scope** of vertex



Update function applied (asynchronously) in parallel until convergence

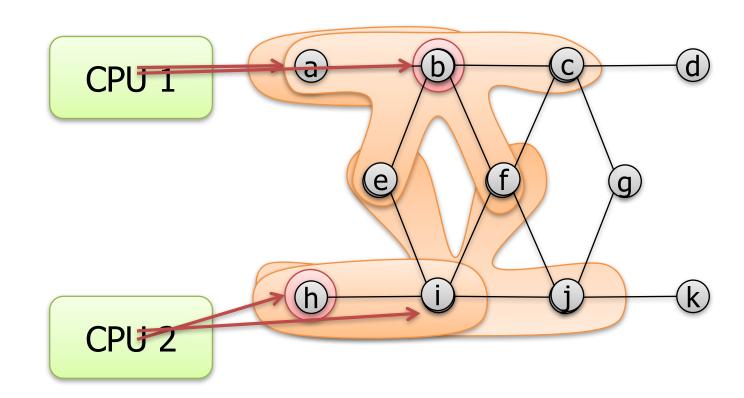
Many schedulers available to prioritize computation

Dynamic computation

The Scheduler

The **scheduler** determines the order that vertices are updated

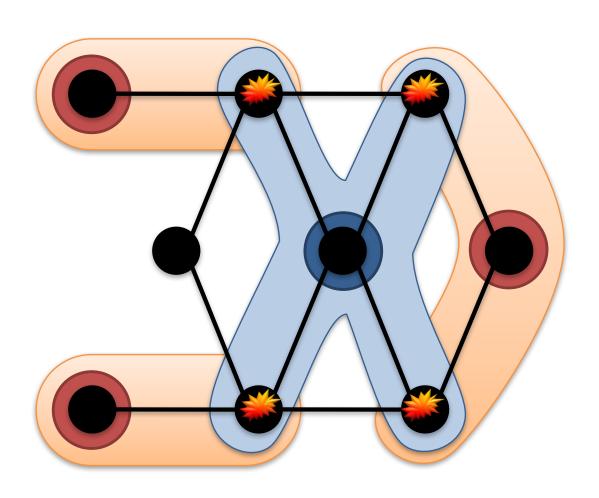
Scheduler



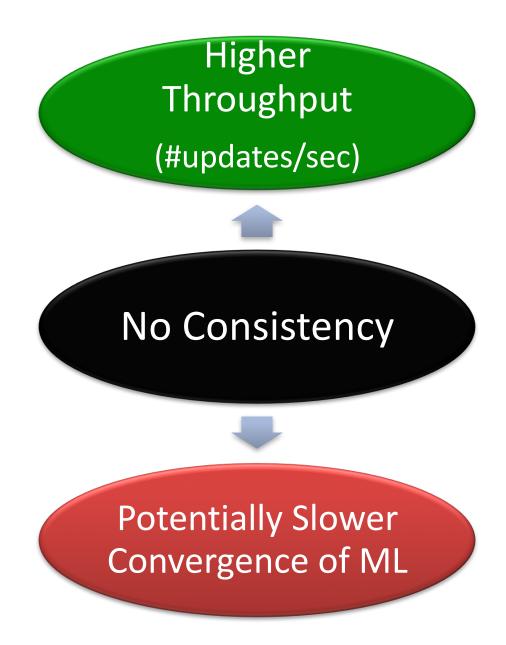
The process repeats until the scheduler is empty

Ensuring Race-Free Code

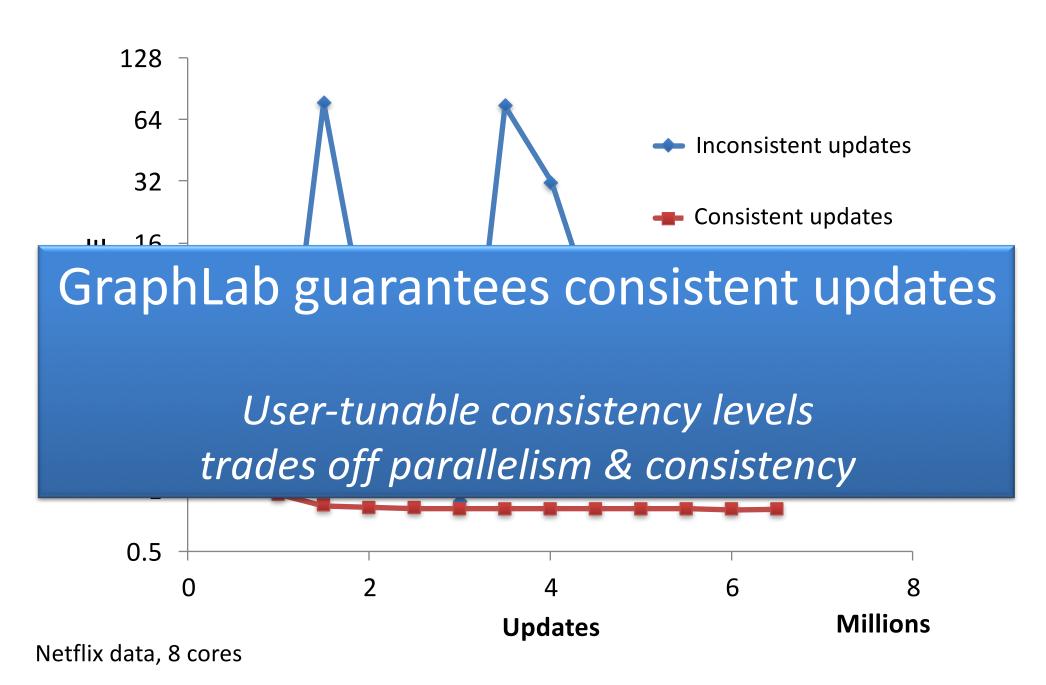
How much can computation overlap?



Need for Consistency?



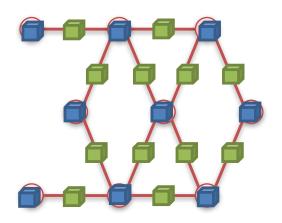
Consistency in Collaborative Filtering



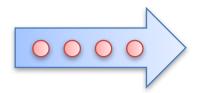
The GraphLab Framework

Graph Based

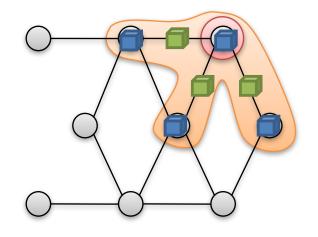
Data Representation



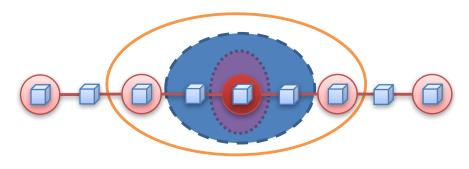
Scheduler



Update Functions
User Computation



Consistency Model



Alternating Least

SVD

Splash Sampler

Squares

CoEM

Bayesian Tensor

Factorization

Lasso

Belief Propagation

PageRank

LDA

SVM

Gibbs Sampling

Dynamic Block Gibbs Sampling

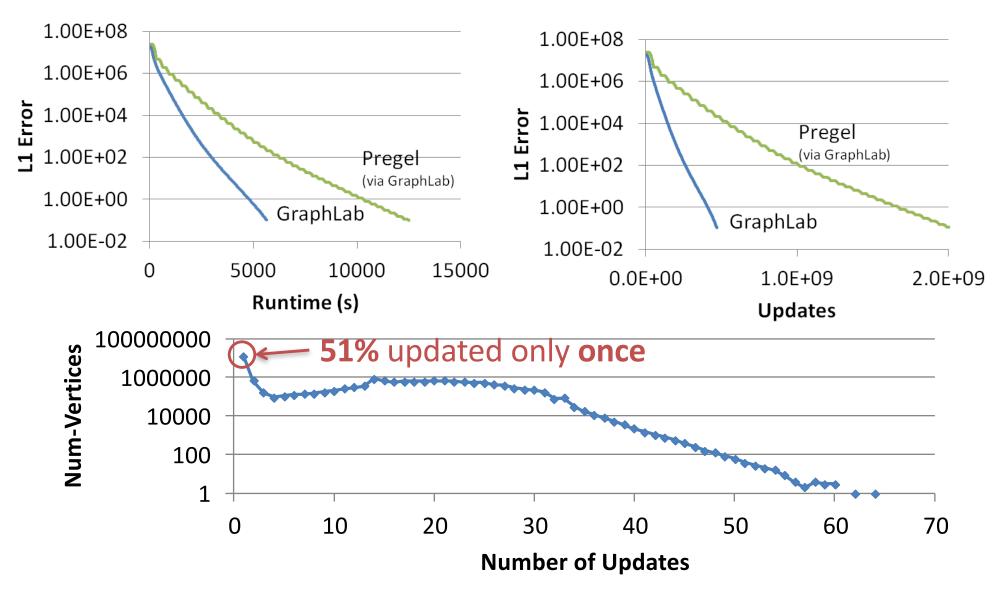
K-Means

...Many others...

Matrix Factorization

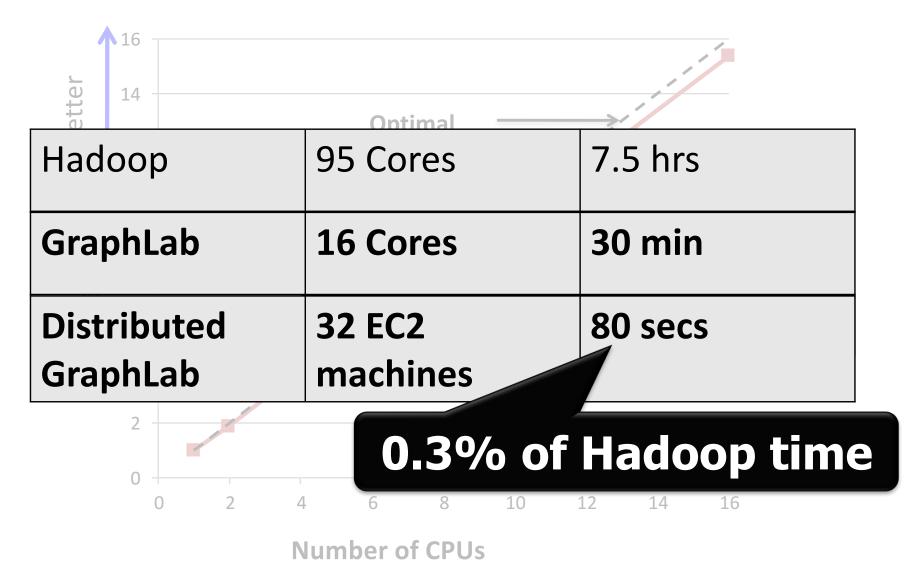
Linear Solvers

GraphLab vs. Pregel (BSP)

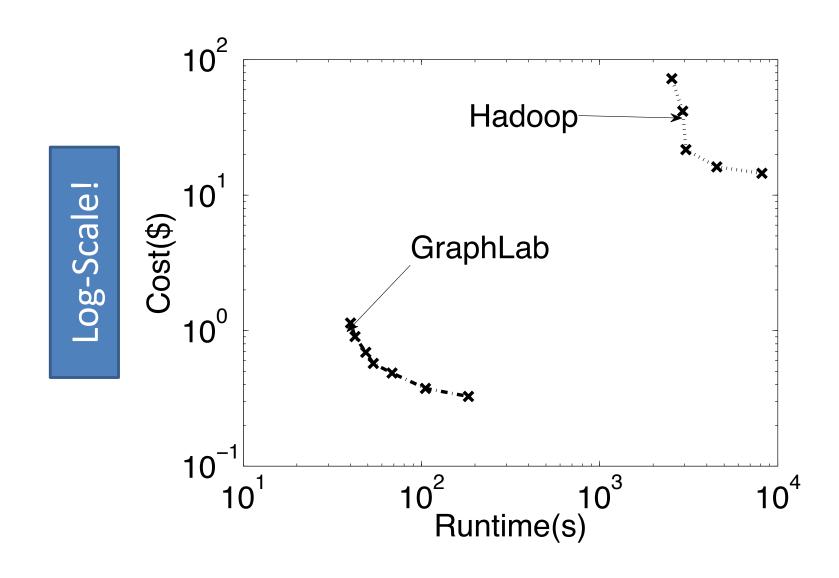


PageRank (25M Vertices, 355M Edges)

Never Ending Learner Project (CoEM)



The Cost of the Wrong Abstraction

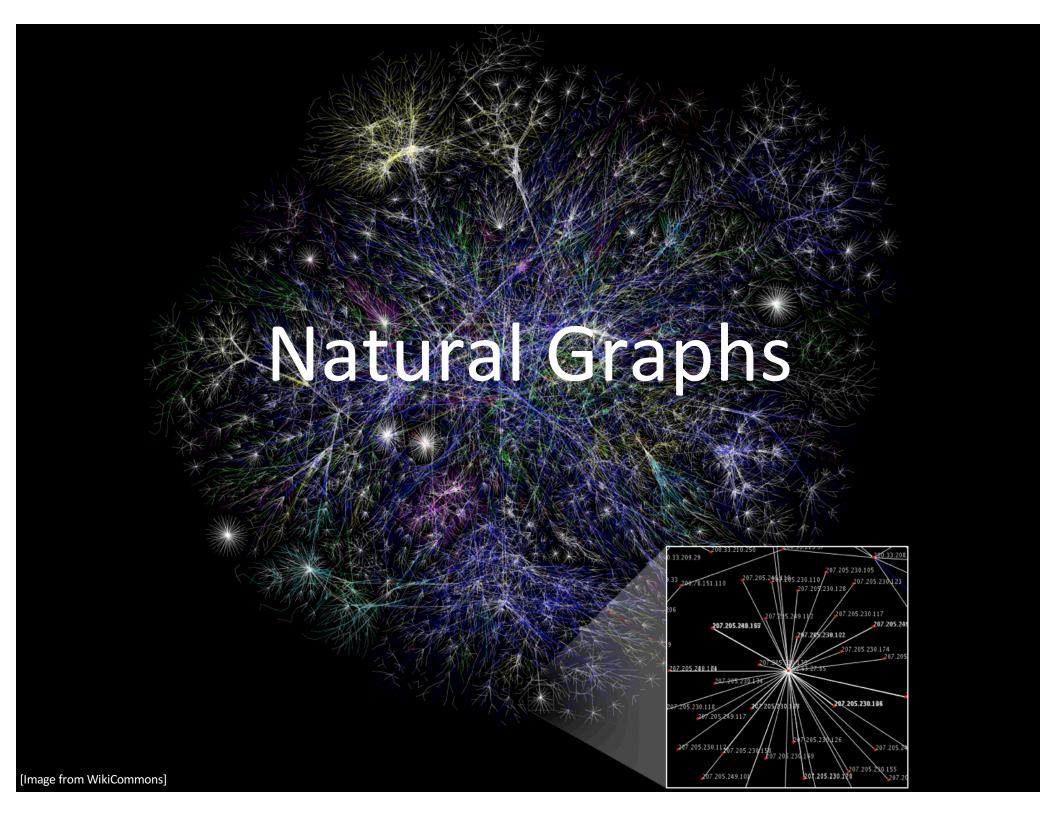


Thus far...

GraphLab1 provided exciting scaling performance

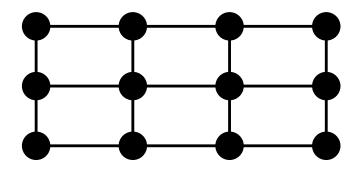
But...

We couldn't scale up to Altavista Webgraph 2002 1.4B vertices, 6.7B edges



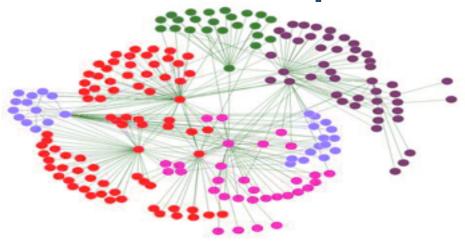
Assumptions of **Graph-Parallel** Abstractions

Idealized Structure

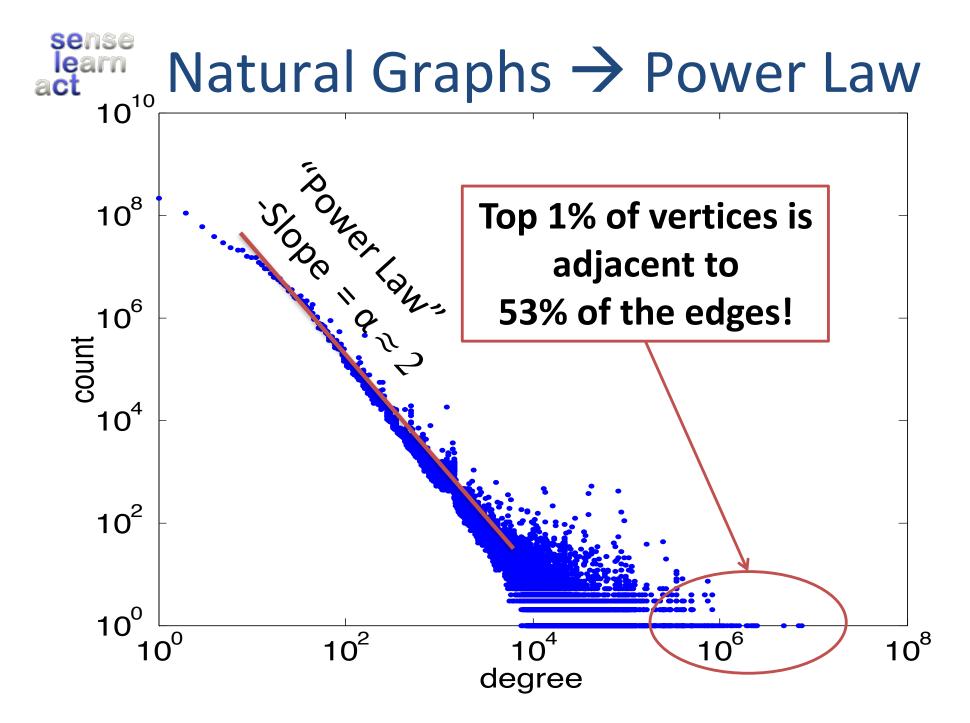


- Small neighborhoods
 - Low degree vertices
- Similar degree
- Easy to partition

Natural Graph



- Large Neighborhoods
 - High degree vertices
- Power-Law degree distribution
- Difficult to partition

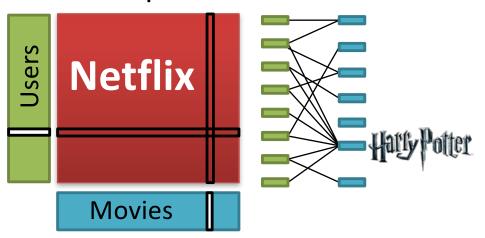


Altavista Web Graph: 1.4B Vertices, 6.7B Edges

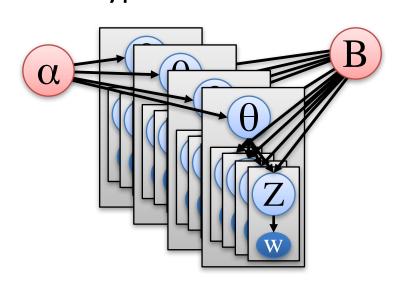
High Degree Vertices are Common

"Social" People

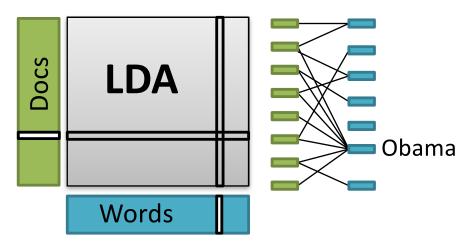
Popular Movies



Hyper Parameters

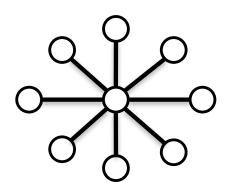


Common Words

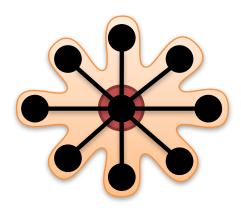


Problem:

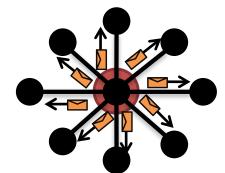
High Degree Vertices Limit Parallelism



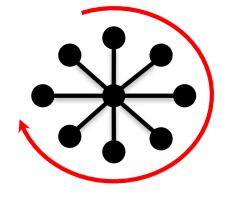
Edge information too large for single machine



Touches a large fraction of graph (GraphLab 1)

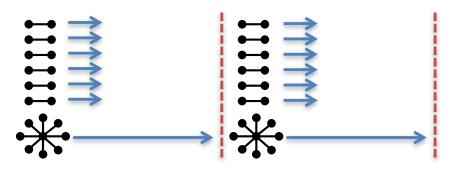


Produces many messages (Pregel)



Sequential Vertex-Updates

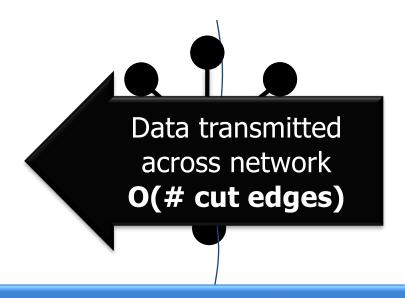
Asynchronous consistency requires heavy locking (GraphLab 1)



Synchronous consistency is prone to stragglers (Pregel)

Problem:

High Degree Vertices → High Communication for Distributed Updates



Natural graphs do not have low-cost balanced cuts

[Leskovec et al. 08, Lang 04]

Popular partitioning tools (Metis, Chaco,...) perform poorly

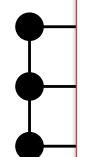
[Abou-Rjeili et al. 06]

Extremely slow and require substantial memory

Random Partitioning

 Both GraphLab1 and Pregel proposed Random (hashed) partitioning for Natural Graphs

For *p* Machines:



$$\mathbb{E}\left[\frac{|Edges\ Cut|}{|E|}\right] = 1 - \frac{1}{p}$$

10 Machines → 90% of edges cut 100 Machines → 99% of edges cut!

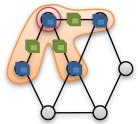
In Summary

GraphLab1 and Pregel are not well suited for natural graphs

- Poor performance on high-degree vertices
- Low Quality Partitioning

- Distribute a single vertex-update
 - Move computation to data
 - Parallelize high-degree vertices
- Vertex Partitioning
 - Simple online approach, effectively partitions large powerlaw graphs

Factorized Vertex Updates



Split update into 3 phases

PageRank in GraphLab2

$$R[i] = \beta + (1 - \beta) \sum_{(j,i) \in E} w_{ji} R[j]$$

PageRankProgram(i)

Gather($j \rightarrow i$): return $w_{ji} * R[j]$

sum(a, b): return a + b;

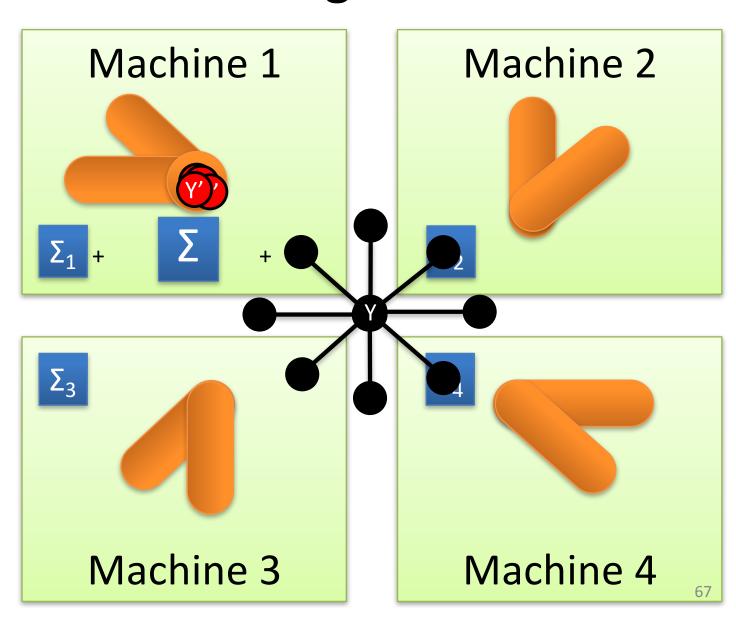
Apply(i, Σ): R[i] = β + (1 – β) * Σ

Scatter($i \rightarrow j$):

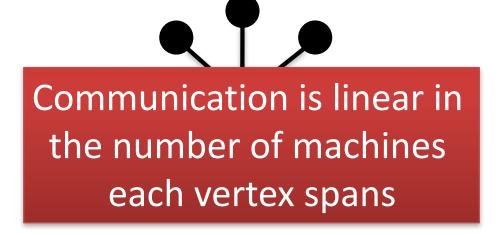
if (R[i] changes) then activate(j)

Distributed Execution of a GraphLab2 Vertex-Program

Gather
Apply
Scatter



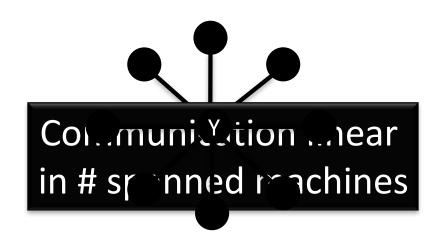
Minimizing Communication in GraphLab2



A **vertex-cut** minimizes machines each vertex spans

Percolation theory suggests that power law graphs have good vertex cuts. [Albert et al. 2000]

Sense Minimizing Communication in GraphLab2: Vertex Cuts



A **vertex-cut** minimizes # machines per vertex

Percolation theory suggests Power Law graphs can be split by removing only a small set of vertices [Albert et al. 2000]

Small vertex cuts possible!

Constructing Vertex-Cuts

- Goal: Parallel graph partitioning on ingress
- GraphLab 2 provides three simple approaches:
 - Random Edge Placement
 - Edges are placed randomly by each machine
 - Good theoretical guarantees
 - Greedy Edge Placement with Coordination
 - Edges are placed using a shared objective
 - Better theoretical guarantees
 - Oblivious-Greedy Edge Placement
 - Edges are placed using a local objective

Random Vertex-Cuts

Randomly assign edges to machines

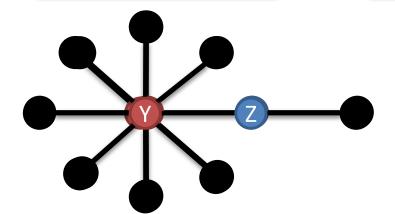
Machine 1

Machine 2

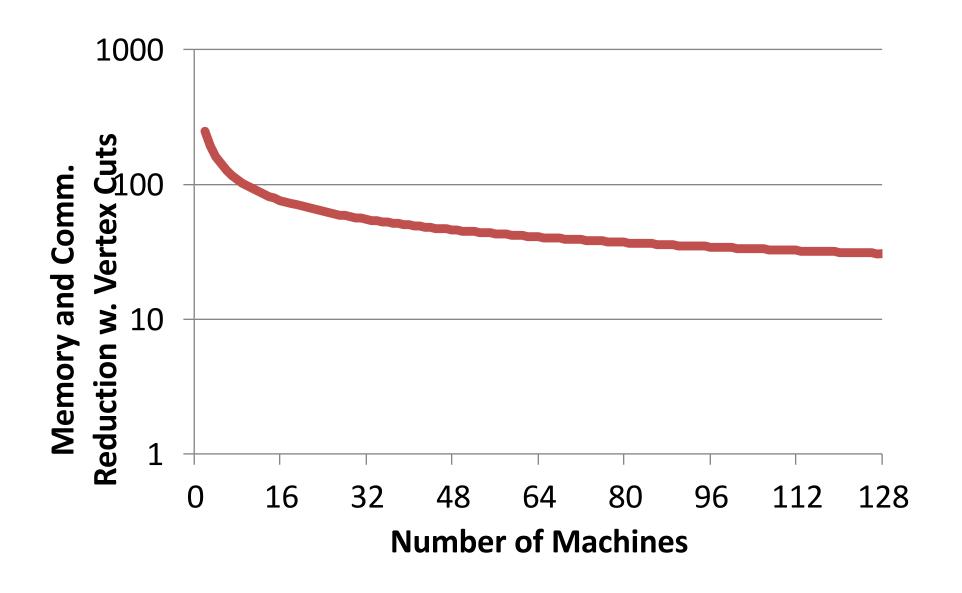
Machine 3

Balanced Cut

- Spans 3 Machines
- Spans 2 Machines
- Spans only 1 machine

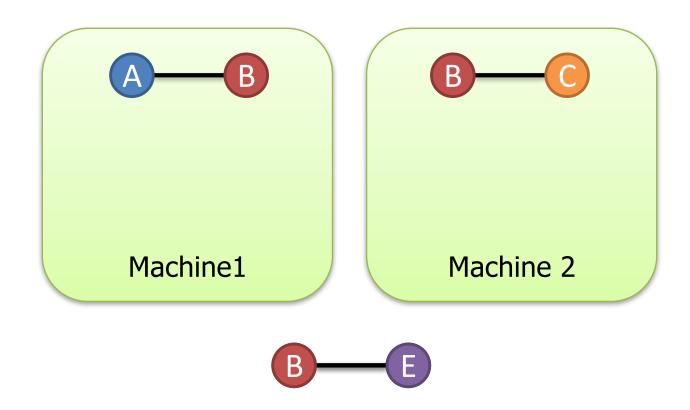


Random Vertex Cuts vs Edge Cuts



Greedy Vertex-Cuts

 Place edges on machines which already have the vertices in that edge.



Greedy Vertex-Cuts

 Derandomization: Minimizes the expected number of machines spanned by each vertex.

Coordinated

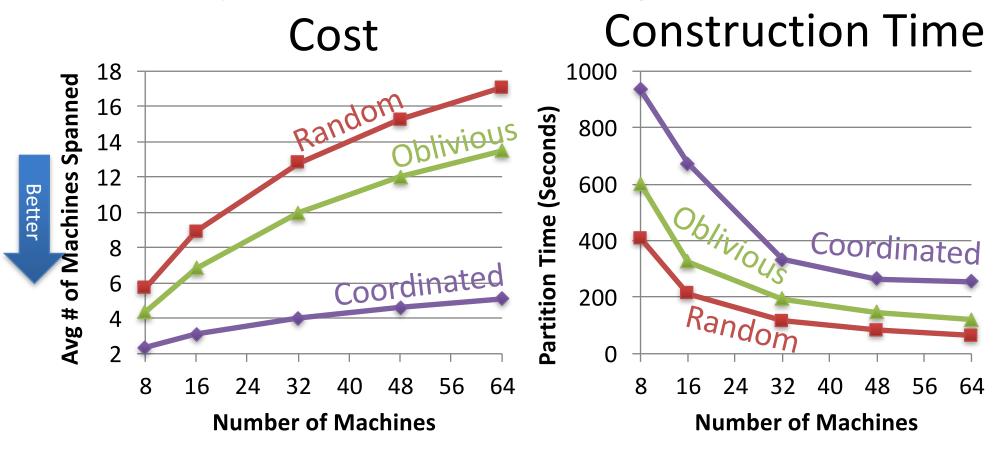
- Maintain a shared placement history (DHT)
- Slower but higher quality

Oblivious

- Operate only on local placement history
- Faster but lower quality

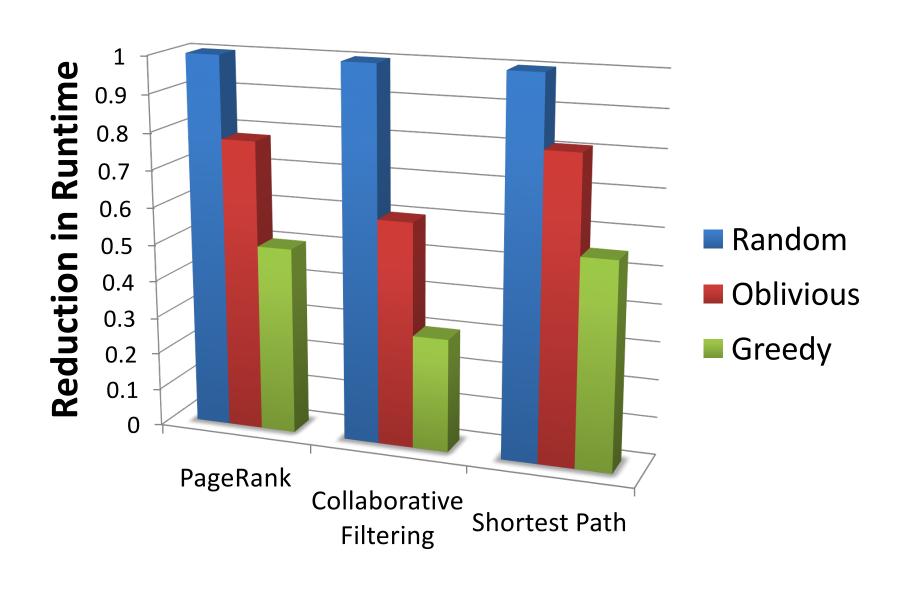
Partitioning Performance

Twitter Graph: 41M vertices, 1.4B edges

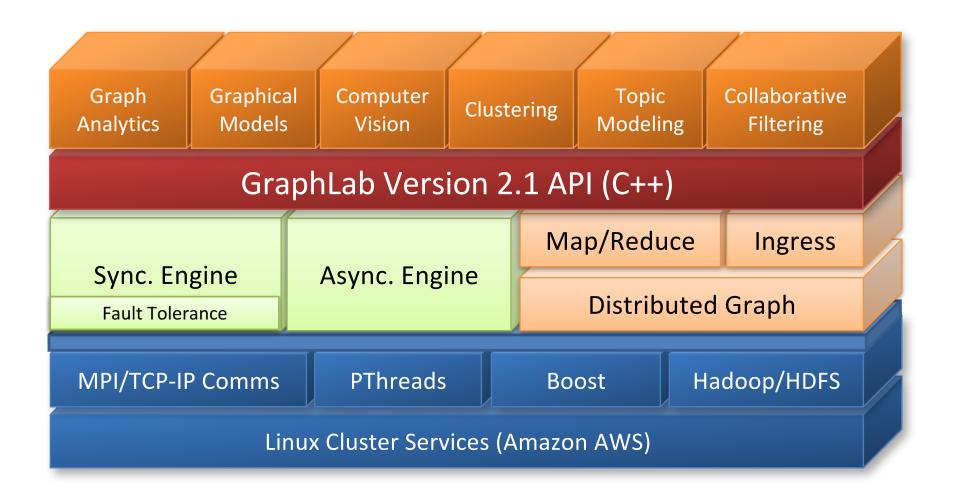


Oblivious balances partition quality and partitioning time.

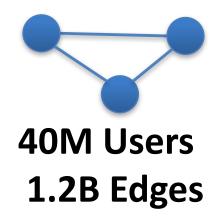
Beyond Random Vertex Cuts!



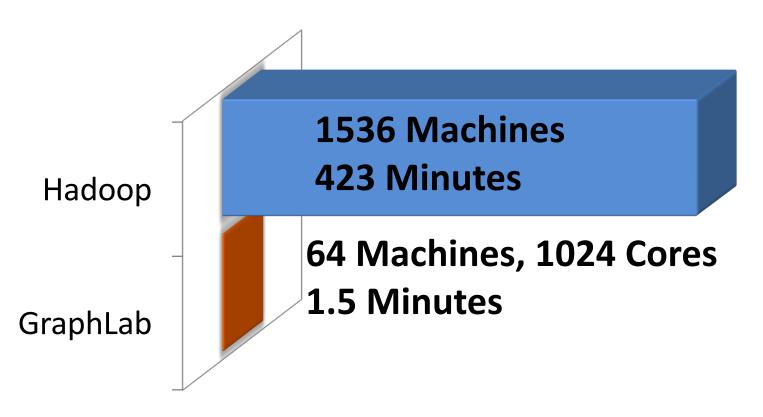
From the Abstraction to a System



Triangle Counting in Twitter Graph



Total: 34.8 Billion Triangles



sense learn act

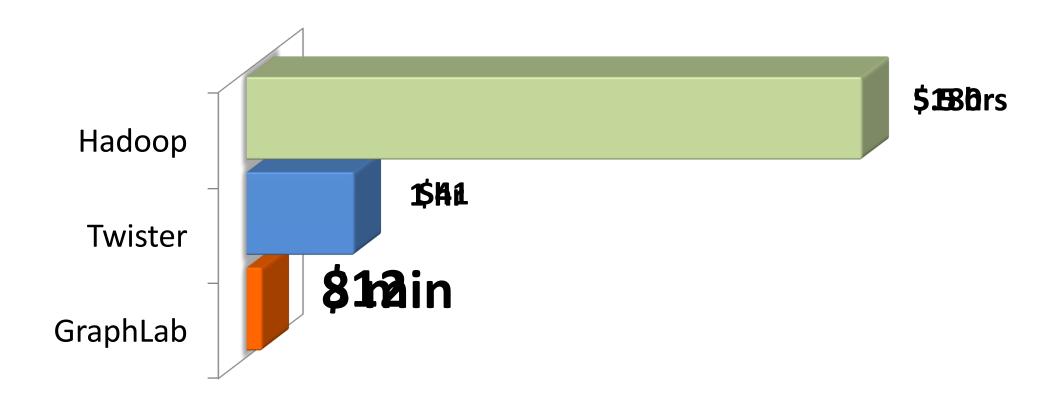
LDA Performance

- All English language Wikipedia
 - 2.6M documents, 8.3M words, 500M tokens

- LDA state-of-the-art sampler (100 Machines)
 - Alex Smola: 150 Million tokens per Second

- GraphLab Sampler (64 cc2.8xlarge EC2 Nodes)
 - 100 Million Tokens per Second
 - Using only 200 Lines of code and 4 human hours

PageRank



40M Webpages, 1.4 Billion Links

Hadoop results from [Kang et al. '11] Twister (in-memory MapReduce) [Ekanayake et al. '10]

How well does GraphLab scale?

Yahoo Altavista Web Graph (2002):

One of the largest publicly available webgraphs

1.4B Webpages, 6.6 Billion Links

11 Mins

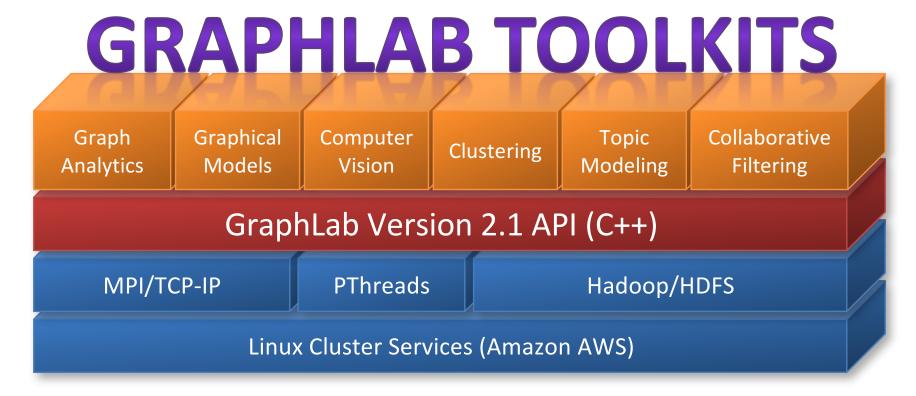
1B links processed per second 30 lines of user code

E manufacture of the second

1024 Cores (2048 HT)

4.4 TB RAM

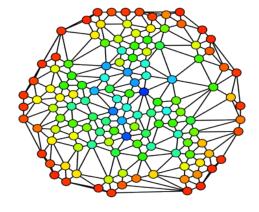
GraphLab Release 2.1 available now **Apache 2 License**



GraphLab easily incorporates external toolkits
Automatically detects and builds external toolkits

Graph Processing

Extract knowledge from graph structure



- Find communities
- Identify important individuals
- Detect vulnerabilities

Algorithms

- Triangle Counting
- Pagerank
- K-Cores
- Shortest Path

- Max-Flow
- Matching
- Connected Components
- Label propagation

Collaborative Filtering

Understanding Peoples

Shared Interests

- Target advertising
- Improve shopping experience

Algorithms

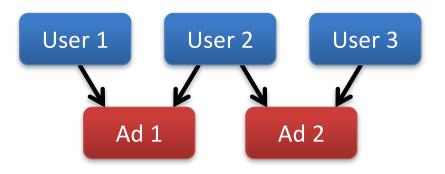
- ALS, Weighted ALS
- SGD, Biased SGD

Proposed:

- SVD++
- Sparse ALS
- Tensor Factorization

Graphical Models

Probabilistic analysis for correlated data.



- Improved predictions
- Quantify uncertainty
- Extract relationships

Algorithms

- Loopy Belief Propagation
- Max Product LP

- Gibbs Sampling
- Parameter Learning
- L₁ Structure Learning
- M³ Net
- Kernel Belief Propagation

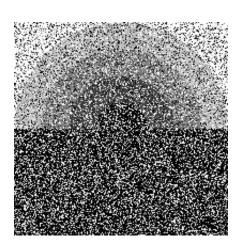
Structured Prediction

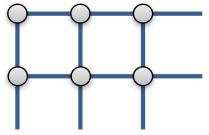
- Input:
 - Prior probability for each vertex

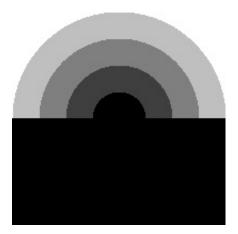
User Id	Pr(Conservative)	Pr(Not Conservative)
1	0.8	0.2
2	0.5	0.5
3	0.3	0.7

- Edge List
- Smoothing Parameter (e.g., 2.0)
- Output: posterior

User Id	Pr(Conservative)	Pr(Not Conservative)
1	0.7	0.3
2	0.3	0.7
3	0.1	0.8







Computer Vision (CloudCV)

Making sense of pictures.

- Recognizing people
- Medical imaging
- Enhancing images

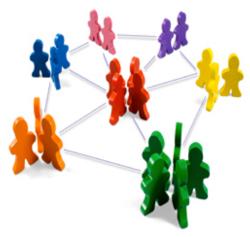
Algorithms

- Image stitching
- Feature extraction

- Person/object detectors
- Interactive segmentation
- Face recognition

Clustering

Identify groups of related data



- Group customer and products
- Community detection
- Identify outliers

Algorithms

K-Means++

- Structured EM
- Hierarchical Clustering
- Nonparametric *-Means

Topic Modeling

Extract meaning from raw text

- Improved search
- Summarize textual data
- Find related documents

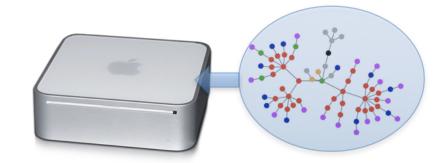
Algorithms

LDA Gibbs Sampler

- CVB0 for LDA
- LSA/LSI
- Correlated topic models
- Trending Topic Models

GraphChi: Going small with GraphLab

Solve huge problems on small or embedded devices?

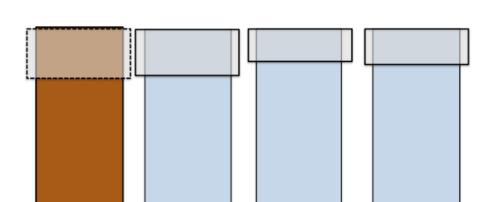


Key: Exploit non-volatile memory (starting with SSDs and HDs)

GraphChi – disk-based GraphLab

Novel Parallel Sliding Windows algorithm

Interval 1



Shard 3

Shard 4

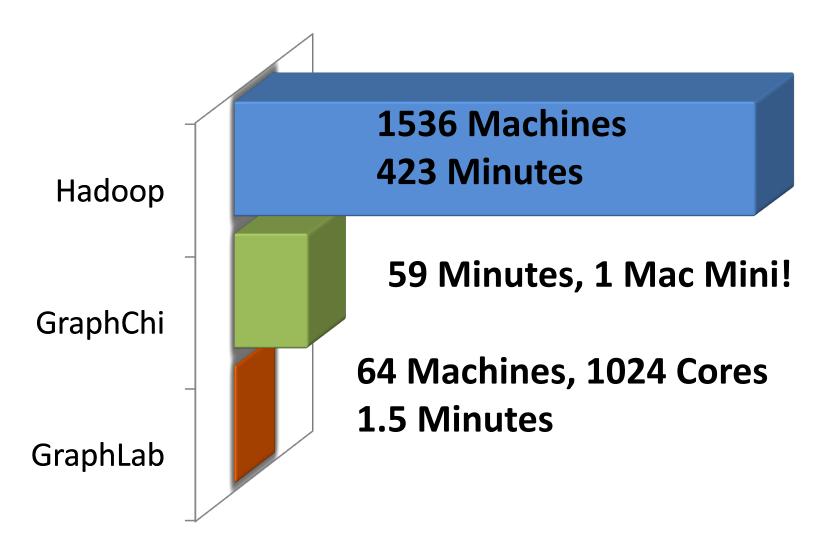
Shard 2

Shard 1

- Fast!
- Solves tasks as large as current distributed systems
- Minimizes disk seeks
 - Efficient on both SSD and harddrive
- Multicore Asynchronous execution

Triangle Counting in Twitter Graph

40M Users 1.2B Edges **Total: 34.8 Billion Triangles**



GraphLab

Release 2.1 available now http://graphlab.org

Documentation... Code... Tutorials... (more on the way)

GraphChi 0.1 available now http://graphchi.org

Select Lab

Carnegie Mellon

Open Challenges

Dynamically Changing Graphs

- Example: Social Networks
 - New users → New Vertices
 - New Friends → New Edges
- How do you adaptively maintain computation:
 - Trigger computation with changes in the graph
 - Update "interest estimates" only where needed
 - Exploit asynchrony
 - Preserve consistency

Graph Partitioning

- How can you quickly place a large data-graph in a distributed environment:
- Edge separators fail on large power-law graphs
 - Social networks, Recommender Systems, NLP
- Constructing vertex separators at scale:
 - No large-scale tools!
 - How can you adapt the placement in changing graphs?

Graph Simplification for Computation

- Can you construct a "sub-graph" that can be used as a proxy for graph computation?
- See Paper:
 - Filtering: a method for solving graph problems in MapReduce.
 - http://research.google.com/pubs/pub37240.html

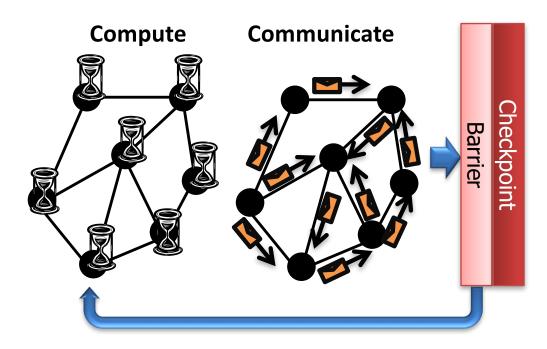
Concluding BIG Ideas

- Modeling Trend: Independent Data → Dependent Data
 - Extract more signal from noisy structured data
- Graphs model data dependencies
 - Captures locality and communication patterns
- Data-Parallel tools not well suited to Graph Parallel problems
- Compared several Graph Parallel Tools:
 - Pregel / BSP Models:
 - Easy to Build, **Deterministic**
 - Suffers from several key inefficiencies
 - GraphLab:
 - Fast, efficient, and expressive
 - Introduces non-determinism
 - GraphLab2:
 - Addresses the challenges of computation on Power-Law graphs
- Open Challenges: Enormous Industrial Interest

Fault Tolerance

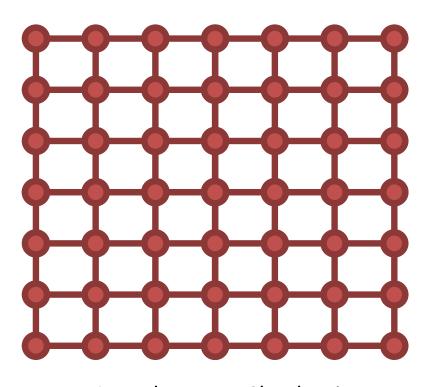
Checkpoint Construction

Pregel (BSP)



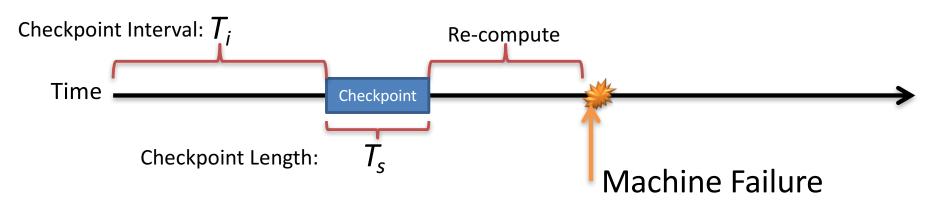
Synchronous Checkpoint Construction

GraphLab



Asynchronous Checkpoint Construction

Checkpoint Interval

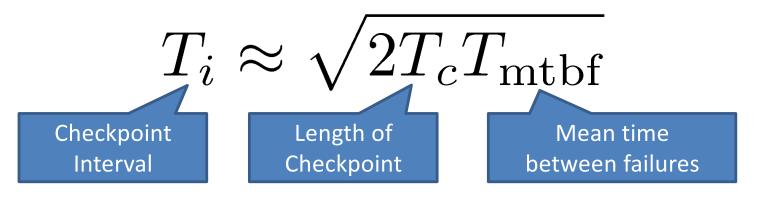


- Tradeoff:
 - Short T_i : Checkpoints become too costly

- Long T_i : Failures become too costly

Optimal Checkpoint Intervals

Construct a first order approximation:



- Example:
 - 64 machines with a per machine MTBF of 1 year
 - T_{mtbf} = 1 year / 64 \approx **130 Hours**
 - $-T_c$ = of 4 minutes
 - $-T_i$ ≈ of 4 hours

From: http://dl.acm.org/citation.cfm?id=361115