Recent Developments in Data Science @ Berkeley

Joseph E. Gonzalez
Asst. Professor in EECS
jegonzal@berkeley.edu
Recent Developments in Data Science @ Berkeley

Joseph E. Gonzalez
Asst. Professor in EECS
jegonzal@berkeley.edu

ds100.org

DS-100
Principles and Techniques of Data Science

ds100.org
DS-100 Course Development

Started active course development in Spring 2016

- Reference: CS 194-16 Introduction to Data Science
 - Initially: focused more on tools
 - Eventually: fairly advanced many techniques and topics covered

Big Decisions

- Intermediate level
- Narrow scope
- Minimize pre-req. chain
- Strong stats. perspective

Data 8
DS-100
Principles and Techniques of Data Science

ds100.org
Our Goals

Prepare students for advanced Berkeley courses in data-management (CS186), machine learning (CS189), and statistics (Stat-154), by providing the necessary foundation and context.

Enable students to start careers as data scientists by providing experience in working with **real data, tools, and techniques**.

Empower students to apply **computational and inferential thinking** to tackle real-world problems.
DS100 Created and Taught by Faculty and TAs With Diverse Background & Perspectives
Data Science Requires Many Skills

Can’t cover everything in DS100.

Instead we cover

- Key Concepts
 - ... some details
- Connections
- How to learn ...
Big Concepts in Data Science

- Data preparation and representation
- Efficient and scalable data processing
- Question formulation and experimental design
- Exploratory data analysis and visualization
- Modeling fitting and inference
- Machine learning techniques and overfitting
- Validation and hypothesis testing
Data Science Lifecycle

High-level description of the data science workflow

- Frame questions & design experiments
- Obtain and clean data
- Summarize and visualize data
- Inference and prediction continuous process ...
Using Real Tools

- Focus on Python programming language
- We will use various different technologies
 - Jupyter notebooks, pandas, numpy, matplotlib, SQL Server, github, Wrangler, plotly, tableau, Spark?, ...
- We won’t teach students everything ...
 - Students will learn to read documentation
 - Students will learn to teach themselves
- BETA WARNING: things will break ...
 - Students will learn how to debug
 - Students will learn how to get help (Piazza)
Week 1: Big Concepts in Data Science
Week 2: Working with Real Data and SQL
Week 3: Model Estimation
Week 4: Spring Break
Week 5: ML Techniques
Week 6: Review & Midterm
Week 7: Basic Statistical Modeling
Week 8: ML Techniques
Week 9: Big Data Analytics
Week 10: HW 5
Week 11: HW 6
Week 12: HW 6
Week 13: HW 6
Week 14: HW 6
Week 15: HW 6
Week 16: RRR

http://www.ds100.org/sp17/syllabus
The Data Science Major …

We are working on it!

Goals
➢ Interdisciplinary
➢ Personalized
➢ Technically deep
➢ Contextualized
➢ Pragmatic
Recent Developments in Data Science

Joseph E. Gonzalez
Asst. Professor in EECS
jegonzal@berkeley.edu

ds100.org
Principles and Techniques of Data Science

Recent Developments in Data Science @ Berkeley

Joseph E. Gonzalez
Asst. Professor in EECS
jegonzal@berkeley.edu
rise.cs.berkeley.edu
Berkeley’s lab tradition

• 5-6 Projects addressing big problem
• Bringing faculty from different areas (in CS)
Berkeley’s lab tradition

• Working for 5-6 years on a new major problem

• Bringing faculty from different areas
Big Data → Training → Big Model

-amplab
Big Data → Training → Big Model

- Amplab
- Apache Spark
- MLbase
- KeystoneML
- GraphX
- Splash
- CoCoA
RISE Lab

From live data to real-time decisions

AMP Lab

From batch data to advanced analytics
Big Data

Training

Big Model

Learning

?
Learning

Big Data → Training → Big Model → Conference Papers
Big Data → Training → Big Model → Conference Papers → Dashboards and Reports
Learning

Big Data

Training

Big Model

Conference Papers

Dashboards and Reports

Drive Actions
why is **Inference** challenging?

Need to render **low latency** (< 10ms) predictions for **complex** Models under **heavy load** with system **failures**.

Queries

```
SELECT * FROM users JOIN items, click_logs, pages
WHERE ...
```
Robust Inference is critical

Self “Parking” Cars

Self “Driving” Cars

Chat AIs
Big Data → Training → Big Model → Query → Decision → Application → Feedback
Learning

Timescale: hours to weeks

Often re-run training

Another area of focus in RISE

Inference

Application

Feedback
Why is **Closing the Loop** challenging?

- **Implicit and Delayed Feedback**
- **Self Reinforcing Feedback Loops**
- **World Changes at varying rates**
Big Data

Big Model

Training

Application

Decision

Query

Learning

Adaptive (~1 seconds)

Responsive (~10ms)

Inference

Feedback

Responsive (~10ms)

Adaptive (~1 seconds)
Learning
Adaptive
(~1 seconds)

Inference
Responsive
(~10ms)

Secure
Intelligence in **Sensitive Contexts**

- AR/VR Systems
- Home Monitoring
- Voice Technologies
- Medical Imaging

Protect the **data**, the **model**, and the **query**
Protect the **data**, the **model**, and the **query**

High-Value **Data is Sensitive**
- Medical Info.
- Home video
- Finance

Models capture value in data
- Core Asset
- Sensitive

Queries can be as sensitive as the data
We are developing new technologies that will enable applications to make low-latency intelligent decision on live data with strong security guarantees.
A few early projects …

Opaque: A Data Analytics Platform with Strong Security

SQL ML Graph

Opaque
query optimization

opaque

Catalyst
Spark Execution
How can I get involved in Research for RISE (or anywhere on campus)

1. Learn about the ongoing projects:
 - https://rise.cs.berkeley.edu
 - https://github.com/ucbrise

2. Email faculty and grad students to see if they have openings or are looking for help
 - Have an idea for the project!

3. Try to attend seminars hosted by the lab
 - We will start posting these soon!

Joseph E. Gonzalez (jegonzal@berkeley.edu)