
Big	Learning	with	Graphs
Joseph	Gonzalez

jegonzal@cs.cmu.edu

Yucheng
Low

Aapo
Kyrola

Danny
Bickson

Carlos
Guestrin

Guy
Blelloch

Joe
Hellerstein

David
O’Hallaron

Alex
Smola

Haijie
Gu

Arthur	
Gretto

n

72	Hours	a	Minute
YouTube

28	Million	
Wikipedia	Pages

900	Million
Facebook Users

6	Billion	
Flickr Photos

The	Age	of	Big Data

2

“…	data	a	new	class	of	economic	asset,	
like	currency	or	gold.”

“…growing	at	50	percent	a	year…”

3

Big	Data

Big	Graphs

Social	Media

• Graphs encode relationships between:

• Big:	billions of	vertices and	edges and	rich	metadata

AdvertisingScience Web

People
Facts

Products
Interests

Ideas

4

Big	graphs present
exciting	new opportunities ...

5

Cameras Cooking

6

Shopper	1 Shopper	2

Big-Graphs	are	Essential	to	
Data-Mining and	Machine	Learning

• Identify	influential	people	and	information
• Find	communities
• Target	ads	and	products	
• Model	complex	data	dependencies

7

Big	Learning	with	Graphs

Understanding and	using
large-scale	structured data.

Examples

PageRank (Centrality	Measures)
• Iterate:

• Where:
– α is	the	random	reset	probability
– L[j] is	the	number	of	links	on	page	j

1 32

4 65

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

Profile

Label	Propagation	
(Structured	Prediction)

• Social	Arithmetic:

• Recurrence	Algorithm:

– iterate	until	convergence
• Parallelism:
– Compute	all	Likes[i] in	
parallel

Sue	Ann

Carlos

M
e

50%	What	I	list	on	my	profile
40%	Sue	Ann	Likes
10%	Carlos	Like

40%

10%

50%

80%	Cameras
20%	Biking

30%	Cameras
70%	Biking

50%	Cameras
50%	Biking

I	Like:

+
60%	Cameras,	40%	Biking

Likes[i]= Wij × Likes[j]
j∈Friends[i]
∑

http://www.cs.cmu.edu/~zhuxj/pub/CMU-CALD-02-107.pdf

Collaborative	Filtering:	Independent	Case

Lord	of	the	Rings

Star	Wars	IV

Star	Wars	I

Harry	Potter

Pirates	of	the	Caribbean	

Collaborative	Filtering:	Exploiting	Dependencies

City	of	God

Wild	Strawberries

The	Celebration

La	Dolce	Vita

Women	on	the	Verge	of	a
Nervous	Breakdown

What	do	I	
recommend???

Matrix	Factorization
Alternating	Least	Squares	(ALS)

r11

r12
r23
r24

u1

u2

m1

m2

m3

U
se
r	F

ac
to
rs
	(U

)

M
ovie	Factors	(M

)
U
se
rs

Movies
Netflix

U
se
rs

≈
x

Movies

ui

mj

Iterate:

http://dl.acm.org/citation.cfm?id=1424269

Many	More	Algorithms
• Collaborative	Filtering

– Alternating	Least	Squares
– Stochastic	Gradient	Descent
– Tensor	Factorization
– SVD

• Structured	Prediction
– Loopy	Belief	Propagation
– Max-Product	Linear	Programs
– Gibbs	Sampling

• Semi-supervised	ML
– Graph	SSL	
– CoEM

• Graph	Analytics
– PageRank
– Single	Source	Shortest	Path
– Triangle-Counting
– Graph	Coloring
– K-core	Decomposition
– Personalized	PageRank

• Classification
– Neural	Networks
– Lasso
…

15

Graph	Parallel	Algorithms

Dependency
Graph

Iterative
Computation

My Interests

Friends
Interests

Local
Updates

?

What	is	the	right	tool	for	Graph-Parallel	ML

17

Data-Parallel Graph-Parallel

Cross
Validation

Feature	
Extraction

Map	Reduce

Computing	Sufficient
Statistics	

Map	Reduce?
Collaborative	Filtering

Graph	Analytics
Structured	Prediction

Clustering

Why	not	use	Map-Reduce
for	

Graph	Parallel	algorithms?

Data	Dependencies	are	Difficult
• Difficult	to	express	dependent	data	in	Map	
Reduce
– Substantial	data	transformations	
– User	managed	graph	structure
– Costly	data	replication

In
de

pe
nd

en
t	D

at
a	
Re

co
rd
s

Iterative	Computation	is	Difficult
• System	is	not	optimized	for	iteration:

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

Disk Penalty

Disk Penalty

Disk Penalty

Startup
Penalty

Startup Penalty

Startup Penalty

Map-Reduce	for	Data-Parallel	ML
• Excellent	for	large	data-parallel	tasks!

21

Data-Parallel Graph-Parallel

Cross
Validation

Feature	
Extraction

Map	Reduce

Computing	Sufficient
Statistics	

Map	Reduce?MPI/Pthreads

Collaborative	Filtering
Graph	Analytics

Structured	Prediction
Clustering

Threads,	Locks,	&	Messages	

“low	level	parallel	primitives”

We	could	use	….

Threads,	Locks,	and	Messages
• ML	experts									repeatedly solve	the	same	
parallel	design	challenges:
– Implement	and	debug	complex	parallel	system
– Tune	for	a	specific	parallel	platform
– Six	months	later	the	conference	paper	contains:

“We	implemented	______	in	parallel.”

• The	resulting	code:
– is	difficult	to	maintain
– is	difficult	to	extend
• couples	learning	model	to	parallel	implementation

23

Addressing	Graph-Parallel	ML
• We	need	alternatives	to	Map-Reduce

Data-Parallel Graph-Parallel

Cross
Validation

Feature	
Extraction

Map	Reduce

Computing	Sufficient
Statistics	

MPI/PthreadsPregel

Collaborative	Filtering
Graph	Analytics

Structured	Prediction
Clustering

Pregel Abstraction
• User-defined Vertex-Program on	each	vertex
• Vertex-programs	interact	along	edges	in	the	Graph

– Programs	interact	through	Messages

• Parallelism:	Multiple	vertex	programs	run	simultaneously

25

The	Pregel Abstraction
Vertex-Programs	communicate	through	messages

ivoid Pregel_PageRank(i, msgs) :
// Receive all the messages
float total = sum(m in msgs)

// Update the rank of this vertex
R[i] = β + (1-β)*total

// Send Messages to neighbors
foreach(j in out_neighbors[i]) :

SendMsg(nbr, R[i] * wij)

26

Barrier
Pregel is	Bulk	Synchronous	Parallel

Compute Communicate

http://dl.acm.org/citation.cfm?id=1807184

Open	Source	Implementations

• Giraph:	http://incubator.apache.org/giraph/
• Golden	Orb:	http://goldenorbos.org/
• Stanford	GPS:	http://infolab.stanford.edu/gps/

An	asynchronous	variant:
• GraphLab:	http://graphlab.org/

Tradeoffs	of	the	BSP	Model

• Pros:
– Graph	Parallel
– Relatively	easy	to	implement	and	reason	about
– Deterministic	execution

• Cons:
– User	must	architect	the	movement	of	information
• Send	the	correct	information	in	messages

– Bulk	synchronous	abstraction	inefficient

Curse	of	the	Slow	Job

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

Ba
rr
ie
r

Ba
rr
ie
r

Data

Data

Data

Data

Data

Data

Data

Ba
rr
ie
r

http://www.www2011india.com/proceeding/proceedings/p607.pdf

• Assuming	runtime	is	drawn	from	an	exponential	
distribution	with	mean	1.

0
1
2
3
4
5
6
7
8
9

0 100 200 300 400 500 600

Ru
nt
im

e	
M
ul
tip

le

Number	of	Jobs

Curse	of	the	Slow	Job

http://www.www2011india.com/proceeding/proceedings/p607.pdf

Bulk	synchronous	parallel	
model	provably	inefficient	
for	some	graph-parallel	

tasks

Example:
Loopy	Belief	Propagation	(Loopy	BP)

• Iteratively	estimate	the	“beliefs”	about	vertices
– Read	in	messages
– Updates	marginal
estimate	(belief)

– Send	updated	
out	messages

• Repeat	for	all	variables
until	convergence

33
http://www.merl.com/papers/docs/TR2001-22.pdf

Bulk	Synchronous Loopy	BP

• Often	considered	embarrassingly	parallel	
– Associate	processor	
with	each	vertex

– Receive	all	messages
– Update	all	beliefs
– Send	all	messages

• Proposed	by:
– Brunton et	al.	CRV’06
– Mendiburu et	al.	GECC’07
– Kang,et al.		LDMTA’10
– …

34

Sequential	Computational	Structure

35

Hidden	Sequential	Structure

36

Hidden	Sequential Structure

• Running	Time:

EvidenceEvidence

Time for a single
parallel iteration Number of Iterations

37

Optimal	Sequential	Algorithm

Forward-Backward

Bulk Synchronous
2n2/p

p ≤ 2n

Running
Time

2n

Ga
p

p = 1
Optimal Parallel

n
p = 2 38

The	Splash	Operation
• Generalize	the	optimal	chain	algorithm:

to	arbitrary	cyclic	graphs:

~

1) Grow a BFS Spanning tree
with fixed size

2) Forward Pass computing all
messages at each vertex

3) Backward Pass computing all
messages at each vertex

39
http://www.select.cs.cmu.edu/publications/paperdir/aistats2009-gonzalez-low-guestrin.pdf

Synthetic	Noisy	Image

Vertex	Updates

Many
Updates

Few
Updates

Algorithm identifies and focuses
on hidden sequential structure

40

Prioritize	Computation

Splash

Graphical	Model

Challenge	=	Boundaries

Comparison	of	Splash	and	Pregel Style	
Computation

Limitations	of	bulk	synchronous	model	can	
lead	to	provably inefficient	parallel	

algorithms

0

2000

4000

6000

8000

10000

1 2 3 4 5 6 7 8

Ru
nt
im

e	
in
	S
ec
on

ds

Number	of	CPUs

Bulk	Synchronous	(Pregel)

Splash	BP

The	Need	for	a	New	Abstraction

Data-Parallel Graph-Parallel

Cross
Validation

Feature	
Extraction

Map	Reduce

Computing	Sufficient
Statistics	

Graphical	Models
Gibbs	Sampling

Belief	Propagation
Variational Opt.

Semi-Supervised	
Learning

Label	Propagation
CoEM

Data-Mining
PageRank

Triangle	Counting

Collaborative	
Filtering

Tensor	Factorization

BSP,	e.g.,	Pregel

Need:	Asynchronous,	Dynamic	Parallel	Computations

The	GraphLab Goals
Designed	specifically	for	ML

Graph	dependencies
Iterative
Asynchronous
Dynamic

Simplifies	design	of	
parallel	programs:

Abstract	away	hardware	issues
Automatic	data	synchronization
Addresses	multiple	hardware	
architectures

Efficient
parallel

predictions

Know how to
solve ML problem

on 1 machine

Data	Graph
Data	associated	with	vertices	and	edges

Vertex	Data:
• User	profile	text
• Current	interests	estimates

Edge	Data:
• Similarity	weights	

Graph:
• Social	Network

pagerank(i,	scope){
//	Get	Neighborhood	data
(R[i],	wij,	R[j])	ßscope;

//	Update	the	vertex	data

//	Reschedule	Neighbors	if	needed
if	R[i]	changes	then	
reschedule_neighbors_of(i);	

}

R[i]←α + (1−α) wji ×R[j]
j∈N [i]
∑ ;

Update	Functions
User-defined	program: applied	to	
vertex transforms	data	in	scope of	vertex

Dynamic	
computation

Update	function	applied	(asynchronously)	
in	parallel	until	convergence

Many	schedulers	available	to	prioritize	computation

The	Scheduler

CPU 1

CPU 2

The	scheduler determines	the	order	that	vertices	are	updated

e f g

kjih

dcba b

i
h

a

i

b e f

j

c

Sc
he

du
le

r

The	process	repeats	until	the	scheduler	is	empty

Ensuring	Race-Free	Code
How	much	can	computation	overlap?

Need	for	Consistency?

No	Consistency

Higher	
Throughput
(#updates/sec)

Potentially	Slower	
Convergence	of	ML

Consistency	in	Collaborative	Filtering

0.5

1

2

4

8

16

32

64

128

0 2 4 6 8

Tr
ai
n	
RM

SE

Updates Millions

Dynamic	Inconsistent

Dynamic

Netflix	data,	8	cores

Consistent	updates

Inconsistent	updates

GraphLab guarantees	consistent	updates

User-tunable	consistency	levels
trades	off	parallelism	&	consistency

The	GraphLab Framework

Scheduler Consistency	Model

Graph	Based
Data	Representation

Update	Functions
User	Computation

Bayesian	Tensor	
Factorization

Gibbs	Sampling
Dynamic	Block	Gibbs	Sampling

Matrix
Factorization

Lasso

SVM

Belief	Propagation PageRank

CoEM

K-Means

SVD

LDA

…Many	others…
Linear	Solvers

Splash	Sampler
Alternating	Least	

Squares

GraphLab vs.	Pregel (BSP)

PageRank (25M	Vertices,	355M	Edges)

1
100

10000
1000000

100000000

0 10 20 30 40 50 60 70

N
um

-V
er
tic

es

Number	of	Updates

51%	updated	only once

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

Sp
ee
du

p

Number	of	CPUs

Be
tt
er

Optimal

GraphLab CoEM

Never	Ending	Learner	Project	(CoEM)

53

GraphLab 16	Cores 30	min

15x	Faster!6x	fewer	CPUs!

Hadoop 95 Cores 7.5	hrs

Distributed
GraphLab

32	EC2	
machines

80	secs

0.3% of Hadoop time

The	Cost	of	the	Wrong	Abstraction

101 102 103 104
10−1

100

101

102

Runtime(s)

C
os
t($
)

GraphLab

Hadoop

Lo
g-
Sc
al
e!

Carnegie Mellon

GraphLab1 provided	exciting
scaling	performance

But…

Thus	far…

We	couldn’t	scale	up	to	
Altavista Webgraph 2002
1.4B	vertices,	6.7B	edges

Natural	Graphs

[Image	from	WikiCommons]

Assumptions	of	Graph-Parallel	Abstractions

Idealized	Structure

• Small neighborhoods
– Low	degree	vertices

• Similar	degree
• Easy	to	partition

Natural	Graph

• Large Neighborhoods
– High	degree	vertices

• Power-Law	degree	
distribution

• Difficult	to	partition

57

Natural	Graphs	à Power	Law

100 102 104 106 108
100

102

104

106

108

1010

degree

co
un
t

Top	1%	of	vertices	is	
adjacent	to

53%	of	the	edges!

Altavista Web	Graph:	1.4B	Vertices,	6.7B	Edges

High	Degree	Vertices	are	Common

U
se
rs

Movies

Netflix

“Social”	People Popular	Movies

θ
Z
w
Z
w
Z
w
Z
w

θ
Z
w
Z
w
Z
w
Z
w

θ
Z
w
Z
w
Z
w
Z
w

θ
Z
w
Z
w
Z
w
Z
w

Bα

Hyper	Parameters

Do
cs

Words

LDA

Common	Words

Obama

Touches	a	large
fraction	of	graph
(GraphLab 1)

Sequential
Vertex-Updates

Produces	many
messages
(Pregel)

Edge	information
too	large	for	single

machine

Asynchronous	consistency
requires	heavy	locking	(GraphLab 1)

Synchronous	consistency	is	prone	to
stragglers	(Pregel)

Problem:	
High	Degree	Vertices	Limit	Parallelism

Problem:	
High	Degree	Vertices	è High	
Communication	for	Distributed	Updates

Y

Machine	1 Machine	2

Data transmitted
across network

O(# cut edges)

Natural	graphs	do	not	have	low-cost	balanced	cuts	
[Leskovec et	al.	08,	Lang	04]

Popular	partitioning	tools	(Metis,	Chaco,…)	perform	poorly	
[Abou-Rjeili et	al.	06]

Extremely	slow	and	require	substantial	memory

Random	Partitioning
Both	GraphLab1	and	Pregel proposed Random	
(hashed)	partitioning	for	Natural	Graphs

Machine	1 Machine	2

3"
2"

1"

D

A"

C"

B" 2"
3"

C"

D

B"
A"

1"

D

A"

C"C"

B"

(a) Edge-Cut

B"A" 1"

C" D3"

C" B"2"

C" D

B"A" 1"

3"

(b) Vertex-Cut

Figure 4: (a) An edge-cut and (b) vertex-cut of a graph into
three parts. Shaded vertices are ghosts and mirrors respectively.

5 Distributed Graph Placement

The PowerGraph abstraction relies on the distributed data-
graph to store the computation state and encode the in-
teraction between vertex programs. The placement of
the data-graph structure and data plays a central role in
minimizing communication and ensuring work balance.

A common approach to placing a graph on a cluster of p
machines is to construct a balanced p-way edge-cut (e.g.,
Fig. 4a) in which vertices are evenly assigned to machines
and the number of edges spanning machines is minimized.
Unfortunately, the tools [21, 31] for constructing balanced
edge-cuts perform poorly [1, 26, 23] or even fail on power-
law graphs. When the graph is difficult to partition, both
GraphLab and Pregel resort to hashed (random) vertex
placement. While fast and easy to implement, hashed
vertex placement cuts most of the edges:

Theorem 5.1. If vertices are randomly assigned to p
machines then the expected fraction of edges cut is:

E

|Edges Cut|

|E|

�
= 1� 1

p
(5.1)

For example if just two machines are used, half of the
of edges will be cut requiring order |E|/2 communication.

5.1 Balanced p-way Vertex-Cut
The PowerGraph abstraction enables a single vertex pro-
gram to span multiple machines. Hence, we can ensure
work balance by evenly assigning edges to machines.
Communication is minimized by limiting the number of
machines a single vertex spans. A balanced p-way vertex-
cut formalizes this objective by assigning each edge e2 E
to a machine A(e) 2 {1, . . . , p}. Each vertex then spans
the set of machines A(v)✓ {1, . . . , p} that contain its ad-
jacent edges. We define the balanced vertex-cut objective:

min
A

1
|V | Â

v2V
|A(v)| (5.2)

s.t. max
m

|{e 2 E | A(e) = m}|< l |E|
p

(5.3)

where the imbalance factor l � 1 is a small constant. We
use the term replicas of a vertex v to denote the |A(v)|
copies of the vertex v: each machine in A(v) has a replica
of v. The objective term (Eq. 5.2) therefore minimizes the

average number of replicas in the graph and as a conse-
quence the total storage and communication requirements
of the PowerGraph engine.

Vertex-cuts address many of the major issues associated
with edge-cuts in power-law graphs. Percolation theory
[3] suggests that power-law graphs have good vertex-cuts.
Intuitively, by cutting a small fraction of the very high
degree vertices we can quickly shatter a graph. Further-
more, because the balance constraint (Eq. 5.3) ensures
that edges are uniformly distributed over machines, we
naturally achieve improved work balance even in the pres-
ence of very high-degree vertices.

The simplest method to construct a vertex cut is to
randomly assign edges to machines. Random (hashed)
edge placement is fully data-parallel, achieves nearly per-
fect balance on large graphs, and can be applied in the
streaming setting. In the following we relate the expected
normalized replication factor (Eq. 5.2) to the number of
machines and the power-law constant a .

Theorem 5.2 (Randomized Vertex Cuts). Let D[v] denote
the degree of vertex v. A uniform random edge placement
on p machines has an expected replication factor

E
"

1
|V | Â

v2V
|A(v)|

#
=

p
|V | Â

v2V

1�
✓

1� 1
p

◆D[v]
!
. (5.4)

For a graph with power-law constant a we obtain:

E
"

1
|V | Â

v2V
|A(v)|

#
= p� pLia

✓
p�1

p

◆
/z (a) (5.5)

where Lia (x) is the transcendental polylog function and
z (a) is the Riemann Zeta function (plotted in Fig. 5a).

Higher a values imply a lower replication factor, con-
firming our earlier intuition. In contrast to a random 2-
way edge-cut which requires order |E|/2 communication
a random 2-way vertex-cut on an a = 2 power-law graph
requires only order 0.3 |V | communication, a substantial
savings on natural graphs where E can be an order of
magnitude larger than V (see Tab. 1a).

5.2 Greedy Vertex-Cuts
We can improve upon the randomly constructed vertex-
cut by de-randomizing the edge-placement process. The
resulting algorithm is a sequential greedy heuristic which
places the next edge on the machine that minimizes the
conditional expected replication factor. To construct the
de-randomization we consider the task of placing the i+1
edge after having placed the previous i edges. Using the
conditional expectation we define the objective:

argmin
k

E
"

Â
v2V

|A(v)|

����� Ai,A(ei+1) = k

#
(5.6)

6

For	pMachines:

10	Machines	à 90%	of	edges	cut
100	Machines	à 99%	of	edges	cut!

In	Summary

GraphLab1	and	Pregel are	not	well	
suited	for	natural	graphs

Poor	performance	on	high-degree	vertices
Low	Quality	Partitioning

Distribute	a	single	vertex-update
Move	computation	to	data
Parallelize	high-degree	vertices

Vertex	Partitioning
Simple	online	approach,	effectively	partitions	large	power-
law	graphs

6. Before

8. After

7. After

Factorized	Vertex	Updates

Split	update	into	3	phases

+						+	…	+							à Δ

Y YY

Parallel
Sum

Y Scope

Gather

Y

YApply(,		Δ)	à Y

Locally	apply	the	
accumulated	Δ to	vertex

Apply

Y

Update	neighbors

Scatter

Data-parallel	over	edges Data-parallel	over	edges

PageRank	in	GraphLab2

PageRankProgram(i)
Gather(j à i)	: return		wji * R[j]
sum(a,	b) :		return	a	+	b;
Apply(i, Σ) : R[i] = β + (1 – β) * Σ
Scatter(i à j) :

if (R[i] changes) then activate(j)

R[i] = � + (1� �)
X

(j,i)2E

wjiR[j]

66

Machine	2Machine	1

Machine	4Machine	3

Distributed	Execution	of	a	GraphLab2	
Vertex-Program

Σ1 Σ2

Σ3 Σ4

+												+												+		

YYYY

Y’

Σ
Y’Y’Y’Gather

Apply

Scatter

67

Minimizing	Communication	in	GraphLab2

YYY

A	vertex-cut	minimizes	
machines	each	vertex	spans

Percolation	theory	suggests	that	power	law	graphs	
have	good	vertex	cuts.	[Albert	et	al.	2000]

Communication	is	linear	in	
the	number	of	machines	

each	vertex	spans

68

Minimizing	Communication	in	GraphLab2:	
Vertex	Cuts

YCommunication	linear	
in	#	spanned	machines

YY

A	vertex-cut	minimizes	
#	machines	per	vertex

Percolation	theory	suggests	Power	Law	graphs	can	be	split	
by	removing	only	a	small	set	of	vertices	[Albert	et	al.	2000]

è
Small	vertex	cuts	possible!	

Constructing	Vertex-Cuts

Goal: Parallel	graph	partitioning	on	ingress
GraphLab 2	provides	three	simple approaches:

Random Edge	Placement
Edges	are	placed	randomly	by	each	machine

Good	theoretical	guarantees

Greedy	Edge	Placement	with	Coordination
Edges	are	placed	using	a	shared	objective

Better	theoretical	guarantees

Oblivious-Greedy Edge	Placement	
Edges	are	placed	using	a	local	objective

Machine	2Machine	1 Machine	3

Random	Vertex-Cuts
• Randomly	assign	edges	to	machines

YYYY ZYYYY ZY ZY Spans	3	Machines

Z Spans	2	Machines

Balanced	Cut

Spans	only	1	machine

71

Random	Vertex	Cuts	vs Edge	Cuts

1

10

100

1000

0 16 32 48 64 80 96 112 128

M
em

or
y	
an

d	
Co

m
m
.

Re
du

ct
io
n	
w
.	V

er
te
x	
Cu

ts

Number	of	Machines

Greedy	Vertex-Cuts

• Place	edges	on	machines	which	already	have	
the	vertices	in	that	edge.

Machine1 Machine 2

BA CB

DA EB
73

Greedy	Vertex-Cuts

• Derandomization:	Minimizes	the	expected	
number	of	machines	spanned	by	each	vertex.	

• Coordinated
–Maintain	a	shared	placement	history	(DHT)
– Slower	but	higher	quality

• Oblivious
– Operate	only	on	local	placement	history
– Faster	but	lower	quality

74

Partitioning	Performance
Twitter	Graph: 41M	vertices,	1.4B	edges

Oblivious	balances	partition	quality	and	partitioning	time.

2
4
6
8

10
12
14
16
18

8 16 24 32 40 48 56 64

Av
g
#	
of
	M

ac
hi
ne

s	S
pa

nn
ed

Number	of	Machines

0

200

400

600

800

1000

8 16 24 32 40 48 56 64
Pa

rt
iti
on

	T
im

e	
(S
ec
on

ds
)

Number	of	Machines

75

Cost Construction	Time

Better

Beyond	Random	Vertex	Cuts!

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

PageRank
Collaborative	

Filtering Shortest	Path

Re
du

ct
io
n	
in
	R
un

tim
e

Random
Oblivious
Greedy

Carnegie Mellon

From	the	Abstraction	
to	a	System

6. Before

8. After

7. After

Carnegie Mellon

Linux	Cluster	Services	(Amazon	AWS)

MPI/TCP-IP	Comms PThreads Boost Hadoop/HDFS

Sync.	Engine Async.	Engine
Fault	Tolerance Distributed	Graph

Map/Reduce Ingress

GraphLab	Version	2.1	API	(C++)

Graph	
Analytics

Graphical
Models

Computer
Vision Clustering Topic

Modeling
Collaborative

Filtering

Triangle	Counting	in	Twitter	Graph

40M	Users		
1.2B	Edges

Total:
34.8	Billion	Triangles

Hadoop results from [Suri & Vassilvitskii '11]

GraphLab

Hadoop

1536	Machines
423	Minutes

64	Machines,	1024	Cores
1.5	Minutes

LDA	Performance
All	English	language	Wikipedia

2.6M	documents,	8.3M	words,	500M	tokens

LDA	state-of-the-art	sampler	(100	Machines)
Alex	Smola:	150	Million	tokens	per	Second

GraphLab Sampler	(64	cc2.8xlarge	EC2	Nodes)
100	Million	Tokens	per	Second
Using	only	200	Lines	of	code	and	4	human	hours

PageRank

40M	Webpages,		1.4	Billion	Links

GraphLab

Twister

Hadoop
5.5	hrs

1	hr

8	min

$180

$41

$12

Hadoop results from [Kang et al. '11]
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]

How	well	does	GraphLab scale?

Yahoo	Altavista Web	Graph	(2002):
One	of	the	largest	publicly	available	webgraphs

1.4B Webpages,		6.6	Billion	Links

1024	Cores	(2048	HT) 4.4	TB	RAM

64	HPC	Nodes

11	Mins
1B	links	processed	per	second

30	lines	of	user	code

Carnegie Mellon

Release	2.1	
available	now
Apache	2	License

6. Before

8. After

7. After

Linux	Cluster	Services	(Amazon	AWS)

MPI/TCP-IP PThreads Hadoop/HDFS

GraphLab	Version	2.1	API	(C++)

Graph	
Analytics

Graphical
Models

Computer
Vision Clustering Topic

Modeling
Collaborative

Filtering

GraphLab easily	incorporates	external	toolkits
Automatically	detects	and	builds	external	toolkits

Graph	Processing

Extract	knowledge	
from	graph	structure

Find	communities
Identify	important	
individuals
Detect	vulnerabilities

Algorithms
Triangle	Counting
Pagerank
K-Cores
Shortest	Path

Coming	soon:
Max-Flow
Matching
Connected	Components
Label	propagation

Collaborative	Filtering

Understanding	Peoples
Shared Interests

Target	advertising
Improve	shopping	
experience

Algorithms
ALS,	Weighted	ALS
SGD,	Biased	SGD

Proposed:
SVD++	
Sparse	ALS
Tensor	Factorization

Graphical	Models
Probabilistic	analysis	
for	correlated	data.

Improved	predictions
Quantify	uncertainty
Extract	relationships

Algorithms
Loopy	Belief	Propagation
Max	Product	LP

Coming	soon:
Gibbs	Sampling
Parameter	Learning
L1 Structure	Learning
M3 Net
Kernel	Belief	Propagation

Ad	1 Ad	2

User	1 User	3User	2

Structured	Prediction
• Input:
– Prior	probability	for	each	vertex

– Edge	List
– Smoothing	Parameter	(e.g.,	2.0)

• Output:		posterior

User	Id Pr(Conservative) Pr(Not Conservative)

1 0.8 0.2

2 0.5 0.5

3 0.3 0.7

… … …

User	Id Pr(Conservative) Pr(Not Conservative)

1 0.7 0.3

2 0.3 0.7

3 0.1 0.8

… … …

Computer	Vision	(CloudCV)

Making	sense	of	
pictures.

Recognizing	people
Medical	imaging
Enhancing	images

Algorithms
Image	stitching
Feature	extraction	

Coming	soon:
Person/object	detectors
Interactive	segmentation
Face	recognition

Clustering
Identify	groups	of	

related	data

Group	customer	and	
products
Community	detection
Identify	outliers

Algorithms
K-Means++

Coming	soon:
Structured	EM
Hierarchical	Clustering
Nonparametric	*-Means

Topic	Modeling

Extract	meaning	from	
raw	text

Improved	search
Summarize	textual	data
Find	related	documents

Algorithms
LDA	Gibbs	Sampler

Coming	soon:
CVB0	for	LDA
LSA/LSI
Correlated	topic	models
Trending	Topic	Models

GraphChi: Going	small	with	GraphLab

Solve	huge	problems	on	
small	or	embedded	

devices?

Key:	Exploit	non-volatile	memory	
(starting	with	SSDs	and	HDs)

6. Before

8. After

7. After

GraphChi – disk-based	GraphLab

Novel	Parallel	Sliding	
Windows	algorithm Fast!

Solves	tasks	as	large	as	current	
distributed	systems
Minimizes	disk	seeks

Efficient	on	both SSD	and	hard-
drive

Multicore	Asynchronous	
execution

Triangle	Counting	in	Twitter	Graph
40M	Users		
1.2B	Edges

Total:	34.8	Billion	Triangles

Hadoop results from [Suri & Vassilvitskii '11]

GraphLab

GraphChi

Hadoop 59	Minutes

64	Machines,	1024	Cores
1.5	Minutes

GraphLab

GraphChi

Hadoop

1536	Machines
423	Minutes

59	Minutes,	1	Mac	Mini!

Carnegie Mellon

Release	2.1	available	now

6. Before

8. After

7. After

http://graphlab.org
Documentation… Code… Tutorials… (more on the way)

GraphChi 0.1	available	now
http://graphchi.org

Open	Challenges

Dynamically	Changing	Graphs

• Example: Social	Networks
– New	users	à New	Vertices
– New	Friends	à New	Edges

• How	do	you	adaptively	maintain	computation:
– Trigger	computation	with	changes	in	the	graph
– Update	“interest	estimates”	only	where	needed
– Exploit	asynchrony	
– Preserve	consistency

Graph	Partitioning

• How	can	you	quickly	place	a	large	data-graph	
in	a	distributed	environment:

• Edge	separators	fail	on	large	power-law	graphs
– Social	networks,	Recommender	Systems,	NLP

• Constructing	vertex	separators	at	scale:
– No	large-scale	tools!
– How	can	you	adapt	the	placement	in	changing	
graphs?

Graph	Simplification	for	Computation

• Can	you	construct	a	“sub-graph”	that	can	be	
used	as	a	proxy	for	graph	computation?

• See	Paper:
– Filtering:	a	method	for	solving	graph	problems	in	
MapReduce.
• http://research.google.com/pubs/pub37240.html

Concluding	BIG	Ideas
• Modeling	Trend:	Independent	Data	à Dependent	Data
– Extract	more	signal	from	noisy	structured	data

• Graphs	model	data	dependencies
– Captures	locality	and	communication	patterns

• Data-Parallel	tools	not	well	suited	to	Graph	Parallel	problems
• Compared	several	Graph	Parallel	Tools:

– Pregel /	BSP	Models:	
• Easy	to	Build,	Deterministic
• Suffers	from	several	key	inefficiencies

– GraphLab:	
• Fast,	efficient,	and	expressive	
• Introduces	non-determinism

– GraphLab2:
• Addresses	the	challenges	of	computation	on	Power-Law	graphs

• Open	Challenges:	Enormous	Industrial	Interest

Fault	Tolerance

Checkpoint	Construction

Barrier

Compute Communicate

Checkpoint

Pregel (BSP) GraphLab

Synchronous	Checkpoint	
Construction

Asynchronous	Checkpoint	
Construction

Checkpoint	Interval

• Tradeoff:	
– Short Ti:	Checkpoints	become	too	costly

– Long Ti	:	Failures	become	too	costly

Time

Re-compute

Checkpoint

Checkpoint	Interval:Ti

Checkpoint	Length: Ts Machine	Failure

Time Checkpoint CheckpointCheckpoint Checkpoint Checkpoint

Time Checkpoint

Optimal	Checkpoint	Intervals	
• Construct	a	first	order	approximation:

• Example:
– 64	machines	with	a	per	machine	MTBF	of	1	year
• Tmtbf =	1	year	/	64	≈	 130	Hours

– Tc =	of	4	minutes

– Ti ≈	of	4	hours	
From:	http://dl.acm.org/citation.cfm?id=361115

Checkpoint
Interval

Length	of
Checkpoint

Mean	time
between	failures

