Self-Consistent Trajectory Autoencoder: Hierarchical Reinforcement Learning with Trajectory Embeddings

John D. Co-Reyes*¹, YuXuan (Andrew) Liu*¹, Abhishek Gupta*¹, Benjamin Eysenbach², Pieter Abbeel¹, Sergey Levine¹

¹University of California, Berkeley
²Google Brain
Grocery shopping

Go to the store Pick out items Check out ...
Grocery shopping

Go to the store
- Plan a route to the grocery store
- Get in the car and drive to the store

Pick out items
- Find items in the store
- Put items into your basket

Check out
- Wait in line for cashier
- Place items on the counter

...
Hierarchical RL

- One form of hierarchy: low-level skills
- Reasoning in terms of walking instead of torques or joint angles
- High-level abstraction enables temporally extended planning
Challenges in Hierarchical RL

- Representing lower-level skills
Challenges in Hierarchical RL

- Representing lower-level skills
- Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017
Challenges in Hierarchical RL

- Representing lower-level skills
- Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills
Challenges in Hierarchical RL

- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills

- Learning lower-level skills
Challenges in Hierarchical RL

- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills

- Learning lower-level skills
 - Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999
Challenges in Hierarchical RL

• Representing lower-level skills
 • Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → **continuous representation of skills**

• Learning lower-level skills
 • Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999 → **generic objectives**
Challenges in Hierarchical RL

• Representing lower-level skills
 • Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills

• Learning lower-level skills
 • Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999 → generic objectives

• High-level planning over long time-horizons
Challenges in Hierarchical RL

- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills

- Learning lower-level skills
 - Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999 → generic objectives

- High-level planning over long time-horizons
 - Model Predictive Control: Nagabandi et al., 2017
Challenges in Hierarchical RL

• Representing lower-level skills
 • Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills

• Learning lower-level skills
 • Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999 → generic objectives

• High-level planning over long time-horizons
 • Model Predictive Control: Nagabandi et al., 2017 → modeling closed-loop behavior over trajectories
Challenges in Hierarchical RL

• Representing lower-level skills
 • Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills

• Learning lower-level skills
 • Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999 → generic objectives

• High-level planning over long time-horizons
 • Model Predictive Control: Nagabandi et al., 2017 → modeling closed-loop behavior over trajectories

• Delayed and sparse rewards
Challenges in Hierarchical RL

- Representing lower-level skills
 - Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills

- Learning lower-level skills
 - Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999 → generic objectives

- High-level planning over long time-horizons
 - Model Predictive Control: Nagabandi et al., 2017 → modeling closed-loop behavior over trajectories

- Delayed and sparse rewards
 - Exploration: Houthooft et al., 2016; Bellemare et al., 2016; Fu et al., 2017
Challenges in Hierarchical RL

• Representing lower-level skills
 • Discrete options: Sutton et al., 1999; Bacon et al., 2017; Fox et al., 2017 → continuous representation of skills

• Learning lower-level skills
 • Hand specified objectives: Florensa et al., 2017; Sutton et al., 1999 → generic objectives

• High-level planning over long time-horizons
 • Model Predictive Control: Nagabandi et al., 2017 → modeling closed-loop behavior over trajectories

• Delayed and sparse rewards
 • Exploration: Houthooft et al., 2016; Bellemare et al., 2016; Fu et al., 2017 → maximum entropy exploration
Method Overview
Method Overview

- Continuous representation of lower-level skills
Method Overview

• Continuous representation of lower-level skills

• Acquire diverse skills using maximum entropy exploration
Method Overview

- Continuous representation of lower-level skills
- Acquire diverse skills using maximum entropy exploration
- High-level planning in space of learned skills with model predictive control
How do we represent low-level skills?
SeCTAr: Self-consistent Trajectory Autoencoder

- Representation learning with variational inference
SeCTAr: Self-consistent Trajectory Autoencoder

\[
\max \quad \mathbb{E}_{q_{\phi}} \left[\log p_{\theta_{SD}}(\tau \mid z) \right] - D_{KL}(q_{\phi}(z \mid \tau) \parallel p(z))
\]

- Representation learning with variational inference
SeCTAr: Self-consistent Trajectory Autoencoder

\[
\max \quad E_{q_\phi}[\log p_{\theta_{SD}}(\tau | z)] - D_{KL}(q_\phi(z | \tau) \parallel p(z))
\]

- Representation learning with variational inference
SeCTAr: Self-consistent Trajectory Autoencoder

\[
\begin{align*}
\max & \quad \mathbb{E}_{q_\phi} [\log p_{\theta_{SD}}(\tau \mid z)] - D_{KL}(q_\phi(z \mid \tau) \parallel p(z)) \\
\text{subject to} & \quad \mathbb{E}_{q_\phi} [D_{KL}(p_{\theta_{PD}}(\tau \mid z) \parallel p_{\theta_{SD}}(\tau \mid z))] = 0
\end{align*}
\]

- Representation learning with variational inference
- Encourage state and policy decoders to be consistent
SeCTAr: Self-consistent Trajectory Autoencoder

\[
\begin{align*}
\max & \quad \mathbb{E}_{q_\phi} [\log p_{\theta_{SD}} (\tau \mid z)] - D_{KL}(q_\phi(z \mid \tau) \parallel p(z)) \\
\text{subject to} & \quad \mathbb{E}_{q_\phi} [D_{KL}(p_{\theta_{PD}}(\tau \mid z) \parallel p_{\theta_{SD}}(\tau \mid z))] = 0
\end{align*}
\]

- Representation learning with variational inference
- Encourage state and policy decoders to be consistent
- Train state decoder with supervised learning and policy decoder with RL
SeCTAr: Self-consistent Trajectory Autoencoder

- Representation learning with variational inference
- Encourage state and policy decoders to be consistent
- Train state decoder with supervised learning and policy decoder with RL
- State decoder is a model of the policy decoder behavior

\[
\begin{align*}
\max & \quad \mathbb{E}_{q_{\phi}} [\log p_{\theta_{SD}} (\tau \mid z)] - D_{KL}(q_{\phi}(z \mid \tau) \parallel p(z)) \\
\text{subject to} & \quad \mathbb{E}_{q_{\phi}} [D_{KL}(p_{\theta_{PD}} (\tau \mid z) \parallel p_{\theta_{SD}} (\tau \mid z))] = 0
\end{align*}
\]
How do we learn a diverse set of skills?
Maximum Entropy Exploration

$$\max_{\theta} \mathcal{H}(p_\theta(\tau)) = -\mathbb{E}_{p_\theta(\tau)}[\log p_\theta(\tau)]$$
Maximum Entropy Exploration

\[
\max_{\theta} \mathcal{H}(p_\theta(\tau)) = -\mathbb{E}_{p_\theta(\tau)}[\log p_\theta(\tau)]
\]
Maximum Entropy Exploration

$$\max_\theta \mathcal{H}(p_\theta(\tau)) = -\mathbb{E}_{p_\theta(\tau)}[\log p_\theta(\tau)]$$

- Use SeCTAr to estimate density
- Encourage exploration of trajectories that are unlikely (low density)
How do we use SeCTAr to solve hierarchical tasks?
Model Predictive Control in Latent Space

- Simple shooting method to select best sequence of latents
Model Predictive Control in Latent Space

- Simple shooting method to select best sequence of latents
Model Predictive Control in Latent Space

- Simple shooting method to select best sequence of latents
Model Predictive Control in Latent Space

- Simple shooting method to select best sequence of latents
Model Predictive Control in Latent Space

- Simple shooting method to select best sequence of latents
Model Predictive Control in Latent Space

- Simple shooting method to select best sequence of latents
Model Predictive Control in Latent Space

- Simple shooting method to select best sequence of latents
Model Predictive Control in Latent Space

- Simple shooting method to select best sequence of latents
 - Samples sequences of latents
 - Use state decoder to predict behavior
Model Predictive Control in Latent Space

- Simple shooting method to select best sequence of latents
 - Samples sequences of latents
 - Use state decoder to predict behavior
 - Evaluate reward and select best sequence of latents
Model Predictive Control in Latent Space

- Simple shooting method to select best sequence of latents
 - Samples sequences of latents
 - Use state decoder to predict behavior
 - Evaluate reward and select best sequence of latents
Model Predictive Control in Latent Space

- Simple shooting method to select best sequence of latents
 - Samples sequences of latents
 - Use state decoder to predict behavior
 - Evaluate reward and select best sequence of latents
 - Execute first latent in sequence using policy decoder
Model Predictive Control in Latent Space

- Simple shooting method to select best sequence of latents
 - Samples sequences of latents
 - Use state decoder to predict behavior
 - Evaluate reward and select best sequence of latents
 - Execute first latent in sequence using policy decoder
Model Predictive Control in Latent Space

- Simple shooting method to select best sequence of latents
 - Samples sequences of latents
 - Use state decoder to predict behavior
 - Evaluate reward and select best sequence of latents
 - Execute first latent in sequence using policy decoder
Advantages of Sectar

- Continuous representation of skills
- Maximum entropy exploration to collect data and learn diverse skills
- Planning in space of low-level skills enables long-horizon reasoning
- Sample efficiency of model-based method
Wheeled Navigation

- Sparse reward of +1 given after reaching every 3 goals (2x actual speed)
Wheeled Locomotion

- SeCTAr
- VIME (Houthooft et al., 2016)
- TRPO (Schulman et al., 2015)
- MPC (Nagabandi et al., 2017)

(2x actual speed)
Object Manipulation

- Sparse reward of $+1$ given when block reaches goal in correct order
Object Manipulation

- **SeCTAr** (Houthooft et al., 2016)
- **VIME** (Nagabandi et al., 2017)
- **MPC** (Mnih et al., 2016)
- **TRPO** (Schulman et al., 2015)
- **Option-critic** (Bacon et al., 2017)
- **FeUdal** (Vezhnevets et al., 2017)
Thank you

John D. Co-Reyes*¹ YuXuan Liu*¹ Abhishek Gupta*¹

Benjamin Eysenbach² Pieter Abbeel¹ Sergey Levine¹

https://github.com/wyndwarrior/Sectar
For more details and experiments: Wed Jul 11th 6:15 - 9:00 PM @ Hall B #15

¹University of California, Berkeley
²Google Brain