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Inference:Inference:
Graphical
Model

Sampling		as	an	Inference	Procedure
Suppose	we	wanted	to	know	the	probability	that	coin	
lands	“heads”

We	use	the	same	idea	for	graphical	model	inference
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Terminology:	Graphical	Models
Focus	on	discrete factorized	models	with	sparse	
structure:
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Terminology:	Ergodicity
The	goal	is	to	estimate:

Example:	marginal	estimation

If	the	sampler	is	ergodic the	following	is	true*:

*Consult	your	statistician	about	potential	risks	before	using.



Gibbs	Sampling	[Geman &	Geman,	1984]

Sequentially for	each	variable	in	the	model
Select variable
Construct	conditional		given	
adjacent	assignments	
Flip	coin	and	update
assignment	to	variable
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Why	Study	Parallel	Gibbs	Sampling?

“The Gibbs sampler ... might be considered the workhorse 
of the MCMC world.” 

–Robert	and	Casella

Ergodic with	geometric	convergence
Great	for	high-dimensional	models

No	need	to	tune	a	joint	proposal	
Easy	to	construct	algorithmically

WinBUGS
Important	Properties	that	help	Parallelization:

Sparse	structure	è factorized	computation



Is	the	Gibbs	Sampler	
trivially	parallel?



From	the	original	paper	on	Gibbs	Sampling:

“…the	MRF	can	be	divided	into	collections	of	[variables]	
with	each	collection	assigned	to	an	independently
running	asynchronous processor.”

Converges to the 
wrong distribution!

-- Stuart	and	Donald	Geman,	1984.
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The	problem	with	Synchronous	Gibbs

Adjacent	variables	cannot be	sampled	
simultaneously.

Strong	Positive
Correlation

t=0

t=2 t=3

Strong Positive
Correlation

t=1

Strong Negative
Correlation
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How	has	the	machine	
learning	community	solved	

this	problem?



Two	Decades	later

Same	problem	as	the	original	Geman paper
Parallel	version	of	the	sampler	is	not	ergodic.

Unlike	Geman,	the	recent	work:
Recognizes	the	issue
Ignores	the	issue	
Propose	an	“approximate”	solution

1. Newman	et	al.,	Scalable	Parallel	Topic	Models. Jnl.	Intelligen.	Comm.	R&D,	2006.
2. Newman	et	al.,		Distributed	Inference	for	Latent	Dirichlet Allocation.	NIPS,	2007.
3. Asuncion	et	al.,	Asynchronous	Distributed	Learning	of	Topic	Models.	NIPS,	2008.
4. Doshi-Velez	et	al.,	Large	Scale	Nonparametric	Bayesian	Inference:	Data	

Parallelization	in	the	Indian	Buffet	Process.	NIPS	2009
5. Yan	et	al.,	Parallel	Inference	for	Latent	Dirichlet Allocation	on	GPUs.	NIPS,	2009.



Two	Decades	Ago
Parallel	computing	community	studied:

Construct	an	Equivalent Parallel	Algorithm
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Sequential	Algorithm Directed	Acyclic	
Dependency	Graph
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Time

Chromatic	Sampler

Compute	a	k-coloring	of	the	
graphical	model
Sample	all	variables	with	
same	color	in	parallel

Sequential	Consistency:
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Chromatic	Sampler	Algorithm

For t from 1 to T do

For k from 1 to K do

Parfor i in color k:



Asymptotic	Properties

Quantifiable acceleration	in	mixing

Speedup:

Time	to	update
all	variables	once

#	Variables
#	Colors
#	Processors

Penalty	Term



Proof	of	Ergodicity
Version	1	(Sequential	Consistency):

Chromatic	Gibbs	Sampler is	equivalent to	a Sequential	Scan
Gibbs	Sampler

Version	2	(Probabilistic	Interpretation):
Variables	in	same	color	are	Conditionally	Independent	è
Joint		Sample	is	equivalent	to	Parallel	Independent	Samples

Time



Special	Properties	of	2-Colorable	Models

Many	common	models	have	two	colorings

For	the	[Incorrect]	Synchronous	Gibbs	Samplers
Provide	a	method	to	correct	the	chains
Derive	the	stationary	distribution



t=2 t=3 t=4t=1

Correcting	the	Synchronous Gibbs	Sampler	

We	can	derive	two	valid chains:

Strong	Positive
Correlation

t=0

Invalid 
Sequence

t=0 t=1 t=2 t=3 t=4 t=5
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t=2 t=3 t=4t=1

We	can	derive	two	valid chains:

Strong	Positive
Correlation

t=0

Invalid 
Sequence

Chain	1

Chain	2
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Converges to the 
Correct Distribution

Correcting	the	Synchronous Gibbs	Sampler	



Theoretical	Contributions	on	2-colorable	models

Stationary	distribution	of	Synchronous	Gibbs:
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Theoretical	Contributions	on	2-colorable	models

Stationary	distribution	of	Synchronous	Gibbs

Corollary:	Synchronous	Gibbs	sampler	is	correct for	
single	variable	marginals.
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From	Colored	Fields	to	Thin	Junction	Trees

Chromatic	Gibbs	Sampler

Ideal	for:
Rapid	mixing	models
Conditional	structure	does	
not	admit	Splash

Splash	Gibbs	Sampler

Ideal	for:
Slowly	mixing	models
Conditional	structure	
admits	Splash

Discrete	models

Slowly Mixing 
Models

?



Models	With	Strong	Dependencies

Single	variable	Gibbs	updates	tend	to	mix	slowly:

Ideally	we	would	like	to	draw	joint	samples.
Blocking
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X1

X2

Single	site	changes	move	
slowly	with	strong	
correlation.



Blocking	Gibbs	Sampler
Based	on	the	papers:
1. Jensen	et	al.,	Blocking	Gibbs	Sampling	for	Linkage	Analysis	in	Large	
Pedigrees	with	Many	Loops.	TR 1996

2. Hamze et	al.,		From	Fields	to	Trees.	UAI	2004.



Carnegie Mellon

An	asynchronous Gibbs	Sampler	that	
adaptively addresses	strong	dependencies.

Splash	Gibbs	Sampler
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Splash	Gibbs	Sampler

Step	1: Grow	multiple	Splashes	in	parallel:
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Splash	Gibbs	Sampler

Step	1: Grow	multiple	Splashes	in	parallel:
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Conditionally
Independent

Tree-width	=	1



Splash	Gibbs	Sampler

Step	1: Grow	multiple	Splashes	in	parallel:
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Conditionally
Independent

Tree-width	=	2



Splash	Gibbs	Sampler

Step	2: Calibrate	the	trees	in	parallel
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Splash	Gibbs	Sampler

Step	3: Sample	trees	in	parallel
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Higher	Treewidth Splashes

Recall:
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Tree-width	=	2

Junction Trees



Junction	Trees
Data	structure	used	for	exact	inference	in	loopy	
graphical	models
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Splash	Thin	Junction	Tree
Parallel	Splash	Junction	Tree	Algorithm
Construct	multiple	conditionally	independent	thin	(bounded	
treewidth)	junction	trees	Splashes

Sequential	junction	tree	extension

Calibrate	the	each	thin	junction	tree	in	parallel
Parallel	belief	propagation

Exact	backward	sampling
Parallel	exact	sampling



Splash	generation
Frontier	extension	algorithm:

A

Markov	Random	Field Corresponding	Junction	tree

A



Splash	generation
Frontier	extension	algorithm:

A B

Markov	Random	Field Corresponding	Junction	tree

A

B



Splash	generation
Frontier	extension	algorithm:

Markov	Random	Field Corresponding	Junction	tree
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Splash	generation
Frontier	extension	algorithm:

Markov	Random	Field Corresponding	Junction	tree
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Splash	generation
Frontier	extension	algorithm:

Markov	Random	Field Corresponding	Junction	tree
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Splash	generation
Frontier	extension	algorithm:

Markov	Random	Field Corresponding	Junction	tree
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Splash	generation
Frontier	extension	algorithm:

Markov	Random	Field Corresponding	Junction	tree
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Splash	generation
Frontier	extension	algorithm:

Markov	Random	Field Corresponding	Junction	tree
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Splash	generation
Frontier	extension	algorithm:

Markov	Random	Field Corresponding	Junction	tree
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Splash	generation
Frontier	extension	algorithm:

Markov	Random	Field Corresponding	Junction	tree
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Splash	generation
Frontier	extension	algorithm:

Markov	Random	Field Corresponding	Junction	tree
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Splash	generation
Challenge:

Efficiently	reject	vertices	that	violate	treewidth constraint
Efficiently	extend	the	junction	tree
Choosing	the	next	vertex

Solution	Splash	Junction	Trees:
Variable	elimination	with	reverse	
visit	ordering

I,G,F,E,D,C,B,A

Add	new	clique	and	update	RIP
If	a	clique	is	created	which	exceeds	
treewidth terminate	extension

Adaptive	prioritize	boundary
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Incremental	Junction	Trees
First	3	Rounds:
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Incremental	Junction	Trees
Result	of	third	round:

Fourth	round:
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Incremental	Junction	Trees
Results	from	4th round:

5th Round:
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Incremental	Junction	Trees
Results	from	5th round:

6th Round:
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Incremental	Junction	Trees
Finishing	6th round:
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Algorithm	Block	[Skip]
Finishing	6th round:



Splash	generation
Challenge:

Efficiently	reject	vertices	that	violate	treewidth constraint
Efficiently	extend	the	junction	tree
Choosing	the	next	vertex

Solution	Splash	Junction	Trees:
Variable	elimination	with	reverse	
visit	ordering

I,G,F,E,D,C,B,A

Add	new	clique	and	update	RIP
If	a	clique	is	created	which	exceeds	
treewidth terminate	extension

Adaptive	prioritize	boundary
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Adaptive	Vertex	Priorities
Assign	priorities	to	boundary	vertices:

Can	be	computed	using	only	factors	that	depend	on	Xv
Based	on	current	sample
Captures	difference	between	marginalizing	out	the	variable	
(in	Splash)	fixing	its	assignment	(out	of	Splash)
Exponential	in	treewidth

Could	consider	other	metrics	…



Adaptively	Prioritized	Splashes

Adapt	the	shape of	the	Splash	to	span	strongly	
coupled	variables:

Provably	converges	to	the	correct	distribution
Requires	vanishing	adaptation
Identify	a	bug	in	the	Levine	&	Casella	seminal	work	in	
adaptive	random	scan
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Experiments
Implemented	using	GraphLab

Treewidth =	1	:
Parallel	tree	construction,	calibration,	and	sampling
No	incremental	junction	trees	needed

Treewidth >	1	:	
Sequential	tree	construction	(use	multiple	Splashes)
Parallel	calibration	and	sampling
Requires	incremental	junction	trees

Relies	heavily	on:
Edge	consistency	model	to	prove	ergodicity
FIFO/	Prioritized	scheduling	to	construct	Splashes

Evaluated	on	32	core	Nehalem	Server



Rapidly	Mixing	Model
Grid	MRF	with	weak	attractive	potentials

40K	Variables													80K	Factors

The	Chromatic	sampler	slightly	outperforms	the	
Splash	Sampler
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Likelihood	
Final	Sample “Mixing” Speedup



Slowly	Mixing	Model
Markov	logic	network	with	strong	dependencies

10K	Variables													28K	Factors

The	Splash sampler	outperforms	the	Chromatic
sampler	on	models	with	strong dependencies	
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Final	Sample “Mixing”
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Generation



Conclusion
Chromatic	Gibbs	sampler	for	models	with	weak	
dependencies

Converges	to	the	correct	distribution
Quantifiable	improvement	in	mixing

Theoretical	analysis	of	the	Synchronous	Gibbs	
sampler	on	2-colorable	models

Proved	marginal	convergence	on	2-colorable	models
Splash	Gibbs	sampler	for	models	with	strong	
dependencies

Adaptive	asynchronous	tree	construction
Experimental	evaluation	demonstrates	an	improvement	in	
mixing
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Future	Work
Extend	Splash	algorithm	to	models	with	continuous	
variables

Requires	continuous	junction	trees	(Kernel	BP)

Consider	“freezing”	the	junction	tree	set
Reduce	the	cost	of	tree	generation?

Develop	better	adaptation	heuristics
Eliminate	the	need	for	vanishing	adaptation?

Challenges	of	Gibbs	sampling	in	high-coloring	models
Collapsed	LDA

High	dimensional	pseudorandom	numbers	
Not	currently	addressed	in	the	MCMC	literature


