Parallel Gibbs Sampling

From Colored Fields to Thin Junction Trees

! ; | \//

Joseph Yucheng Arthur Carlos
Gonzalez Low Gretton Guestrin

Seiicc

_leari Sampling as an Inference Procedure

¢ Suppose we wanted to know the probability that coin
lands “heads”

Counts
“Draw 4x O Heads
samples” @ O O @ @ OO @ O @ ,
4 6x @ Tails

P (Heads) ~ —

10
¢ We use the same idea for graphical model inference
;(10 @ © ¢
m xjs : : : Inference:
X4 000 — ~~
Graphical X52 2 g g \ P (Xl - X2) o 2/4
Model X6° Q QC @

Seiicc

ez Terminology: Graphical Models

act

¢ Focus on discrete factorized models with sparse
structure:

Factor

Se/.sc

ez Terminology: Ergodicity

act

¢ The goal is to estimate:
Eh(Xq,...,X,)

¢ Example: marginal estimation

hi(x) =1z ==1i| = E|h;(X})] = P(X; = 1)

o If the sampler is ergodic the following is true*:

. 1 « (t) 20
n}gnmE;hxl) B B AX, LX)

*Consult your statistician about potential risks before using.

S

el
"i Gibbs Sampling [Geman & Geman, 1984]

¢ Sequentially for each variable in the model
¢ Select variable

¢ Construct conditional given G ’
¢ Flip coin and update
assignment to variable

(

«

&

00000

Initial Assignment
OEOOO
EONO

000(
00
00

Se/.sc

_leari Why Study Parallel Gibbs Sampling?

“The Gibbs sampler ... might be considered the workhorse
of the MCMC world.”

—Robert and Casella

¢ Ergodic with geometric convergence
o Great for high-dimensional models
¢ No need to tune a joint proposal

¢ Easy to construct algorithmically
¢ WinBUGS

o Important Properties that help Parallelization:
e Sparse structure = factorized computation

Is the Gibbs Sampler
trivially parallel?

Selisc
_leai From the original paper on Gibbs Sampling:

“...the MRF can be divided into collections of [variables]
with each collection assigned to an independently
running asynchronous processor.”

-- Stuart and Donald Geman, 1984.

Selise
alll

_leai The problem with Synchronous Gibbs

t=1 t=2 t=3
xR
Strong Positive

Correlation \
Pa
Exee ey —> —

¢ Adjacent variables cannot be sampled
simultaneously.

How has the machine
earning community solve
this problem?

N
N\

3

ie- . Two Decades later

act

Newman et al., Scalable Parallel Topic Models. Inl. Intelligen. Comm. R&D, 2006.
Newman et al., Distributed Inference for Latent Dirichlet Allocation. NIPS, 2007.
Asuncion et al., Asynchronous Distributed Learning of Topic Models. NIPS, 2008.

Doshi-Velez et al., Large Scale Nonparametric Bayesian Inference: Data
Parallelization in the Indian Buffet Process. NIPS 2009

5. Yan et al., Parallel Inference for Latent Dirichlet Allocation on GPUs. NIPS, 2009.

P w N e

¢ Same problem as the original Geman paper

e Parallel version of the sampler is not ergodic.

¢ Unlike Geman, the recent work:
e Recognizes the issue

e Ignores the issue
e Propose an “approximate” solution

Seiicc

e=w Two Decades Ago

act

¢ Parallel computing community studied:

Sequential Algorithm Directed Acyclic
(t+1) (t) Dependency Graph
L1 = fi(zy’) .
(t+1) (t) .(t)
L2 — f2 (5172 y '3)
ng:())tJrl) — £ (x§t+1), xgt—i—l)

Construct an Equivalent Parallel Algorlthm

2" = fi(af)) 2f = fa(a), 2y
Using ()
Graph Coloring

_ fg(xgt-kl) x(t—i—l))

|

Seiicc

e= Chromatic Sampler

act

¢ Compute a k-coloring of the
graphical model

¢ Sample all variables with
same color in parallel

¢ Sequential Consistency:

T e Time,

< 0uo

13

Seiicc

e=v Chromatic Sampler Algorithm

act

For t from 1 to T do
() L =1)
For k from 1 to K do

Parfor 1 in color k:

(t) ~ P(X; |aj(t))

Seiicc

e Asymptotic Properties

act

¢ Quantifiable acceleration in mixing

/\ # Variables

Time to update n
all variables once O (5 + k)’\ # Colors

. ~__— #Processors

Se¢ [K™} w7

lexiv Proof of Ergodicity

act

¢ Version 1 (Sequential Consistency):

¢ Chromatic Gibbs Sampler is equivalent to a Sequential Scan
Gibbs Sampler

&-000000000

Selisc
_leaii Special Properties of 2-Colorable Models

¢ Many common models have two colorings

¢

¢ For the [Incorrect] Synchronous Gibbs Samplers
¢ Provide a method to correct the chains

¢ Derive the stationary distribution

act Correcting the Synchronous Gibbs Sampler

t=0 t=1 t=2 t=3 t=4
Strong Pos'tivei g i g 3 -
. —> —_—> —_—> —>
Correlation

¢ We can derive two valid chains:

SRS

18

Selise

o Correcting the Synchronous Gibbs Sampler

t=0 t=1 t=2 t=3 t=4
Strong Pos'tivei g 3 g 3 -
. —_—> —_—> —_—> —>
Correlation

¢ We can derive two valid chains:

Chain 1

S 208 Emm

Seiicc

leain
act

Theoretical Contributions on 2-colorable models

¢ Stationary distribution of Synchronous Gibbs:

ZK (L1,)T (455)

20

Sed [fo) w7

Jﬁ‘“ " Theoretical Contributions on 2-colorable models

¢ Stationary distribution of Synchronous Gibbs
PsynC (Xla v 7X’rl) — 7 (Xﬁll) n (XKDQ)

Variables in Variables in

Color 1 Color 2

21

Seiicc

_le<it " From Colored Fields to Thin Junction Trees

Chromatic Gibbs Sampler

¢ |deal for:
¢ Rapid mixing models

¢ Conditional structure does
not admit Splash

Slowly Mixing
Models

‘)

Se¢ [K™} w7

lecii Models With Strong Dependencies

¢ Single variable Gibbs updates tend to mix slowly:

Single site changes move
slowly with strong
correlation.

¢ Ideally we would like to draw joint samples.
¢ Blocking

23

Seiicc

e Blocking Gibbs Sampler

act

¢ Based on the papers:

1. Jensen et al., Blocking Gibbs Sampling for Linkage Analysis in Large
Pedigrees with Many Loops. TR 1996

{ 2. Hamze et al., From Fields to Trees. UAI 2004.]

Splash Gibbs Sampler

An asynchronous Gibbs Sampler that
adaptively addresses strong dependencies.

S e l e Ct La b Carnegie Mellon 5

Seiicc

e< Splash Gibbs Sampler

act

¢ Step 1: Grow multiple Splashes in parallel:
LI D Ll
oZb
.“

Conditionally

()

—0O—0O
—O—0
—0O—0O

ug
es
0 &

Independent

26

Seiicc

e< Splash Gibbs Sampler

act

¢ Step 1: Grow multiple Splashes in parallel:

Tree-width =1

27

Seiicc

ez Splash Gibbs Sampler

act

¢ Step 1: Grow multiple Splashes in parallel:

Tree-width = 2

28

Seiicc

ez Splash Gibbs Sampler

act

o Step 2: Calibrate the trees in parallel

29

Seiicc

ez Splash Gibbs Sampler

act

o Step 3: Sample trees in parallel

30

Seiicc

ez Higher Treewidth Splashes

act

¢ Recall:

Tree-width = 2

Junction Trees

Seiicc

Je<i Junction Trees

¢ Data structure used for exact inference in loopy

graphical models
A B} =

fap

[G@@g

[@@@g

Tree-width = 2

Selicc

e< Splash Thin Junction Tree

act

o Parallel Splash Junction Tree Algorithm

¢ Construct multiple conditionally independent thin (bounded
treewidth) junction trees Splashes

« Sequential junction tree extension

¢ Calibrate the each thin junction tree in parallel

¢ Parallel belief propagation

¢ Exact backward sampling

¢ Parallel exact sampling

Sea [K™} w7

ez Splash generation

act

¢ Frontier extension algorithm:

Markov Random Field Corresponding Junction tree

Seiicc

<" Splash generation

act

¢ Frontier extension algorithm:

Markov Random Field Corresponding Junction tree

() ()Y () ()

(AB]

O—O0—C0—000O<

Seiicc

ez Splash generation

act

¢ Frontier extension algorithm:

Markov Random Field Corresponding Junction tree

LAB HBC]

Seiicc

ez Splash generation

act

¢ Frontier extension algorithm:

Markov Random Field Corresponding Junction tree

()Y () ()Y ()

lABD H BCD]

Seiicc

ez Splash generation

act

¢ Frontier extension algorithm:

Markov Random Field Corresponding Junction tree

lABD H BCD]

|
(ADE]

Seiicc

ez Splash generation

act

¢ Frontier extension algorithm:

Markov Random Field Corresponding Junction tree

lABD H BCD]

|
lADE H AEF]

Seiicc

e« Splash generation

act

¢ Frontier extension algorithm:

Markov Random Field Corresponding Junction tree

lABD H BCD]

|
lADE H AEF]

|
(AG]

Seiicc

e« Splash generation

act

¢ Frontier extension algorithm:

Markov Random Field Corresponding Junction tree

lABD H BCD]

|
lADE H AEF]

|
(AG]

|
(BGH]

Seiicc

e« Splash generation

act

¢ Frontier extension algorithm:

Markov Random Field Corresponding Junction tree

lABD H BCD]

Seiicc

e« Splash generation

act

¢ Frontier extension algorithm:

Markov Random Field Corresponding Junction tree

lABD H BCD]

|
lADE H AEF]

|
(AG]

Seiicc

e« Splash generation

act

¢ Frontier extension algorithm:

Markov Random Field Corresponding Junction tree

lABD H BCD]

|
lADE H AEF]

| |
(D1} (AG]

Seiicc

<" Splash generation

act

¢ Challenge:
¢ Efficiently reject vertices that violate treewidth constraint
¢ Efficiently extend the junction tree
¢ Choosing the next vertex

¢ Solution Splash Junction Trees:

¢ Variable elimination with reverse
visit ordering
» |,G,F,E,D,C,B,A
¢ Add new clique and update RIP

e If a clique is created which exceeds
treewidth terminate extension

¢ Adaptive prioritize boundary

Seiicc

ez |ncremental Junction Trees

act

¢ First 3 Rounds:

Junction Tree:

Elim. Order: {4}

Se/.sc

ecii |ncremental Junction Trees

act

o Result of third round:

Se/.sc

eci |ncremental Junction Trees

act

o Results from 4t round:

Seii.sc

eci |ncremental Junction Trees

act

o Results from 5th round:

{6,1,2,5,4}
5,6

1,2,4]

» 6th Round:

1,2,4]

selisc
act

» Finishing 6" round:

ecii |ncremental Junction Trees

1,2,4]

i Algorithm Block [Skip]

act

© N O Otk W

10

12
13

Input: The original junction tree (C, F) = Js.

Input: The variable X; to add to Jg

Output: Jsy;

Define : C, as the clique created by eliminating u € S

Define : V[C] € S as the variable eliminated when creating C
Define : t[v]| as the time v € S was added to S

Define : P[v] € N, NS as the next neighbor of v to be eliminated.
C;, — (N;NS)U{i}

P[i] « arg max,cc;,;\{i} t[v]

[/ —————————— Repair RIP --——————————-
R «— C;\{i} // RIP Set
v «— P[]

while |R| > 0 do

C, — Cy,UR // Add variables to parent

w < arg max,,ec,\{v} t(w] // Find new parent
if w = P|[v]| then

R «— (R\C;)\ {3}

else

R — (RUC))\ {i}

P[v] « w // New parent

v < P[v] // Move upwards

Seiicc

<" Splash generation

act

¢ Challenge:
¢ Efficiently reject vertices that violate treewidth constraint
¢ Efficiently extend the junction tree
¢ Choosing the next vertex

¢ Solution Splash Junction Trees:

¢ Variable elimination with reverse
visit ordering
» |,G,F,E,D,C,B,A
¢ Add new clique and update RIP

e If a clique is created which exceeds
treewidth terminate extension

[¢ Adaptive prioritize boundary J

Se/.sc

ez Adaptive Vertex Priorities

act

o Assign priorities to boundary vertices:

wa(Xg,X =x|X_ Szx(t)>

s|X,] = ||log
T (XS\X = azq()t),X S = CIZ(t))

¢ Can be computed using only factors that depend on X,
¢ Based on current sample

¢ Captures difference between marginalizing out the variable
(in Splash) fixing its assignment (out of Splash)

¢ Exponential in treewidth

o Could consider other metrics ...

ized Splashes

54

Told

Pr

Adaptivel

selisc
leain

Se/.sc

e EXperiments

act

¢ Implemented using Graphlab
o Treewidth=1:

¢ Parallel tree construction, calibration, and sampling

¢ No incremental junction trees needed

¢ Treewidth>1:
¢ Sequential tree construction (use multiple Splashes)
¢ Parallel calibration and sampling
¢ Requires incremental junction trees
¢ Relies heavily on:
¢ Edge consistency model to prove ergodicity

e FIFO/ Prioritized scheduling to construct Splashes
¢ Evaluated on 32 core Nehalem Server

Seiicc

ez Rapidly Mixing Model

Loglikelihood

¢ Grid MRF with weak attractive potentials
40K Variables 80K Factors

Likelihood
o °., 124
_ Final Sample Mixing Speedup
_poX10 .] , , 0.7 w ‘ : : 35 : , .
S e , 6 Splash(1, 3, 0] :
oyl e ——— —— ¥ 06 plash() 30
\ Splash(1, 3, 1)
A Splash(8, 3, 1) | 0% Chromatic(1) 1%y
o ') o Splash(s, 3, 0) a Splash
vl : Chromatic(8) % 0.4 Splash(8, 3, 1) § 20+
—eor Splash(8, 3, 0) g3 Chromatic(8) 845
! Chromatic(1) == * »
3 1 3 Chromatic
\Splash(L 3, 1) 0.2 107 |
_32 SplaSh(1, 3, 0) 1 01 L ------------------------- | 57
&‘ e
-3.4 ' : : : 0 s 0 : w s
0 20 40 60 80 100 0 20 40 60 80 100 0 10 20 30 40
Runtime (seconds) Runtime (seconds) Number of Cores

¢ The Chromatic sampler slightly outperforms the
Splash Sampler

56

Seiicc

ez Slowly Mixing Model

¢ Markov logic network with strong dependencies
10K Variables 28K Factors

Likelihood Speedup in Sample
“Mixing”
Final Sample Generation
_74X10 . , ‘ 0.35 ‘ : : 35 . ‘ '
Chromatic(1)
,,, 0.3 / 1 30
76
Splash(8, 5) 0.25] 25 N
3 lash(8, 2 “ldeal
S -7.8 Splash(8, 2 18 02 Splash(1, 5) Chroma"c) S 29}
% Splash(1, 5) S Splash(1, 2 3
i = plas
X : Splash(1, 2) S .15} 18 15/
> _g . 1> Splash(8, 2) %)
9 i Chromatic(8) . Splash (@8, 5 \ \ \
i ‘Z Chromatic(1) TN - N A \\ 10
-8.2 : |3 N\ \ Chromatic
K . \ 5¢
—8.4 \ L . , O 3 = — 0 L L L
0 20 40 60 80 100 0 20 40 60 80 100 0 10 20 30
Runtime (seconds) Runtime (seconds) Number of Cores

o The Splash sampler outperforms the Chromatic
sampler on models with strong dependencies

57

40

Seii.sc

ez Conclusion

act

o Chromatic Gibbs sampler for models with weak
dependencies

e Converges to the correct distribution
¢ Quantifiable improvement in mixing
» Theoretical analysis of the Synchronous Gibbs
sampler on 2-colorable models
e Proved marginal convergence on 2-colorable models
¢ Splash Gibbs sampler for models with strong
dependencies
¢ Adaptive asynchronous tree construction

e Experimental evaluation demonstrates an improvement in
mixing

58

Se/.sc

ez Future Work

act

o Extend Splash algorithm to models with continuous
variables

¢ Requires continuous junction trees (Kernel BP)

o Consider “freezing” the junction tree set
¢ Reduce the cost of tree generation?

¢ Develop better adaptation heuristics
¢ Eliminate the need for vanishing adaptation?

o Challenges of Gibbs sampling in high-coloring models
¢ Collapsed LDA

¢ High dimensional pseudorandom numbers
¢ Not currently addressed in the MCMC literature

