Parallel Gibbs Sampling From Colored Fields to Thin Junction Trees

Joseph Gonzalez

Yucheng Low

Arthur Gretton

Carlos Guestrin

We use the same idea for graphical model inference

Jeann Terminology: Graphical Models

Focus on discrete factorized models with sparse structure:

Terminology: Ergodicity

The goal is to estimate:

$$\mathbf{E}\left[h(X_1,\ldots,X_n)\right]$$

Example: marginal estimation

$$h_i(x) = \mathbf{I}[x == i] \Rightarrow \mathbf{E}[h_i(X_k)] = \mathbf{P}(X_k = i)$$

If the sampler is ergodic the following is true*:

$$\lim_{m \to \infty} \frac{1}{m} \sum_{t=1}^m h(x_1^{(t)}, \dots, x_n^{(t)}) \xrightarrow{a.s.} \mathbf{E} \left[h(X_1, \dots, X_n) \right]$$

*Consult your statistician about potential risks before using.

sense learn Gibbs Sampling [Geman & Geman, 1984] act

Sequentially for each variable in the model

- Select variable
- Construct conditional given adjacent assignments
- Flip coin and update assignment to variable

"The Gibbs sampler ... might be considered the workhorse of the MCMC world."

-Robert and Casella

- Ergodic with geometric convergence
- Great for high-dimensional models
 - No need to tune a joint proposal
- Easy to construct algorithmically
 - WinBUGS
- Important Properties that help Parallelization:
 - Sparse structure → factorized computation

Is the Gibbs Sampler trivially parallel?

"...the MRF can be divided into collections of [variables] with each collection assigned to an **independently** running **asynchronous processor**."

-- Stuart and Donald Geman, 1984.

Converges to the **wrong** distribution!

sense learn act The problem with **Synchronous** Gibbs

 Adjacent variables cannot be sampled simultaneously.

How has the machine learning community solved this problem?

learn Two Decades later

- 1. Newman et al., Scalable Parallel Topic Models. Jnl. Intelligen. Comm. R&D, 2006.
- 2. Newman et al., *Distributed Inference for Latent Dirichlet Allocation*. NIPS, 2007.
- 3. Asuncion et al., Asynchronous Distributed Learning of Topic Models. NIPS, 2008.
- 4. Doshi-Velez et al., Large Scale Nonparametric Bayesian Inference: Data Parallelization in the Indian Buffet Process. NIPS 2009
- 5. Yan et al., Parallel Inference for Latent Dirichlet Allocation on GPUs. NIPS, 2009.
- Same problem as the original Geman paper
 - Parallel version of the sampler is **not** *ergodic*.
- Unlike Geman, the recent work:
 - Recognizes the issue
 - Ignores the issue
 - Propose an "approximate" solution

Parallel computing community studied:

 $x_1^{(t+1)} = f_1(x_3^{(t)})$ $x_2^{(t+1)} = f_2(x_2^{(t)}, x_3^{(t)})$

 $x_3^{(t+1)} = f_3(x_1^{(t+1)}, x_1^{(t+1)})$

- Compute a k-coloring of the graphical model
- Sample all variables with same color in parallel
- Sequential Consistency:

learn Chromatic Sampler Algorithm

For t from 1 to T do $x^{(t)} \leftarrow x^{(t-1)}$ For k from 1 to K do

Parfor i in color k: $x_i^{(t)} \sim \mathbf{P}(X_i \,|\, x_{-i}^{(t)})$

Quantifiable acceleration in mixing

Time to update $O\left(\frac{n}{p}+k\right)$ all variables once

• Speedup:

$$O\left(p\left(\frac{n}{n+pk}\right)\right)$$

Penalty Term

- Version 1 (Sequential Consistency):
 - Chromatic Gibbs Sampler is equivalent to a Sequential Scan Gibbs Sampler

• Version 2 (Probabilistic Interpretation):

Variables in same color are Conditionally Independent ->
Joint Sample is equivalent to Parallel Independent Samples

sense learn Special Properties of 2-Colorable Models

Many common models have two colorings

- For the [Incorrect] Synchronous Gibbs Samplers
 - Provide a method to correct the chains
 - Derive the stationary distribution

Correcting the Synchronous Gibbs Sampler

We can derive two valid chains:

sense learn

act

Correcting the Synchronous Gibbs Sampler

We can derive two valid chains:

sense learn

act

19

sense learn act Theoretical Contributions on 2-colorable models

Stationary distribution of Synchronous Gibbs:

 $\mathbf{P}(x') = \sum K(x' \mid x) \pi(x_{\kappa_1}) \pi(x_{\kappa_2})$ x $= \sum \left[\sum \pi(x_{\kappa_1}' | x_{\kappa_2}) \pi(x_{\kappa_2}' | x_{\kappa_1}) \pi(x_{\kappa_1}) \pi(x_{\kappa_2}) \right]$ $= \sum \sum \pi(x_{\kappa_1}, x'_{\kappa_2}) \pi(x'_{\kappa_1}, x_{\kappa_2})$

Learn Ct Theoretical Contributions on 2-colorable models

Stationary distribution of Synchronous Gibbs

$$\mathbf{P}_{\text{sync}} \left(X_1, \dots, X_n \right) = \pi \left(X_{\kappa_1} \right) \pi \left(X_{\kappa_2} \right)$$

Variables in
Color 1 Variables in
Color 2

• **Corollary**: Synchronous Gibbs sampler is **correct** for single variable marginals.

$$\lim_{m \to \infty} \frac{1}{m} \sum_{t=1}^{m} h(x_i^{(t)}) \xrightarrow{a.s.} \mathbf{E} \left[h(X_i) \right]$$

Chromatic Gibbs Sampler

- Ideal for:
 - Rapid mixing models
 - Conditional structure does not admit Splash

Splash Gibbs Sampler

Slowly Mixing Models

- Ideal for: ?
 - Slowly mixing models
 - Conditional structure admits Splash
 - Discrete models

Act Sense Models With Strong Dependencies

• Single variable Gibbs updates tend to mix slowly:

Ideally we would like to draw joint samples.
Blocking

Blocking Gibbs Sampler

- Based on the papers:
 - 1. Jensen et al., Blocking Gibbs Sampling for Linkage Analysis in Large Pedigrees with Many Loops. **TR 1996**
 - 2. Hamze et al., From Fields to Trees. UAI 2004.

Splash Gibbs Sampler

An **asynchronous** Gibbs Sampler that **adaptively** addresses **strong dependencies**.

Carnegie Mellon 25

• **Step 1:** Grow multiple Splashes in parallel:

• **Step 1:** Grow multiple Splashes in parallel:

• **Step 1:** Grow multiple Splashes in parallel:

Step 2: Calibrate the trees in parallel

Step 3: Sample trees in parallel

Recall:

 Data structure used for exact inference in loopy graphical models

Splash Thin Junction Tree

Parallel Splash Junction Tree Algorithm

- Construct multiple conditionally independent thin (bounded treewidth) junction trees Splashes
 - Sequential junction tree extension
- Calibrate the each thin junction tree in parallel
 - Parallel belief propagation
- Exact backward sampling
 - Parallel exact sampling

Frontier extension algorithm:

Corresponding Junction tree

Frontier extension algorithm:

Corresponding Junction tree

Frontier extension algorithm:

Corresponding Junction tree

sense learn Splash generation

Frontier extension algorithm:

Splash generation

- Challenge:
 - Efficiently reject vertices that violate treewidth constraint
 - Efficiently extend the junction tree
 - Choosing the next vertex
- Solution Splash Junction Trees:
 - Variable elimination with reverse visit ordering
 - I,G,F,E,D,C,B,A
 - Add new clique and update RIP
 - If a clique is created which exceeds treewidth terminate extension
 - Adaptive prioritize boundary

learn Incremental Junction Trees

First 3 Rounds:

Result of third round:

{2,5,4}

Fourth round:

4

2

5

3

6

Results from 4th round:

{1,2,5,4}

{6,1,2,5,4}

2,4,5

1,2,4

learn Incremental Junction Trees

Results from 5th round:

{6,1,2,5,4}

• 6th Round:

{3,6,1,2,5,4}

learn Incremental Junction Trees

• Finishing 6th round:

{3,6,1,2,5,4}

learn Algorithm Block [Skip]

Input: The original junction tree $(\mathcal{C}, E) = \mathbf{J}_{\mathcal{S}}$. **Input**: The variable X_i to add to $\mathbf{J}_{\mathcal{S}}$ Output: J_{S+i} **Define** : \mathbf{C}_{u} as the clique created by eliminating $u \in \mathcal{S}$ **Define** : $V[\mathbf{C}] \in S$ as the variable eliminated when creating \mathbf{C} **Define** : t[v] as the time $v \in S$ was added to S**Define** : $\mathbb{P}[v] \in \mathcal{N}_v \cap \mathcal{S}$ as the next neighbor of v to be eliminated. 1 $\mathbf{C}_i \leftarrow (\mathcal{N}_i \cap \mathcal{S}) \cup \{i\}$ 2 $P[i] \leftarrow \arg \max_{v \in \mathbf{C}_i \setminus \{i\}} t[v]$ // ----- Repair RIP ------3 $\mathcal{R} \leftarrow \mathbf{C}_i \setminus \{i\}$ // RIP Set 4 $v \leftarrow \mathbf{P}[i]$ 5 while $|\mathcal{R}| > 0$ do $\mathbf{C}_v \leftarrow \mathbf{C}_v \cup \mathcal{R}$ // Add variables to parent 6 $w \leftarrow rg \max_{w \in \mathbf{C}_v \setminus \{v\}} t[w] // Find new parent$ 7 if w = P[v] then 8 $\mathcal{R} \leftarrow (\mathcal{R} \setminus \mathbf{C}_i) \setminus \{i\}$ 9 else 10 $\begin{vmatrix} \mathcal{R} \leftarrow (\mathcal{R} \cup \mathbf{C}_i) \setminus \{i\} \\ \mathsf{P}[v] \leftarrow w // \text{ New parent} \end{vmatrix}$ 11 12 $v \leftarrow \mathsf{P}[v] / / Move upwards$ 13

Splash generation

- Challenge:
 - Efficiently reject vertices that violate treewidth constraint
 - Efficiently extend the junction tree
 - Choosing the next vertex
- Solution Splash Junction Trees:
 - Variable elimination with reverse visit ordering
 - I,G,F,E,D,C,B,A
 - Add new clique and update RIP
 - If a clique is created which exceeds treewidth terminate extension

Adaptive prioritize boundary

Adaptive Vertex Priorities

Assign priorities to boundary vertices:

$$\mathbf{s}[X_v] = \left\| \log \frac{\sum_x \pi \left(X_{\mathcal{S}}, X_v = x \, | \, X_{-\mathcal{S}} = x_{-\mathcal{S}}^{(t)} \right)}{\pi \left(X_{\mathcal{S}} \, | \, X_v = x_v^{(t)}, X_{-\mathcal{S}} = x_{-\mathcal{S}}^{(t)} \right)} \right\|_1$$

- Can be computed using only factors that depend on X_{ν}
- Based on current sample
- Captures difference between marginalizing out the variable (in Splash) fixing its assignment (out of Splash)
- Exponential in treewidth
- Could consider other metrics ...

Provably converges to the correct distribution

- Requires vanishing adaptation
- Identify a bug in the Levine & Casella seminal work in adaptive random scan

- Implemented using GraphLab
 - Treewidth = 1 :
 - Parallel tree construction, calibration, and sampling
 - No incremental junction trees needed
 - Treewidth > 1 :
 - Sequential tree construction (use multiple Splashes)
 - Parallel calibration and sampling
 - Requires incremental junction trees
 - Relies heavily on:
 - Edge consistency model to prove ergodicity
 - FIFO/ Prioritized scheduling to construct Splashes
- Evaluated on 32 core Nehalem Server

 The Chromatic sampler slightly outperforms the Splash Sampler

sense learn Slowly Mixing Model

Markov logic network with strong dependencies

10K Variables

28K Factors

The Splash sampler outperforms the Chromatic sampler on models with strong dependencies

- Chromatic Gibbs sampler for models with weak dependencies
 - Converges to the correct distribution
 - Quantifiable improvement in mixing
- Theoretical analysis of the Synchronous Gibbs sampler on 2-colorable models
 - Proved marginal convergence on 2-colorable models
- Splash Gibbs sampler for models with strong dependencies
 - Adaptive asynchronous tree construction
 - Experimental evaluation demonstrates an improvement in mixing

- Extend Splash algorithm to models with continuous variables
 - Requires continuous junction trees (Kernel BP)
- Consider "freezing" the junction tree set
 - Reduce the cost of tree generation?
- Develop better adaptation heuristics
 - Eliminate the need for vanishing adaptation?
- Challenges of Gibbs sampling in high-coloring models
 - Collapsed LDA
- High dimensional pseudorandom numbers
 - Not currently addressed in the MCMC literature