Big Learning with Graphs

Joseph Gonzalez
jegonzal@cs.cmu.edu

(-

4

X i ~
Danny Arthur
Bickson Gretto

Yucheng
Low

Carlos Alex Joe David Guy
Guestrin Smola Hellerstein O’Hallaron Blelloch

The Age of BIg Data

flickr o Tube

28 Million 6 Billion 900 Million 72 Hours a Minute
Wikipedia Pages Flickr Photos Facebook Users YouTube
Ehe New JJork Times

SundayReview, “..growing at 50 percent a year...”

WORLD US. NY./REGION BUSINESS TEC

NEWS ANALYSIS

, “... data a new class of economic asset,
The Age of Big Data : ”
like currency or gold.

Published: February 11, 2012

Big Data

\
Big Graphs

Social Media Science Advertising

n L @

* Graphs encode relationships between:

People Products ldeas
Facts Interests

* Big: billions of vertices and edges and rich metadata

4

Big graphs present
exciting new opportunities ...

Big-Graphs are Essential to
Data-Mining and Machine Learning

ldentify influential people and information
Find communities

Target ads and products

Model complex data dependencies

Big Learning with Graphs

Understanding and using
large-scale structured data.

Examples

PageRank (Centrality Measures)

* |terate:
Rlij]=a+(1—-a) » L“—.‘],]R[j]
(j,0)el -
* Where:

— a is the random reset probability
— L[j] is the number of links on page j

http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf

Label Propagation
(Structured Prediction)

Sue Ann

..\ 80% Cameras
, % 20% Biking

50% Cameras
50% Biking

Carlos

30% Cameras
70% Biking

10%

http://www.cs.cmu.edu/~zhuxj/pub/CMU-CALD-02-107.pdf

Collaborative Filtering: Independent Case

e y ‘\

&t Lord of the Rings
A’ N

%
|

A -
W
x Star Wars IV
A
W
A Star Wars |
W
/Q
. PCO
. f);/))
’(?/70’ ~ Harry Potter

Pirates of the Caribbean

Collaborative Filtering: Exploiting Dependencies

o - 7]
%mm

S Women on the Verge of a
g Nervous Breakdown

The Celebration

MY City of God

CITYor GOD

o

k=~ \Vild Strawberries

La Dolce Vita

Matrix Factorization
Alternating Least Squares (ALS)

- | Movies [| <
e v X u
@ o m =
= ~ |2 2 @
U; 5 S
3 U 2
| Movies [| =
-
Ilterate:
_ 2
u; = arg min E (ri; —m; - w)
w
JENi]

m,; = arg min Z (ri; —u; - w)?
w

http://dl.acm.org/citation.cfm?id=1424269

Many More Algorithms

* Collaborative Filtering
— Alternating Least Squares
— Stochastic Gradient Descent

— Tensor Factorization
— SVD

* Structured Prediction
— Loopy Belief Propagation

* Graph Analytics

PageRank

Single Source Shortest Path
Triangle-Counting

Graph Coloring

K-core Decomposition
Personalized PageRank

— Max-Product Linear Programs ® Classification

— Gibbs Sampling
* Semi-supervised ML

— Graph SSL
— CoEM

— Neural Networks
— Lasso

Graph Parallel Algorithms

Dependency Local lterative
Graph Updates Computation

My Interests

Friends
Interests

What is the right tool for Graph-Parallel ML

< Data-Parallel Graph-Parallel

Map Reduce Map Reduce?
Feature Cross i i .
Extraction Validation Collaborative Filtering
Graph Analytics
compuring suticient Structured Prediction

Clustering

17

Why not use Map-Reduce
for
Graph Parallel algorithms?

Data Dependencies are Difficult

* Difficult to express dependent data in Map
Reduce
— Substantial data transformations
— User managed graph structure

Independent Data Records

Iterative Computation is Difficult

e System is not optimized for iteration:

lterations

Data

Data

Data

mﬁmzc_u vm_um_a\

©

WRURURURY,

Dat

Map-Reduce for Data-Parallel ML
* Excellent for large data-parallel tasks!

Map Reduce MPI/Pthreads

Feature Cross] .]
Graph Analytics
Computing Sufficient Structured Prediction

Statistics]
Clustering

21

We could use

Threads, Locks, & Messages

Threads, Locks, and Messages

* Graduate students repeatedly solve the same
parallel design challenges:

— Implement and debug complex parallel system

— Tune for a specific parallel platform
— Six months later the conference paper contains:

“We implemented in parallel.”

* The resulting code:
— is difficult to maintain
— is difficult to extend

e couples learning model to parallel implementation

Addressing Graph-Parallel ML
* We need alternatives to Map-Reduce

< Data-Parallel Graph-Parallel
Map Reduce Pregel

Feature Cross] .]
Graph Analytics
Computing Sufficient Structured Prediction

Statistics]
Clustering

Pregel Abstraction

e User-defined Vertex-Program on each vertex

* Vertex-programs interact along edges in the Graph

— Programs interact through Messages

* Parallelism: Multiple vertex programs run simultaneously

>

If%\

N
2

25

The Pregel Abstraction

Vertex-Programs communicate through messages

void Pregel PageRank(i, msgs) :
(// Receive all the messages
float total = sum(m in msgs)
// Update the rank of this vertex)
R[i] = B + (1-p)*total

~

// Send Messages to neighbors N
foreach(j in out _neighbors[i]) :

SendMsg(nbr, R[i] * wiy)

Pregel is Bulk Synchronous Parallel

Compute Communicate

http://dl.acm.org/citation.cfm?id=1807184

Open Source Implementations

* Giraph: http://incubator.apache.org/giraph/
* Golden Orb: http://goldenorbos.org/
» Stanford GPS: http://infolab.stanford.edu/gps/

An asynchronous variant:
* GraphlLab: http://graphlab.org/

Tradeoffs of the BSP Model

* Pros:
— Graph Parallel
— Relatively easy to implement and reason about
— Deterministic execution

e Cons:

— User must architect the movement of information
* Send the correct information in messages

[— Bulk synchronous abstraction inefficient J

Curse of the Slow Job

Ilterations

0
9 @‘@

NS

5

N

Q©06E 9@\9

1 M .
@é%
@éﬁ@
ONONORCNON RO

Barrier
Barrier
Barrier

http://www.www?2011india.com/proceeding/proceedings/p607.pdf

Curse of the Slow Job

* Assuming runtime is drawn from an exponential
distribution with mean 1.

Runtime Multiple
O L N W b U1 O N 00 L

0 100 200 300 400 500 600
Number of Jobs

http://www.www?2011india.com/proceeding/proceedings/p607.pdf

Bulk synchronous parallel
model provably inefficient
for some graph-parallel
tasks

Example:
Loopy Belief Propagation (Loopy BP)

* |teratively estimate the “beliefs” about vertices

— Read in messages

— Updates marginal ‘
estimate (belief)

— Send updated
out messages ‘

* Repeat for all variables
until convergence

33

http://www.merl.com/papers/docs/TR2001-22.pdf

Bulk Synchronous Loopy BP

e Often considered embarrassingly parallel

— Associate processor
with each vertex

— Receive all messages
— Update all beliefs
— Send all messages

. Proposed by:
Brunton et al. CRV’06
— Mendiburu et al. GECC'07
— Kang,et al. LDMTA’10

34

Sequential Computational Structure

35

Hidden Sequential Structure

Hidden Sequentlal Structure

Evidence Evidence

-~

37

Optimal Sequential Algorithm

Running
Time

Bulk Synchronous

1/—\‘ 4/—\‘4 l,’-~“ l/—\" l/-\" 2”2/,0
S N N N o. 0 <2n
Forward-Backward - 8}
2n
p =
n

The Splash Operation

* Generalize the optimal chain algorithm:

llllllllllllllllllllllllllllllllllll

lllllllllllllllllllllllllllllllllll

to arbitrary cyclic graphs:

1) Grow a BFS Spanning tree
with fixed size

2) Forward Pass computing all
messages at each vertex

3) Backward Pass computing all
messages at each vertex

39
http://www.select.cs.cmu.edu/publications/paperdir/aistats2009-gonzalez-low-guestrin.pdf

Prioritize Computation

Challenge = Boundaries

T

Many
Updates

- e
o

Synthetic Noisy Image
Few
Updates

¥

Vertex Updates

Algorithm identifies and focuses
on hidden sequential structure

-

Graphical Model

Comparison of Splash and Pregel Style
Computation

10000

Bulk Synchronous (Pregel)
8000 /

6000

Runtime in Seconds

Splash BP
4000
2000 —
— —— —
O .\._ — = - = .
1 2 3 4 5 6 7 8
Number of CPUs

Limitations of bulk synchronous model can

lead to provably inefficient parallel
algorithms

Sei.cc

leciii: The Need for a New Abstraction

¢ Need: Asynchronous, Dynamic Parallel Computations

Data-Parallel Graph-Parallel

—

Map Reduce (BSP, e.g., Pregel

Feature Cross Graphical Models Semi- Superwsed
Extraction Validation Gibbs Sampling Learning
Computing Sufficient Pelif Propagation Label Propagation
Statistics
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization Triangle Counting

= The GraphLab Goals

act

¢ Designed specifically for ML e Simplifies design of

e Graph dependencies para||e| programs:

¢ lterative e Abstract away hardware issues
e Asynchronous e Automatic data synchronization
¢ Dynamic e Addresses multiple hardware

architectures

Know how to

solve ML problem 40
on 1 machine GraphLabq‘l/

Carnegie Mellon 4

Efficient
parallel

predictions

amazon ileafifead
webservices™

Sei.cc

e= Data Graph

aC

Data associated with vertices and edges

H i Graph: Q_O

e Social Network

Vertex Data: -
* User profile text
e Current interests estimates

Edge Data: i

* Similarity weights

Sei.cc

e« Update Functions

aC
User-defined program: applied to

vertex transforms data in scope of vertex

Update function applied (asynchronously)
in parallel until convergence

Many schedulers available to prioritize computation

Dynamic
computation

CPU

The process repeats until the scheduler is empty

Sei.cc

e< Ensuring Race-Free Code

act

How much can computation overlap?

v

Sei.cc

ez Need for Consistency?

act

~ Higher
Throughput

(#updates/sec)

No Consistency

Potentially Slower
Convergence of ML

se oo

leaii Consistency in Collaborative Filtering

128 -

64 -

== |nconsistent updates
32

-m= Consistent updates

GraphLab guarantees consistent updates

User-tunable consistency levels

trades off parallelism & consistency

0.5 | | | | |
0 2 4 6 8
Updates Millions

Netflix data, 8 cores

Sei.cc

Je<im The GraphLab Framework

Graph Based Update Functions
Data Representation User Computation

Oo—=C

Scheduler Consistency Model

Oooo>

Alternating Least
S >VD Splash Sampler

Squares
CoEM _
Bayesian Tensor
Lasso oicf p ' Factorization
eliet Propagation
Pag PageRank
LDA
Graph
Carnegie Mellon SV M

Gibbs Sampling
Dynamic Block Gibbs Sampling

K-Means Matrix

...Many others... L
Factorization

Linear Solvers

le. . GraphlLab vs. Pregel (BSP)

act
1.00E+08 1.00E+08
1.00E+06 \ 1.00E+06 &
S 1.00E+04 \ S 1.00E+04 Pregel
wl } S
- 1.00E+02 Prege{ : 1. 00E+0?2 \ (via GraphLab)
\ (via GraphLab) - \
1.00E+00
"\ Graphlab 1.00E+00 \ Graphlab
1.00E-02 x x , 1 00E-02 | |
0 5000 10000 15000 0.0E+00 1.0E+09 2.0E+09
Runtime (s) Updates
w 100000000 ¢ 51% updated only once
E 1000000
S 10000
§ 100
1 T T T T T ¢ |
0 10 20 30 40 50 60 70

Number of Updates

¢ PageRank (25M Vertices, 355M Edges)

-—

Selisc
lear
t

Never Ending Learner Project (CoEM)

Hadoop 95 Cores 7.5 hrs
GraphlLab 16 Cores 30 min
Distributed 32 EC2 80 secs
GraphLab machines

0.3% of Hadoop time

53

Seiisc

leaiii. The Cost of the Wrong Abstraction

10° | e
Hadoop——*
1 T
oy 100
§ % GraphLab
. o)
o IS
— 10 ¢
| o
. %~y
~1
10 .
10’ 10° 10° 10"

Runtime(s)

Thus far...

GraphLabl provided exciting
scaling performance

But...
We couldn’t scale up to

Altavista Webgraph 2002
1.4B vertices, 6.7B edges

Select Lab Carnegie Mellon

[Image from WikiCommons]

205.230.12%

Assumptions of Graph-Parallel Abstractions

Idealized Structure Natural Graph

* Small neighborhoods * Large Neighborhoods
— Low degree vertices — High degree vertices

* Power-Law degree
distribution

* Difficult to partition

e Similar degree
* Easy to partition

57

LI S S

&= Natural Graphs = Power Law

10

-
10°F . gy O@@ Top 1% of vertices is .
% % adjacent to
\
10° | ..\Q 2+ | 53% of the edges! .
= Q
S
10* | .
10° | -
10°

10 10"
degree

Altavista Web Graph: 1.4B Vertices, 6.7B Edges

Sei.cc

leaii High Degree Vertices are Common

“Social” People

Popular Movies

y 3 b ¢
% ﬁ ’ —
. 7 ety poler
y ¢ Movies [

Hyper Parameters

(x TAY

B

Common Words

LDA

Obama

se.-< Problem:
High Degree Vertices Limit Parallelism

O

Edge information Touches a large Produces many Sequential
too large for single fraction of graph messages Vertex-Updates
machine (GraphLab 1) (Pregel)
—e —> 1 o—e —> 1
—e —> | —o —> I
—e —> I o—e —> I
| 1
. 1 1
Asynchronous consistency Synchronous consistency is prone to

requires heavy locking (GraphLab 1) stragglers (Pregel)

?e‘..w Problem:

-t High Degree Vertices & High
Communication for Distributed Updates

Data transmitted
across network
O(# cut edges)

Natural graphs do not have low-cost balanced cuts
[Leskovec et al. 08, Lang 04]

Popular partitioning tools (Metis, Chaco,...) perform poorly
[Abou-Rjeili et al. 06]

Extremely slow and require substantial memory

Seiisc

ez Random Partitioning

act

¢ Both GraphlLabl and Pregel proposed Random
(hashed) partitioning for Natural Graphs

For p Machines:

E : |Edges Cut| :1_1

E p

10 Machines =2 90% of edges cut
100 Machines =2 99% of edges cut!

Seiisc

e<v |n Summary

act

GraphLabl and Pregel are not well
suited for natural graphs

o Poor performance on high-degree vertices

¢ Low Quality Partitioning

Selisc
learn
act

BN
Grapnh Lab}

¢ Distribute a single vertex-update
¢ Move computation to data
¢ Parallelize high-degree vertices

¢ Vertex Partitioning

¢ Simple online approach, effectively partitions large power-
law graphs

Sei.cc

lei Factorized Vertex Updates

act

Split update into 3 phases
A

PageRank in GraphLab?2

Rii] =B+ (1-8) > wjR[j]

(J,2)eFE

PageRankProgram(i)
Gather(j 2 1) :return w; * R[j] }

sum(a, b) : return a + b;
Apply(i,2) : R[i] =+ (1 -p) * =
Scatter(1-2>j):

if (R[1] changes) then activate(])

Distributed Execution of a GraphlLab?2
Vertex-Program

Machine 1 Machine 2

, N
Gather © &
B H-
Apply

@
Scatter Af

Machine 3 Machine 4

Minimizing Communication in GraphLab2

Communication is linear in
the number of machines
each vertex spans

A vertex-cut minimizes
machines each vertex spans

Percolation theory suggests that power law graphs
have good vertex cuts. [Albert et al. 2000]

68

se.-<Minimizing Communication in GraphlLab?2:
Vertex Cuts

act

Coi..murni.dion . ..ear
in # s "nned rmachines

A vertex-cut minimizes
machines per vertex

Percolation theory suggests Power Law graphs can be split
by removing only a small set of vertices [Albert et al. 2000]
->

Small vertex cuts possible!

Seiisc

ecii Constructing Vertex-Cuts

act

o Goal: Parallel graph partitioning on ingress

¢ Graphlab 2 provides three simple approaches:
¢ Random Edge Placement

¢ Edges are placed randomly by each machine
» Good theoretical guarantees
¢ Greedy Edge Placement with Coordination

¢ Edges are placed using a shared objective
» Better theoretical guarantees

¢ Oblivious-Greedy Edge Placement

o Edges are placed using a local objective

Random Vertex-Cuts

 Randomly assign edges to machines

Machine 1 Machine 2 Machine 3

Balanced Cut

‘ Spans only 1 machine

Sei.cc

lexii. Random Vertex Cuts vs Edge Cuts

act

1000

)
o

[ERY
o

Memory and Comm.
Reduction w. Vertex Cuts

[ERY

I I I I I I I I

0 16 32 48 64 80 96 112 128
Number of Machines

Greedy Vertex-Cuts

* Place edges on machines which already have
the vertices in that edge.

A B 0—O0

Machinel Machine 2

0—0

73

Greedy Vertex-Cuts

* Derandomization: Minimizes the expected
number of machines spanned by each vertex.
* Coordinated

— Maintain a shared placement history (DHT)
— Slower but higher quality

* Oblivious
— Operate only on local placement history
— Faster but lower quality

Partitioning Performance

Twitter Graph: 41M vertices, 1.4B edges

Cost Construction Time
o 18 1000
c 16 «Q —_
& QanCs . .15 T 800
o 14 AR N AN [=
" OF S
g 12 2 600
= 10 o)
& g £ 400
‘ =
— ~AinateC c
5 © W/ OO0rV 2 200
* 4 E
[o]0] -
2 2 [[| | | g O [[rlr7 | | | |
8 16 24 32 40 48 56 64 8 16 24 32 40 48 56 64
Number of Machines Number of Machines

Oblivious balances partition quality and partitioning time.

75

Sei.cc

leaii: Beyond Random Vertex Cuts!

iIme
o O
oo W ¥

o O ¢
noo

M Oblivious

W Greedy

o O
N W

Reduction in Runti
D

o
—

lll.ﬂll'l

-
-
-
_- B Random
- »
-
B
N

o

PageRank
Collaborative

Filtering

Shortest Path

N
Graph Lab}
From the Abstraction
to a System

Select Lab Carnegie Mellon

Sync. Engine

Fault Tolerance

MPI/TCP-IP Comms

Async. Engine

PThreads

Map/Reduce Ingress

Distributed Graph

Hadoop/HDFS

Boost

Linux Cluster Services (Amazon AWS)

Select Lab

Carnegie Mellon

.. Triangle Counting in Twitter Graph

act
V Total:
40M Users 34.8 Bi"iOn Triangles
1.2B Edges

Hadoop

. 64 Machines, 1024 Cores

GraphLab 1.5 Minutes

Hadoop results from [Suri & Vassilvitskii '11]

Seiisc

ez LDA Performance

act

o All English language Wikipedia
¢ 2.6M documents, 8.3M words, 500M tokens

o LDA state-of-the-art sampler (100 Machines)

¢ Alex Smola: 150 Million tokens per Second

o GraphlLab Sampler (64 cc2.8xlarge EC2 Nodes)
¢ 100 Million Tokens per Second

¢ Using only 200 Lines of code and 4 human hours

Sei.cc

e PageRank

aC

l S1hbrs
Hadoop

Twister

Graphlab

40M Webpages, 1.4 Billion Links

Hadoop results from [Kang et al. '11]
Twister (in-memory MapReduce) [Ekanayake et al. ‘10]

Seiisc

ez How well does GraphlLab scale?

act

Yahoo Altavista Web Graph (2002):
One of the largest publicly available webgraphs

1.4B Webpages, 6.6 Billion Links

11 Mins

1B links processed per second

30 lines of user code

1024 Cores (2048 HT) 4.4 TB RAM

BN
Graph Lab\

Release 2.1
available now

Apache 2 License

Select Lab Carnegie Mellon

Graph Graphical Computer Beterin Collaborative
Analytics Models Vision 5 Modeling Filtering

GraphlLab Version 2.1 API (C++)

MPI/TCP-IP PThreads Hadoop/HDFS

Linux Cluster Services (Amazon AWS)

GraphLab easily incorporates external toolkits
Automatically detects and builds external toolkits

Selisc
act

Extract knowledge
from graph structure

¢ Find communities

¢ ldentify important
individuals

¢ Detect vulnerabilities

e< Graph Processing

Algorithms

¢ Triangle Counting

¢ Pagerank

o K-Cores

¢ Shortest Path

Coming soon:

o Max-Flow

¢ Matching

¢ Connected Components
o Label propagation

Sei.cc

Je<im Collaborative Filtering

Understanding Peoples Algorithms
Shared Interests o ALS, Weighted ALS

¢ SGD, Biased SGD
Proposed:

o SVD++

o Sparse ALS

¢ Tensor Factorization

¢ Target advertising

¢ Improve shopping
experience

Sei.cc

ezt Graphical Models

Probabilistic analysis
for correlated data.

¢ Improved predictions

¢ Quantify uncertainty
¢ Extract relationships

Algorithms

¢ Loopy Belief Propagation
¢ Max Product LP

Coming soon:

¢ Gibbs Sampling

¢ Parameter Learning

o L, Structure Learning

o M3 Net

¢ Kernel Belief Propagation

Structured Prediction

* |nput:
— Prior probability for each vertex
User Id Pr(Conservative) Pr(Not Conservative)
1 0.8 0.2
2 0.5 0.5
3 0.3 0.7
— Edge List

— Smoothing Parameter (e.g., 2.0)

* Output: posterior

User Id Pr(Conservative) Pr(Not Conservative)
1 0.7 0.3
2 0.3 0.7

3 0.1 0.8

Sei.cc

Jle< Computer Vision (CloudCV)

Making sense of Algorithms
pictures.

¢ Image stitching

¢ Feature extraction
Coming soon:

o Person/object detectors

- ¢ Interactive segmentation
* Recognizing people ¢ Face recognition
¢ Medical imaging

¢ Enhancing images

Seiisc

e Clustering

Identify groups of
related data

iy

Kk »

¢ Group customer and
products

¢ Community detection
¢ |dentify outliers

Algorithms

¢ K-Means++

Coming soon:

¢ Structured EM

¢ Hierarchical Clustering
¢ Nonparametric *-Means

Seiisc

Jeai Topic Modeling

Extract meaning from
raw text

:
1

ress;egrch

E28= :gﬁ :
1272 sg e
researchers
pr’eCtvS jg sclence \wood

on '] = e

nougn

¢ Improved search
¢ Summarize textual data
¢ Find related documents

Algorithms

¢ LDA Gibbs Sampler
Coming soon:

o CVBO for LDA

o LSA/LSI

o Correlated topic models
¢ Trending Topic Models

d &
d‘&k:

"1.;

N
GrapnlLa b\ J4

Solve huge problems on
small or embedded g
devices?

Key: Exploit non-volatile memory

(starting with SSDs and HDs)

Sei.cc

& GraphChi — disk-based GraphLab

Novel Parallel Sliding

|
Windows algorithm ° Fast:

o Solves tasks as large as current
distributed systems

Interval 1

¢ Minimizes disk seeks

¢ Efficient on both SSD and hard-
drive

¢ Multicore Asynchronous
execution

Shard 1 Shard 2 Shard 3 Shard 4

.. Triangle Counting in Twitter Graph

act
4oMUsers Total: 34.8 Billion Triangles
1.2B Edges
Hadoop
i 59 Minutes, 1 Mac Mini!
GraphChi
| 64 Machines, 1024 Cores
1.5 Minutes
Graphlab

Hadoop results from [Suri & Vassilvitskii '11]

N
Grapnh Lab\
Release 2.1 available now
http:/graphlab.org

Documentation... Code... Tutorials... (more on the way)

GraphChi 0.1 available now
http:/graphchi.org

Select Lab Carnegie Mellon

Open Challenges

Dynamically Changing Graphs

 Example: Social Networks

— New users =2 New Vertices
— New Friends = New Edges

* How do you adaptively maintain computation:
— Trigger computation with changes in the graph
— Update “interest estimates” only where needed
— Exploit asynchrony
— Preserve consistency

Graph Partitioning

 How can you quickly place a large data-graph
in a distributed environment:

* Edge separators fail on large power-law graphs
— Social networks, Recommender Systems, NLP

e Constructing vertex separators at scale:
— No large-scale tools!

— How can you adapt the placement in changing
graphs?

Graph Simplification for Computation

e Can you construct a “sub-graph” that can be
used as a proxy for graph computation?

* See Paper:

— Filtering: a method for solving graph problems in
MapReduce.

* http://research.google.com/pubs/pub37240.html

Concluding BIG Ideas

 Modeling Trend: Independent Data = Dependent Data
— Extract more signal from noisy structured data

Graphs model data dependencies
— Captures locality and communication patterns

Data-Parallel tools not well suited to Graph Parallel problems

 Compared several Graph Parallel Tools:
— Pregel / BSP Models:

* Easy to Build, Deterministic
» Suffers from several key inefficiencies

— Graphlab:

* Fast, efficient, and expressive
* |Introduces non-determinism

— Graphlab2:

* Addresses the challenges of computation on Power-Law graphs

* Open Challenges: Enormous Industrial Interest

Fault Tolerance

Checkpoint Construction

Pregel (BSP) GraphlLab

Compute Communicate

Synchronous Checkpoint Asynchronous Checkpoint
Construction Construction

Checkpoint Interval

Checkpoint Interval: T, Re-compute

)

| |
 oeavon | > >

V
Checkpoint Length: 7;) .
Machine Failure

* Tradeoff:
— Short T:: Checkpoints become too costly

Time Checkpoint Checkpoint Checkpoint =* Checkpoint Checkpoint

— Long T;: Failures become too costly

>

Optimal Checkpoint Intervals

e Construct a first order approximation:

T; ~ /2T Tt

Checkpoint Length of
Interval Checkpoint

e Example:

Mean time

between failures

— 64 machines with a per machine MTBF of 1 year
* Toneps=1year /64 = 130 Hours

— T. = of 4 minutes

— ;= of 4 hours

From: http://dl.acm.org/citation.cfm?id=361115

