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Abstract
The Internet has evolved greatly from its original incarna-
tion. For instance, the vast majority of current Internet usage
is data retrieval and service access, whereas the architec-
ture was designed around host-to-host applications such as
telnet and ftp. Moreover, the original Internet was a purely
transparent carrier of packets, but now the various network
stakeholders use middleboxes to improve security and accel-
erate applications. To adapt to these changes, we propose
the Data-Oriented Network Architecture (DONA), which in-
volves a clean-slate redesign of Internet naming and name
resolution.

1 Introduction
The DNS name resolution system is a fundamental part of
today’s Internet, underlying almost all Internet usage. How-
ever, the DNS was developed rather late in the Internet’s
evolution, after many basic pieces of the architecture were
in place. For instance, TCP sessions were already bound
to IP addresses and the Berkeley Socket API referred to ad-
dresses, not names; frozen design decisions, such as these,
limited the extent to which DNS names (or any other nam-
ing system) could permeate the architecture. As a result, the
current role of naming in the architecture is more an accident
of history than the result of principled architectural design.
In this proposal, we take a “clean-slate” look at naming and
name resolution.

The test of any architecture is whether it gracefully ac-
commodates a wide spectrum of potential uses (and can with-
stand potential abuses), both those we encounter in the present
and those we anticipate for the future. However, to motivate
our design, we first focus more narrowly on one particular
issue; the shift in usage from host-centric to data-centric ap-
plications.

The first Internet applications, such as file transfer and re-
mote login, focused strictly on host-to-host communication:
The user explicitly directed the source to communicate with
another host, and the network’s only role was to carry pack-
ets to the destination address in the packet header. The In-
ternet architecture was built around this host-to-host model
and, as a result, the architecture is well-suited for communi-
cation between pairs of stationary hosts.

Today, however, the vast majority of Internet usage is data
retrieval and service access, where the user cares about con-
tent and is oblivious to location. That is, the user knows that
she wants headlines from CNN, or videos from YouTube, or
access to her bank account, but does not know or care on
which machine the desired data or service resides. The cur-
rent architecture can support this functionality, as is obvious

from its prevalence on the Internet, but it does not fit com-
fortably within the host-to-host model. For instance, con-
sider the following three user-relevant issues:

• Persistence: once given a name for some data or ser-
vice, the user would like that name to remain valid
as long as the underlying data or service is available.
There should be no equivalent of today’s “broken links”
when data is moved to another site. Today, HTTP redi-
rect and dynamic DNS are used to minimize this prob-
lem, but they are not sufficient answers. For instance,
neither works if the data changes administrative do-
mains, unless the operator of the previous domain pro-
vides perpetual support.

• Availability: data and services should have high avail-
ability, in terms of both reliability and low-latency. Avail-
ability is usually provided by replication at endpoints,
and the network’s role is to allow user requests to find
nearby copies. The first large-scale solution to this was
deployed by Akamai, using intelligent DNS servers
and URL rewriting. More recently, P2P mechanisms
like BitTorrent have become prevalent. While the suc-
cess of these mechanisms is undeniable, it is not at all
clear that such a fundamental requirement, availability,
should rely on a set of ad hoc and application-specific
mechanisms.

• Authenticity: users would like to know that the data
came from the appropriate source, rather than from
some spoofing adversary. Today this requires a PKI
to provide users with the public key of the provider.
Moreover, authenticity today is typically achieved by
securing the channel to the source, rather than explic-
itly authenticating the data.

Thus, several of the most natural features one would want
for service access and data retrieval — persistence, availabil-
ity, and authentication — are made unnecessarily hard by
the current host-to-host model of the Internet, often requir-
ing awkward or expensive work-arounds. Given this discor-
dance between historical design (host-oriented) and current
usage (data-oriented), we ask: what would the architecture
look like if we built it around service and data access?

Somewhat surprisingly, our research suggests that most
of the necessary changes reside in how Internet names are
structured and resolved. We propose replacing DNS names
with flat, self-certifying names, and replacing DNS name
resolution with a name-based anycast primitive that lives
above the IP layer. We call the resulting design the Data-
Oriented Network Architecture (DONA).
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DONA improves data retrieval and service access by pro-
viding stronger and more architecturally coherent support
for persistence, availability, and authentication. It can also
be extended to provide support for caching and RSS-like up-
dates. However, DONA’s impact is not limited to data and
service access; we use these applications as motivating ex-
amples because they force us to think differently about some
fundamental issues, but most of these issues are not particu-
lar to data/service access. As a result, as we describe below,
DONA’s overall design has architectural implications that
range far beyond data/service access.

DONA’s name-based anycast primitive is useful for many
kinds of resource discovery; for instance, it can provide the
basic primitives underlying SIP, support host mobility and
multihoming, and establish forwarding state for interdomain
multicast. Placing anycast at the naming layer, rather than at
the IP layer, allows us to design for functionality rather than
be limited by concerns about scalability, since the mecha-
nisms need not operate at link speed.

There is another issue where historical design is at odds
with current usage. The original Internet architecture, fol-
lowing the end-to-end principle, intended the network to be
a purely transparent carrier of packets. Today, however, the
various network stakeholders (such as enterprises) use mid-
dleboxes to improve security (e.g., firewalls, proxies) and
accelerate applications (e.g., caches) [3]. Because DONA’s
anycast name resolution process follows essentially the same
administrative path as the ensuing data packets (we will ad-
dress the subtleties in this statement later), DONA can treat
the stakeholders along the path as relevant Internet actors.
This allows DONA to provide clean support for network-
imposed middleboxes. This isn’t a repudiation of the end-
to-end principle, in that functionality is still provided at the
ends; it is merely a recognition that operators should have, at
their disposal, architecturally coherent mechanisms to con-
trol how and what traffic traverses their network.

More recently, there has been much hand-wringing about
the scalability of routing in the current addressing paradigm
[24]. DONA’s anycast primitive provides a discovery mech-
anism that lives above the IP layer; as we will later describe,
this enables the use of path-labels rather than global ad-
dresses, an approach that results in tiny interdomain routing
tables.

At a more speculative level, DONA represents a partial
shift away from sender-based primitives to a more receiver-
based approach. One of our future research tasks is to ex-
plore how far we can go in this direction, and what this might
mean for a future Internet.

These architectural implications encouraged us that DONA
is not merely restricted to data and service access (which,
by itself, is significant as it is by far the dominant usage
on the current Internet), but rather facilitates improvements
along many dimensions. However, there are many other is-
sues, not discussed here, that demand attention: the Internet
still needs better security (particularly against DoS and ma-

licious/misconfigured routers), better manageability, better
usability, and many other properties. We aren’t proposing
DONA as a solution to these problems; in fact, we think
DONA is largely orthogonal to them. We hope to eventually
incorporate work on these problems within a larger frame-
work that also includes DONA.

The next section presents DONA’s basic design and Sec-
tion 3 describes how this design supports such tasks as server
selection, mobility, multihoming, session initiation, and in-
terdomain multicast state establishment. Section 4 discusses
how DONA’s infrastructure could be extended to support
more advanced functionality, such as content delivery, delay-
tolerant networking, and a variety of administrative access
policies (including middlebox insertion).

Section 5 discusses our prototype implementation and Sec-
tion 6 addresses the crucial question of DONA’s feasibility.
The name-based anycast primitive will require routing on a
very large namespace, but it need only be done at name res-
olution speeds, not line speeds; we present various estimates
indicating that DONA is within reach of today’s technology.

We delay our discussion of related work until Section 7,
in order to have enough context to make the necessary con-
nections. For now, we merely note that almost every aspect
of our design is (proudly) stolen from elsewhere, most no-
tably from TRIAD [17], HIP [25], and SFS [22]. It is the
synthesis of these various ideas into a coherent architecture
that we claim as our contribution.

The paper ends, in Section 8, with some speculations on
DONA’s broader architectural implications. In particular,
we discuss the possibility of basing the interface offered to
applications on DONA’s name-based anycast primitive.

2 Basic Design
DONA involves a major redesign of Internet naming. In
this section we first motivate these changes and then present
DONA’s naming structure and name resolution mechanism.
This is followed by a brief discussion of security and ad-
dressing issues. For lack of space, many details are omitted.

2.1 Motivation

We start with the problem of service and data access and
ask how we might easily achieve persistence, availability,
and authentication, basic tasks which today are (sometimes
badly) handled by external ad hoc mechanisms. In DONA,
we propose a strict separation of concerns between naming
and name resolution in handling these tasks: names handle
persistence and authenticity, while name resolution handles
availability.

To provide persistence and authenticity, we use flat, self-
certifying names [22, 25]. This form of naming is, by now,
a standard technique. As we review shortly in Section 2.2,
such names will remain invariant and enable easy authenti-
cation. The use of flat names makes informal identification
harder (since you can’t remember your friend’s 128-bit iden-
tifier), but it makes formal authentication easier.
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High availability means that when a user requests data by
name, she receives the data quickly and reliably. To provide
availability, the name resolution process should (a) guide re-
quests to nearby copies of the data, and (b) avoid failed or
overloaded servers. The question, then, is how to build such
a name resolution process.

There are two main resolution paradigms in the literature.
The first is what we use today: lookup-by-name in a dis-
tributed database, which returns the location (IP address) of
a nearby copy. This database must maintain locations of all
the copies, identify the location of the requester, and then
find a reasonably good match between the two. Akamai has
pioneered the development of techniques to accomplish this,
but it clearly requires significant mechanism to achieve.

The other possibility, most notably used in TRIAD [17],
is to route-by-name to the closest copy. Routing protocols
are designed to find shortest paths and route around failures,
exactly the two tasks (a) and (b) we’ve assigned to name res-
olution. This led us to conclude that route-by-name, rather
than look-up, was the most natural approach. We discuss our
design for this in Section 2.3.

We note that there is one other issue — in addition to per-
sistence, authenticity, and availability — that the user cares
about, trustworthiness: users would like to know whether
they are getting their information from a reliable source. We
believe that this, like several other issues we discuss below,
is best handled by mechanisms that are external to the ar-
chitecture. Trust is so idiosyncratic and subjective that we
don’t believe any network architecture should mandate the
mechanisms by which trust is established. Moreover, by re-
maining outside of the core architectural structures, external
trust mechanisms can evolve along with changes in society
and institutions in a way that a fixed architecture can’t. To-
day, a variety of external mechanisms, ranging from Google
to personal recommendations, are used to establish trust. We
expect that new trust mechanisms, such as reputation sys-
tems and enhanced “webs-of-trust”, will be developed in the
future, but they will (and should) lie outside the confines of
the architecture.

2.2 Naming

DONA names are organized around principals. Each prin-
cipal is associated with public-private key pairs, and each
datum or service or any other named entity (host, domain,
etc.) is associated with a principal. Names are of the form
P:L where P is the cryptographic hash of the principal’s pub-
lic key and L is a label chosen by the principal, who ensures
that these names are unique. The granularity of naming is
left up to principals; a principal might choose to just name
her web site, or name her web site and each page within it, or
name at a finer granularity (such as naming each individual
photo or publication).

Principals are considered to own their data, in the sense
that only hosts authorized by the principal P can offer to
serve (i.e., provide access to) entities with names of the form

P:L. Each datum comes with metadata including the prin-
cipal’s public key and the principal’s signature of the data;
thus, when we speak of a client retrieving data we mean it
has received the triplet <data, public key, signature> (along
with perhaps other metadata).1 In such a scheme, requesting
clients rely on the principal’s signature to ensure the data’s
integrity.

These names are application-independent and globally unique
(and can refer to anything, not just data or services). They
are also self-certifying in the following sense [22,25]: When
a client asks for a piece of data with name P:L and receives
the triplet <data, public key, signature>, it can immediately
verify that the data did indeed come from the principal by
checking that the public key hashes to P, and that this key
also generated the signature. This satisfies the need for au-
thentication; persistence follows from the fact that the names
don’t refer to location, and thus the data can be hosted any-
where.

With a slight alteration, these basic ideas can be naturally
applied to immutable data: here, the label L is the crypto-
graphic hash of the contents of the data and the principal P
is the purveyor of the data, not the owner; for instance, the
purveyor could be the hosting CDN. Since the client need
not rely on a principal to ensure the integrity of the data
(the hash over the contents ensures this), the only role of the
principal is to ensure data delivery. Since different CDNs
may have different degrees of reliability or coverage, clients
seeking immutable data might specifically request it from a
particular purveyor.

Note that there is a difference between the administrative
structure of the hosting machines, and the nature of the prin-
cipal. A person’s web page would be associated with their
own public key. The web page might initially be hosted at
their university or company or paid hosting service, but this
is not reflected in the name; instead, the owner (as we discuss
below) would authorize (with some reasonable TTL) this en-
tity to host their web page (and this authorization could be
applied to only a specific datum, or to a portion of the princi-
pal’s data, or to all the principal’s data). If the person decided
to move the page (for instance, if they changed employers),
then they would authorize a new entity to host their page
(and let the old authorization expire). The name of the data
would not change, even though the entity hosting the data
(or service) did change.

The biggest challenge to making such flat names work is
making sure they resolve to the appropriate locations, which
is what we discuss below. But there are usage questions that
must also be addressed (though we are not the first to pro-
pose names of this form, and several of these issues have
been discussed elsewhere, such as in [34]).

For instance, one usage question is: how will users learn
these flat, long, and user-unfriendly names? We expect that

1The signature might be signed with a different key, but accompa-
nied by a certificate from the principal’s key authorizing that other
key.
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users will learn these flat names through a variety of external
mechanisms that the user trusts (to varying degrees), such as
search engines, private communication, recommender ser-
vices, and the like. Users won’t, of course, remember the flat
names directly, but will have their own private namespace of
human-readable names, which map onto these global and flat
names (as in [12]). While such flat names are harder to use
than today’s DNS names, they offer the advantage that the
mappings between private human-readable names and flat
names will be free to reflect evolving social structures rather
than being tied, as DNS names are, to a fixed administrative
structure.

Also, DONA does not provide a reverse-lookup mecha-
nism for names, like DNS, where one can map an IP ad-
dress to a name. The basic use of reverse-lookup is to tie a
user-unreadable label (in this case an IP address) to an user-
meaningful identity (in this case, a DNS name). We think
the analogous service in DONA would allow a user to map a
principal’s key (which is human-unreadable) to a trust-chain
between the principal’s key and his own that would help the
user understand the identity of the principal. We are in the
process of developing such a system.

2.3 Name Resolution

We now turn from discussing the nature of DONA’s names
to presenting how DONA translates these names into loca-
tions. Our goal in this design is to achieve high availability,
by finding close-by copies and avoiding failures.

As discussed earlier, DONA uses the route-by-name paradigm
for name resolution. Rather than use DNS servers, DONA
will rely on a new class of network entities called resolution
handlers (RHs). Name resolution is accomplished through
the use of two basic primitives: FIND(P:L) and REGIS-
TER(P:L). A client issues a FIND(P:L) packet to locate the
object named P:L, and RHs route this request towards a nearby
copy. REGISTER messages set up the state necessary for the
RHs to route effectively.

Each domain or administrative entity will have one log-
ical RH (but perhaps many physical incarnations); we will
denote the RH associated with an administrative entity X by
RHX . RHX is the provider/customer/peer (or, alternatively,
parent/child/peer) of RHY if X is the provider/customer/peer
of Y in terms of AS-level relationships. This RH structure
can extend to finer granularity than ASes to reflect other or-
ganizational and social structures; for instance, there could
be departmental RHs at universities and firms and, going
even further, users could have their own local RHs which
peer with those of their neighbors and friends. RHs use local
policy (consistent with their domain’s peering agreements)
when processing REGISTERs and FINDs.

Each client knows the location of its local RH through
some local configuration (much like they know about their
local DNS server). Any machine authorized to serve a da-
tum or service with name P:L sends a REGISTER(P:L) com-
mand to its local RH. Registrations can also take the form

RH

RH RH RH

RH RH RH

Tier-1

Copy Copy Client

Figure 1: Registration state (solid arrows) in RHs after
copies have registered themselves. RHs route client is-
sued FIND (dashed arrow) to a nearby copy.

REGISTER(P:*) if the host is serving all data associated the
principal (or will forward incoming FIND packets to a local
copy).

Each RH maintains a registration table that maps a name
to both a next-hop RH and the distance to the copy (in terms
of the number of RH hops, or some other metric). There is
a separate entry for P:*, in addition to individual entries for
the various P:L. RHs use longest-prefix matching; if a FIND
for P:L arrives and there is an entry for P:* but not P:L, the
RH uses the entry for P:*; when entries for both P:* and P:L
exist, the RH uses the one for P:L. Only when the RH has
neither P:* or P:L entries do we say that P:L does not have
an entry in the registration table.

When a FIND(P:L) arrives, the forwarding rule is straight-
forward: if there is an entry in the registration table, the
FIND is sent to the next-hop RH (and if there is more than
one, the choice is based on the local policy and which en-
try is closest); otherwise, the RH forwards the FIND to-
wards its parent (i.e., its provider) using its local policy to
choose among them if the RH is multi-homed. Thus, reg-
istration table misses are forwarded up the AS hierarchy in
the hope of finding an entry (see Figure 1). In the case of
immutable data, a FIND command can take the normal form
FIND(P:L), or the special form FIND(*:L) which indicates
that the client is willing to receive the (self-certified) data
from any purveyor.

If RHX receives a REGISTER from a child (i.e., cus-
tomer), it does not forward it onward unless no such record
exists or the new REGISTER comes from a copy closer than
the previous copy. If so, RHX forwards the REGISTER to
its parents and peers (after updating its registration table).
If the REGISTER comes from a peer, the entry can be for-
warded or not based on local policy (depending, for exam-
ple, on whether the AS is willing to serve as a transit AS for
content). By letting the forwarding of FINDs and REGIS-
TERs be driven by the local policies, DONA can faithfully
respect the basic interdomain policies as reflected in BGP. In
addition, the forwarding of a REGISTER can be terminated
at any point if dictated by some administrative policy (such
as a corporate firewall).

REGISTER commands must be authenticated. The local
RH issues a challenge with a nonce, which the client must
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register : the received REGISTER message, if any.
regs : all REGISTER messages for the name (P:L).
pref reg: preferred REGISTER to disseminate to

peers/parents, if any.
name : the name (P:L) event concerns.

regs←load(name);1

if register received then2

if duplicate or invalid signature then3

return;4

end5

set timer for expiration(register);6

else7

// A REGISTER expired...8

end9

foreach out in provider and peer links do10

pref reg←decision process(out,regs);11

if pref reg changed for out then12

msg←new message(pref reg);13

add intra cost(out,msg);14

sign message(private key,msg);15

queue(out,msg);16

end17

end18

store(name, all changes);19

Figure 2: Pseudo code for processing received and
expired REGISTERs.

sign with P’s private key, or sign with some other key and
provide a certificate from P empowering this other key to
register this piece of data. When forwarding REGISTERs,
the RH signs it so that the receiving RHs know that the
data came from a trusted RH. These signatures are hop-by-
hop and accumulated in a REGISTER along the path. In a
similar manner, the RHs accumulate the distances; they ap-
pend their distance/cost to the sending RH before sending
the REGISTER to next RH. REGISTER commands have a
TTL and must be refreshed periodically. DONA also pro-
vides an UNREGISTER command so that clients can indi-
cate that they are no longer serving some datum. Figure 2
shows the pseudo code for processing received and expired
REGISTERs.

The FIND packet does not just resolve the name, it ini-
tiates the transport exchange. The FIND packet takes the
form as shown in Figure 3; The DONA-related content is
essentially inserted as a shim layer between the IP and trans-
port headers. The name-based routing provided by DONA
ensures that the packet reaches an appropriate destination.
If the FIND request reaches a Tier-1 AS and doesn’t find
a record associated with that principal, then the Tier-1 RH
returns an error message to the source of the FIND. If the
FIND does locate a record, the responding server returns a
standard transport-level response (the same as if the trans-
port header had been received on a normal data packet, not

Transport protocol header

Name (P:L, 40 bytes)Type
IP header

Next header type

Figure 3: Protocol headers of a FIND packet. Type is to
separate FINDs from their responses.

on a FIND packet). To make this work, transport protocols
should bind to names, not addresses, but otherwise do not
need to change. Similarly, application protocols need only
be modified to use names, not addresses, when calling trans-
port. In fact, many applications could be simplified when
implemented on top of DONA. Using HTTP as an example,
we note that the only essential information in an HTTP initi-
ation is the URL and header information (such as language,
etc.); the URL is not needed, given the data is already named
in a lower layer, and if each variation of the data (such as lan-
guage) is given a separate name then the header information
is also superfluous.

The packet exchanges that occur after a FIND has been
received are not handled by RHs (except, as we note in Sec-
tion 4, when they serve as caches or other middleboxes), but
instead are routed to the appropriate destination using stan-
dard IP routing and forwarding. To this extent, DONA does
not require modifications of the IP infrastructure.

2.4 Security Issues

There are a variety of security issues that must be addressed,
some by DONA itself and some by underlying or external
mechanisms.

For bandwidth denial-of-service attacks, we assume that
there are IP-level mechanisms that can restrain unwanted
packet streams that are overwhelming an RH, server, or client.
For resource exhaustion attacks against RHs, DONA relies
on contractual limits providers place on customers for the
number of FINDs and REGISTERs they can submit per time
period. RHs may additionally impose other rate-limiting
techniques such as cryptographic puzzles.

We assume that as part of establishing customer/provider/
peering relationships, peering RHs have securely exchanged
their public keys, so RHs can always ensure that they are
receiving packets from the appropriate RH. However, a ma-
licious RH can still cause damage. For instance, a malicious
RH can refuse to forward REGISTERs and FINDs; this is
a failure of the AS, in much the same way an AS could
fail to forward packets, and presumably commercial pres-
sures would reduce this form of misbehavior. More sub-
tly, a malicious RH could forward REGISTERs overheard
from other RHs. To minimize this risk, when RHs forward
a REGISTER they include the next-hop’s public key (or its
cryptographic hash). In addition, REGISTERs have finite
lifetimes.

The worst a malicious RH can do is deny a client service
(since cryptographic measures allow the client to authenti-
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cate the data). In Section 3 we discuss ways in which clients
can request access to other copies (i.e., not just the closest
one); this will allow a client to avoid misbehaving RHs, un-
less the misbehaving RH lies on the path to all copies of that
particular item.

In all cases, though, RHs are commercially related to the
clients they are serving; they are either paid (perhaps recur-
sively) by the client or by the server. Thus, DONA is not
relying on the cooperation of arbitrary entities, but is rely-
ing on the nature of a commercially provided service. Thus,
while the design should be reasonably secure against mis-
configured or subverted RHs, we anticipate that any such
problems would be detected and corrected by the provider.

In such a key-centric design, the greatest fear is key com-
promise. There is no remedy except for providing effective
means for key revocation. DONA does not, itself, provide a
key revocation mechanism. However, there are a variety of
mechanisms one could use for this, such as third-parties (i.e.,
Google) providing databases of revocation lists. Each revo-
cation is cryptographically proven, so they cannot be faked;
thus the database need merely provide access to the data, not
vouch for its correctness.

DONA itself provides a useful substrate for revocation
lists and online key status query protocols. That is, key revo-
cations related to a principal P (both of P’s private key, and
of any secondary keys P has used) could be stored under P:L
for some special reserved name L, and if an RH finds any
entry corresponding to that name it immediately returns no-
tification of a key compromise.2 Thus, if a client wanted to
check a key related to P it could issue a FIND(P:L) for this
special value of L. As we describe in Section 4, DONA also
supports update functionality, so a client could subscribe to
be notified of any such revocation.

Finally, principals and replicas may ensure that their key
is not already in use by doing a FIND(P:*) on a freshly gen-
erated key P (using DONA’s name resolution) to see if the
key is already in use.

2.5 Internet Addressing

The DONA design, as just described, could function over the
current IP layer, with its present form of addressing and rout-
ing. However, many think the current Internet addressing
scheme is facing a looming crisis, as the increasing demand
for multihoming threatens to explode routing tables [24].
Even aside from this speculative threat, the current address-
ing paradigm requires a delicate balance between scalability
(e.g., aggregation) and flexibility (e.g., multihoming, policy
routing) that isn’t always easy to achieve.

DONA’s name-based anycast primitive can remove much
of the pressure on the lower-level addressing structure by
providing a separate mechanism for path discovery. In par-
ticular, DONA could enable IP to use path-labels (as in [19])

2Note that once any key revocation entry has been registered for
that principal, there is nothing the key compromiser can do to cause
its removal from the registration tables.

rather than globally routable addresses. In what follows,
we refer to the client as the source of the FIND and the
server as the node that responds to the FIND (presumably
a node that generated the REGISTER, or a caching RH as
discussed later in Section 4). Moreover, each host has a
domain-specific address; that is, for each domain within which
it is homed, that domain associates an address to that host,
and that address has no meaning outside of that domain.

In this approach, when a client sends a FIND, its source
address is originally just its domain-specific address. As the
FIND is forwarded from client to server, next-hop domain
path instructions are appended to this source address. Each
such instruction has purely local meaning; for instance, as
the FIND passes from domain A to domain B, an annotation
is added to the path instruction that tells A that the next-hop
domain and, vice-versa, tells B that, in the reverse direction,
the next hop is A. This instruction need only be understood
by the two connected domains A and B. When the FIND
arrives at the server, the server appends its domain-specific
address to the path description. It can then reverse these
path instructions and use them for its response to the client
(since reversing the order just gives the path in the opposite
direction). Similarly, when the server’s packets arrive at the
client, the client can reverse the path in order to send packets
to the server.

Because these per-hop path instructions only need to dis-
tinguish between the various next-hop domains, they can be
quite short (say, on the order of a few bytes), so the total path
instruction would be quite short. More importantly, the inter-
domain routing tables would be extremely small (and quite
static); merely enough to translate these per-hop instructions
into a next-hop AS. Note that these path-instructions would
not have global meaning, since if a source in a different do-
main used this path, the domain-specific next-hop instruc-
tions would not necessarily lead to the desired destination.
Thus, in this design, there would no globally meaningful ad-
dresses and the DONA FIND/REGISTER primitives would
be required to establish end-to-end connectivity.

This approach would require the endpoints to detect AS-
level path failures and to resend a FIND in that case. This is
a substantial extra burden on connections, but it is the trade-
off for doing path-discovery above the IP layer. Also, while
this design might superficially resemble other connection-
oriented designs, with the FIND playing the role of a con-
nection-establishment, there is no per-flow state in the net-
work.

This approach would produce symmetric AS-level paths,
because the path of the FINDs lay down path instructions
which guide the reverse path. There are other possibilities
for how policy routing could be handled in this case, rang-
ing from allowing asymmetric routes but requiring a FIND
sent in the opposite direction (like many capability mecha-
nisms [38,40]), or giving policy control going from the client
to the core (and from the core to the client) to the providers
near the client, and giving policy control going from the
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core to the server (and from the server to the core) to the
providers near the server; this would preserve AS-level path
symmetry but distribute the control differently among the
ASes. Lastly, one could adopt a NIRA-like [39] approach to
providing endpoint-control. We do not explore these options
here.

3 Using DONA’s Basic Functionality
DONA’s name resolution process is essentially a name-based
anycast service: a FIND(P:L) request is routed (by RHs) to
a nearby RH at which the name P:L is registered. We now
discuss a few ways in which this basic primitive might be
used (and later, in Section 4, we discuss how RHs could be
extended to provide greater functionality). We present only a
very high-level description of the examples below, omitting
(due to space) many protocol details.

Server Selection: The most basic use of DONA’s anycast
primitive is to select among several possible servers (e.g.,
for content distribution, or replicated service access). Each
server (or datacenter) authorized by a principal P to host a
service or datum named P:L simply registers P:L at their lo-
cal RH. DONA routes any FIND(P:L) to the closest such
server (closest according to the DONA routing metric). Note
that these servers could be from one or many different CDN
networks; the name P:L remains the same no matter which
server is providing the data.

P2P applications could also employ this primitive, and
would probably use immutable names where the principal
would identify the particular P2P infrastructure (these may
have different degrees of reliability and coverage). Systems
like BitTorrent that break files into chunks are also supported;
the name of the file (immutable data) is mapped to a listing
of the chunk names (also immutable), and the client can then
separately request each chunk. If it so desires, the client can
then offer to serve the content, registering both the chunks
and the index. We will see later in Section 4 how increased
functionality in the RHs can further improve the CDN-like
properties of DONA.

Mobility and Multihoming: A roaming host can first un-
register from one location and then re-register at its new
location. Subsequent FINDs will be routed to the new lo-
cation as soon as the new registrations have installed the
necessary state.3 Well-known techniques below the trans-
port layer [25], at the transport layer [15], or at the session-
layer [31] can be used to mask mobility from higher lay-
ers. Multihoming is similarly straightforward: a multihomed
host registers with each local RH and a multihomed domain
forwards its REGISTERs to each provider. This allows FINDs,
and thus the resulting data connections, to make use of mul-
tiple paths. While the above discussion implicitly assumed
current IP addressing, and no need for symmetric AS-level

3A host that suddenly loses its connectivity may have to wait until
its previous registration’s TTL expires before it can be sure that
subsequent FINDs will find it.

paths, similar multihoming could be achieved with the ad-
dressing described in Section 2.5.

Session Initiation: Rendezvous mechanisms are the core
of application-layer session initiation and presence proto-
cols. Consider, for instance, the Session Initiation Proto-
col (SIP) [29]. A SIP user agent begins by sending a SIP
INVITE message. The SIP proxy infrastructure then routes
the INVITE message to the current location of the remote
agent, which responds to begin the session negotiation. To
maintain their current location for use by the proxy infras-
tructure, SIP user agents register their current location with
registrars (often co-located with SIP proxies). This process
maps directly onto DONA’s basic primitives. SIP INVITE
messages translate to FINDs and the SIP and DONA REG-
ISTER messages play the same role. Thus, SIP’s rendezvous
functionality can be provided by DONA and SIP’s nego-
tiation functionality could be implemented directly on top
of DONA’s REGISTER and FIND. In Section 4, we show
how DONA enables network to impose middleboxes; net-
works could impose (stateful and stateless) SIP proxies to
enrich SIP services, control service access, and to protect
themselves and their customers just as they do today (e.g.,
SIP providers often deploy session border control boxes to
rewrite SIP messages to hide their internal network topolo-
gies). Of course, after DONA enables the discovery, the data
transfer between the two endpoints occurs over IP.

Multicast State Establishment: It has been a long struggle
to define a simple and scalable interdomain multicast proto-
col. We now show how DONA could be used to establish
this interdomain multicast state in a straightforward manner
(similar to how this is done in [26]). In this design, DONA’s
anycast primitive provides the tree discovery function, al-
lowing a domain’s border router that has local members in
a multicast group G to discover and establish connectivity
with other domains that have members in the group. We
assume that each domain runs some intradomain multicast
protocol. Each multicast group has a name of the form P:G,
where the principal is the originator of the group. Such a
structure makes it easy to keep group names unique. When a
new node in a particular domain joins P:G, the domain’s bor-
der router Rnew issues a FIND(P:G) packet which DONA
routes to the nearest router R that also has local members in
P:G, if one exists. Upon receiving the FIND(P:G) packet, R
attaches Rnew to the overlay topology for P:G as its neighbor
and the two routers add appropriate entries to their neighbor
tables for P:G.4 To complete the join operation, Rnew sends
a REGISTER(P:G) command, announcing its membership
and willingness to serve as an attachment point for other
incoming group members. This construction ensures that
the resulting overlay topology remains acyclic at all times,
thereby simplifying packet forwarding.

4By overlay we mean that the two routers tunnel packets to each
other, so the intervening routers need not have routing state for this
multicast group.
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To transmit a multicast packet destined for a particular
group P:G, the sender’s border router R similarly issues a
FIND packet to locate a nearby domain that belongs to the
group and forwards the packet to that domain’s border router,
which in turn initiates the packet’s dissemination. Note that
if the sender’s domain has one or more members in P:G then
R is itself a member of the overlay topology for P:G and has
the forwarding state necessary to initiate the dissemination.

4 Extending DONA
As we’ve just discussed, DONA’s name-based anycast prim-
itive provides support for a range of discovery-like tasks.
Even restricted to this capability, we believe DONA would
be a better naming foundation for the Internet than the cur-
rent DNS system. In this section we discuss extensions to
DONA that broaden its impact. These extensions involve
adding functionality to the RHs, so they take a more ac-
tive role in the architecture than just forwarding FINDs and
REGISTERs .

4.1 Improving Content Delivery

The basic DONA design provides support for server selec-
tion, which is useful when accessing widely replicated data
or services. However, DONA can provide better support for
content delivery in three ways.

Caching: RHs can be extended to provide a universal (i.e.,
general-purpose and always on-path) caching infrastructure.
An RH that implements caching must first populate its cache.
It can do so by changing the source IP address of an incom-
ing FIND packet to be its own (and also source port number,
if necessary) before forwarding the FIND to the next-hop
RH. This ensures that the response to the FIND will traverse
this RH, so the RH will receive the returning data and can
install it in its cache. As per current practice, cacheable data
items will be labeled with a TTL that determines when they
should be expelled from the cache. When a FIND arrives and
there is a cache hit, the RH responds to the FIND’s source
IP address, returning appropriate transport responses which
then will proceed into a standard application-level exchange.
If the RH does not understand the transport or application-
level protocol (as defined by the port in the transport header)
for a particular FIND, it does not provide caching for that
request. Figure 4 shows the pseudo code for the above logic
and Figure 5 depicts the packet exchanges.

Subscriptions: Often clients would like to subscribe for up-
dates, as in RSS. This can be easily accomplished by adding
TTLs to FINDs. When the server responds to such a TTL’ed
FIND, it notes whether and how long it will provide up-
dates to the FIND. When a server updates a piece of con-
tent that has a pending TTL’ed FIND, it sends the update
to the source of the FIND. RHs can assist in this process
by caching TTL’ed FINDs, using the previously described
technique of inserting their own address before forwarding
the FIND. If a collection of RHs have cached the TTL’ed
FINDs for a particular item, they form a distribution tree

find: the FIND packet received.

if unknown transport or application protocol then1

forward to next hop(find);2

else3

if content cached and still valid then4

terminate protocols(find);5

send content();6

else7

// Follow the caching policy8

if should be cached then9

terminate protocols(find);10

new find←clone(find);11

change src address(new find);12

initiate protocols(new find);13

send to next hop(new find);14

store and send content();15

else16

forward to next hop(find);17

end18

end19

end20

Figure 4: Pseudo code for caching logic.

that provides scalable updates to that item. There is no ex-
plicit tree construction algorithm; it is formed via the normal
routing of FINDs.

Avoiding Misbehaving and Overloaded Servers: In gen-
eral, RHs will route FINDs to nearby copies of the data.
However, some of these servers may be misbehaving (due
to failures or malicious intent) in a way that is not visible to
the RHs but which deprives the client of a valid copy of the
data. To make sure that clients can still access the data even
when their closest replica server is misbehaving, we allow
the client to ask that its FIND be routed to a different server.
In particular, we amend the REGISTER commands to keep

Client

RH 1

Client

Server

RH 2RH 1

Client

Server

RH 2RH 1

Cache hit in RH 1:

Cache miss in RH 1, RH 1 skips the data:

Cache miss in RH 1, RH 1 caches the data:

RH 2

Server

Figure 5: Three cases of processing a FIND packet when
caching is supported: serve from the cache, skip (merely
forward the FIND), and cache. RH 2 is a middlebox for
all traffic.
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track of the number of servers below a particular RH (this
number is incremented as when a REGISTER is sent up-
wards in the RH graph), and we amend the FIND command
to allow the client to request access to the k’th closest server,
rather than the closest one. This may be particularly useful
when accessing data from relatively unreliable P2P servers.

We can also augment DONA to allow overloaded servers
to indicate they are overloaded, so the RHs can then direct
excess load to other, less-loaded, servers. When an RH sends
REGISTERs to a peer, it includes the distance to and load
on the closest server and also, if the closest server is over-
loaded, the distance to the closest underloaded server; thus,
at any time, an RH knows the next-hop towards the closest
server with spare capacity. We have simulated the algorithm
and find that it comes close to matching the optimal load
distribution in several settings.

With these three changes, DONA could provide a com-
bined caching, updating, and load-balancing infrastructure
for content delivery. High-end commercial content providers
may still require more advanced features and more careful
monitoring than DONA can provide, but we expect even
these high-end CDN services to augment DONA’s content-
delivery infrastructure rather than replace it entirely.

4.2 Delay-Tolerant Networking

There has been recent interest in developing architectures for
networks where end-to-end connectivity may rarely exist,
but sporadic hop-by-hop connectivity is often present (see
e.g., [6, 10]). These connectivity-challenged networks occur
in many settings, ranging from large (interplanetary com-
munication), to small (sensornets), to deep (oceanic com-
munications). The key concept in designing a delay-tolerant
network (DTN) architecture is message-level custody trans-
fer; rather than the communication being end-to-end, there
are intermediate elements that take custody of the message
and then are responsible for making sure it is forwarded on-
ward. In DONA, the RHs can act as these custody agents
(or can deputize other hosts to act as custody agents). If an
RH knows that connectivity to its neighboring RH is inter-
mittent, it can choose to accept custody of the subsequent
transfer in much the same way as it places itself on the re-
turn path for caching. Previous work on DTNs [10] has also
embraced name-based routing. Though these two uses of
name-based routing are realized somewhat differently, the
similarity in approaches suggests that DONA might provide
a reasonable substrate for DTN architectures.

4.3 Access Rules and Middleboxes

The original Internet architecture was built around the end-
to-end principle, with intermediate routers playing no role
other than forwarding packets to their destination. However,
commercial and security pressures have created an Internet
where layer-violating access policies and middleboxes are
common. There is no support for access rules and middle-
boxes in the current architecture; some maintain that this is

Client Server

RH 2RH 1

FW requires authentication:

FW

Figure 6: Server-side RH imposes a firewall middlebox
which requires authentication (dashed arrow) before be-
coming a proxy for client-server communication.

a feature, not a bug, but we suggest that the presence of so
many access rules and middleboxes is an indication of im-
portant unmet needs in the current architecture, and that any
viable future design must address those needs.

One can view FINDs and REGISTERs as a general sig-
naling mechanism; these are addressed at the IP layer to
each RH along the path, and as such the RHs are not vi-
olating layering by inspecting them. Corporate networks
may choose to not forward REGISTERs originating at inter-
nal RHs to external RHs if they don’t want internal content
available to the public. Similarly, such networks might also
choose to not forward FINDs originating at external RHs to
internal servers, or perhaps make the decision based on the
application-port found in the FIND’s transport header.

More generally, there are several natural policy decisions
an RH can make upon receiving a FIND. The RH could deny
the FIND, either failing silently or returning an error code.
The RH could also ask the source of the FIND for authen-
tication; for instance, it could ask for credentials proving
that the user was indeed an employee. DONA itself would
not standardize the format and nature of these credentials;
DONA would merely provide a channel for authentication
protocols to exchange these credentials.

An RH could also impose a middlebox, such as an appli-
cation-specific proxy or a firewall. There has been previous
work on incorporating endpoint-imposed middleboxes (see
[2,35]), where either the sender or receiver desires the pack-
ets to traverse a middlebox such as a firewall or transcoder.
The middleboxes we consider here are network-imposed; the
decision is being made by one or more of the networks car-
rying the packets, not the endpoints. We expect future net-
works to have a mixture of network-imposed and endpoint-
imposed middleboxes, so we see the two approaches (DONA
and [2, 35]) as complementary.

An example of an authentication request and a middlebox
insertion is shown in Figure 6. Here, the FIND goes from
client to RH1 to RH2, which then forwards it to the fire-
wall FW. The firewall asks the client for authentication, and
the client responds; the firewall then forwards the client’s
FIND to the server, inserting its own IP address in the FIND.
The server responds to the firewall, which then forwards the
response to the client. Finally, the data flows between the
client and server via the explicitly addressed firewall.

When RHs play the role of caches, both in responding
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to FINDs and inserting themselves on the return path to re-
ceive the response, they are acting as middleboxes (as shown
in Figure 5). RHs can similarly insert themselves as a mid-
dlebox for reasons other than caching, and can also forward
the FIND to some other box (e.g., a firewall) that inserts it-
self on the path. This is done by inserting the IP address of
the middlebox in the source address field in the FIND packet
(and changing the transport source port, as well as updating
checksums and TTL fields) before it is forwarded onwards,
so all returning packet pass through the middlebox. This
method of inserting middleboxes does not violate layering,
as all packets intercepted by these middleboxes would have
indeed their IP address in the destination field.

Lastly, an RH could also provide the capabilities required
to traverse the domain. We won’t delve into the details here,
but mechanisms similar to SIFF [38] and TVA [40] could
be used here (but on a per-domain basis, not per-router ba-
sis), with the capabilities inserted in the FIND as it traversed
domains. There are two subtleties here. First, if more than
one intervening domain wants to require capabilities, there
must be a way of either concatenating the capabilities, or
somehow sharing a fixed length capabilities field. We have
opted for the latter, but don’t have room to discuss the ex-
act approach here. The second subtlety is that using FINDs
to gather the capabilities works if the FIND packet and the
data packets being sent in both directions take the same AS-
level (or administrative-level) path. This symmetry is re-
quired only for the networks that use capabilities. Today,
typically restrictive access policies are only exerted at the
edges, where the paths are likely to be symmetric. However,
if one expects that capabilities might be used more gener-
ally, the path-labels discussed in Section 2.5 could be used,
because they produce symmetric AS-level paths. In contrast
to capabilities, middlebox insertion does not require sym-
metric AS-level paths, because the middlebox is explicitly
addressed.

5 Implementation
To gain some experience with our design, we implemented a
Linux-based prototype of an RH and deployed it on Planet-
lab. While the implementation was useful, in that uncovered
areas where our design hadn’t been fully fleshed out, there is
nothing novel or illuminating here; the far more interesting
issue is large-scale feasibility, which we could not address
in our small-scale prototype deployment; we address these
scaling issues in Section 6.

The RH prototype is a stand-alone user-level Java daemon
that uses a TUN/TAP device to interpose itself as an over-
lay between the transport and IP layer, and uses the Socket
API to invoke the kernel transport protocol implementations.
Most of the core features described earlier have been im-
plemented, including dissemination of REGISTERs, name-
based routing of FINDs, content caching, and protocol sup-
port for a few applications.

The implementation is comprised of the following mod-

ules:

Router Module: The router module processes incoming REG-
ISTERs and FINDs. It maintains a memory-based registra-
tion table, computes and disseminates registrations to peers
and providers in the RH topology, and routes FINDs based
on the registration table. The router module also monitors
the liveness of their manually configured neighbors (cus-
tomers, providers, and peers) and exchanges registrations
with these neighboring RHs over reliable queues implemented
on TCP.

Caching Module: The caching module offers application
modules (see below) access to a local cache of data items.
It caches content in the local file system and uses an em-
bedded database to maintain, on a per-item basis, metadata
(which includes an expiration time) and the location of the
corresponding file. A cache lookup is a two-step process:
the module first queries the database to determine if the item
is in the cache. If a valid cache entry is present, the module
serves the cached content using file system routines.

Application Modules: To experiment with some set of ap-
plications, we augmented the prototype with a set of applica-
tion modules. In each case, we provided proxies that allowed
unmodified hosts to use DONA:

• HTTP: Components were implemented to simulate a
CDN provider. A HTTP proxy module translates in-
coming HTTP requests into FINDs and returns con-
tent in the form of standard HTTP responses. A CDN
provider then uses an HTTP registrar module to submit
periodic registrations. The HTTP proxy module on the
provider’s RH then translates the received FINDs back
to HTTP to be sent to the content provider (a user of
the CDN provider, which does not implement DONA).
In addition, the HTTP proxy module uses the caching
module to implement simple HTTP caching.

• Session Initiation Protocol: A SIP proxy module in-
terfaces with legacy SIP user agents and converts their
INVITE and REGISTER messages into FINDs and REG-
ISTERs, as described in Section 3. Agents then trans-
mit RTP traffic directly to each other.

• Large-file distribution: A P2P client application was
developed to distribute large files. The application splits
large files into chunks and creates an index file for the
chunks. The application then registers and serves the
chunks and index; peers missing chunks or index try
periodically to download them.

• RSS: An RSS proxy intercepts incoming RSS refresh
requests (that arrive in the form of standard HTTP GET
messages from hosts that don’t implement DONA) and
issues TTL’ed FINDs to serve future refresh requests
directly from cache, if the response contained an RSS
feed (which cannot be determined reliably solely based
on the HTTP request URL). The TTL’ed FIND travels
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to the content source and causes the intermediate RHs
to establish forwarding state. On the content-provider
side, a proxy registers the feed on behalf of the RSS
server and polls the feed at periodic time intervals to
detect changes. If updated, the proxy retrieves the new
version and propagates it over the dissemination tree to
the subscribers.

The prototype consists of approximately of 17,100 lines of
code. The core RH functionality (routing, registration main-
tenance, content caching) constitutes 11,900 lines while the
remainder is for the application modules.

The prototype has been deployed on PlanetLab to with
topologies in order of tens of nodes (RHs). We don’t report
on any detailed experiences here, since there was nothing of
note to report.

6 Feasibility
Now that we have laid out DONA’s many possibilities, we
must discuss its basic feasibility. We first estimate the com-
putational requirements of a single logical RH, and then we
discuss one possible way to organize a large ISP’s RH in-
frastructure.

6.1 Requirements

We discuss requirements for a domain’s single logical RH
to support FINDs and REGISTERs.5 Note that an AS’s RH
need only keep routing state for data that lie below or equal
to it in the AS hierarchy, since the default behavior is to for-
ward FINDs to providers. Thus, the toughest requirements
will be on the Tier-1 providers, whose RHs must keep ev-
erything in their registration tables, and those are the perfor-
mance requirements we focus on.

Since the estimated number of public web pages is on the
order of 1010 as of 2005 [18], we set an initial target of 1011

registered items. Assuming 42 bytes per entry (40 for the
name and 2 for a next-hop RH), this yields a total storage
of about 4TB. (This is a simplification, since it neglects the
overhead of the necessary data structures. Since we are in-
terested in orders of magnitude only, we are ignoring this
complication.)

If the average lifetime of a registration is two weeks (which
we are taking as an initial estimate, with little empirical sup-
port), a Tier-1 RH must handle about 83000 registration mes-
sages per second. If each registration is roughly 1 KB, then
this is approximately 680Mbps, which is small compared to
the aggregate bandwidth of a Tier-1 AS (and the registrations
are a small fraction of the load on any particular link). How-
ever, each of these registrations involves expensive crypto-
graphic operations. Using fast cryptosystems such as ES-
IGN [27], a 3 GHz processor can create and verify 2048-bit
signatures in 150 and 100 microseconds, respectively [21].
5All the other functionality discussed in Section 4 is optional (e.g.,
an RH can decide to not cache if it can’t handle the load) and/or sig-
nificantly less burdensome than the basic processing of the stream
of FINDs and REGISTERs.

Feed DNS req./s HTTP req./s TCP SYNs/s

A
bi

le
ne

kscy 913 16,641 2,534
ipls 939 14,591 2,799
dnvr 861 18,176 2,448
losa 827 8,851 1,934
Avg. 885 14,565 2,429

G
E

A
N

T

at1 2,072 5,237 5,619
de1 2,292 7,191 3,913
hu1 738 16,445 3,829
se1 1,813 10,157 2,986

Avg. 1,728 9,757 4,087

Table 1: Rates of DNS requests, HTTP packets and TCP
SYNs scaled for a fully utilized 1 Gbps link.

If we assume a total of 500 microseconds per registration,
the total registration load could be handled by roughly 40
CPUs. However, an AS may choose to trust its peering ASes
to have done the crypto-checks, and thus this load could be
reduced.

To estimate the rate of incoming FINDs, we assume that
an RH’s load will be of the same order as the current rate
of HTTP requests. We realize this ignores other applica-
tion protocols, but we think HTTP is sufficient to give us an
order-of-magnitude estimate. As data, we use flow logs of
traffic observed over one week in November 2005 at routers
in two transit networks: 4 routers belonging to Abilene [1],
the academic and research network within the United States;
and 4 routers from GEANT [16], a large research network
in Europe which also carries some commercial traffic. Sam-
pled flow logs from each network were used to count HTTP
packets.6

Table 1 shows the HTTP request rate and, for context, the
DNS and TCP SYN rates for each log, as well as the aver-
age over the four logs. These results are normalized to show
the number of requests that would occur in a full gigabit’s
worth of network traffic. Thus, the HTTP request rate for a
fully loaded Gbps link is on the order of 20,000 requests per
second; this density of requests is consistent with a (some-
what dated) PolyMix-4 workload used to benchmark web
caches [23]. We thus assume that a fully-loaded Gbps link
will generate about 20,000 FINDs per second. If FINDs are
150 bytes (including transport layer header as well as head-
ers from below), then these FINDs consume about 24Mbps,
only 2.4% of the link.

FINDs can be processed either from RAM or from disk.
For an RH to hold the entire registration table in RAM would
require roughly 500 PCs each with 8GB of RAM (or some
smaller number of servers, each with larger memories, as in
the Sun Blackbox [32]). If we assume a single CPU can pro-
cess roughly 40,000 FINDs per second (similar speeds have
been achieved with similar loads in [36]) and use the esti-
mated FIND density of 20,000 FINDs per Gbps, then this

6We use the number of TCP packets to port 80 to estimate HTTP
requests seen at the router, as requests are not discernible using
flow logs alone.
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ensemble of PCs could handle an aggregate load of 1Tbps
coming in from peering links. 500 PCs might sound like a
lot, but recall that this is to serve an entire Tier-1 ISP, and
these total requirements are tiny on the scale of modern dat-
acenters.

Alternatively, processing a FIND from disk takes roughly
2.5 msec (as [36] has again shown with similar load), so han-
dling 20,000 requests per second requires roughly 50 disks.
This requires an additional 50 disks for each incoming fully
loaded 1Gbps link. However, a single PC with 8 GB of RAM
can hold a routing table for 1/500’th of the entire database.
Presumably the cache hit rate for this fraction of the entire
corpus would be fairly high (though we don’t speculate as to
the exact number); this would substantially reduce the load
on the disks, so many fewer than 50 disks would be needed
for each Gbps of incoming traffic. Moreover, for many do-
mains lower in the AS hierarchy, the total number of items
below it in the tree would be less than 1/500th of the entire
database, and thus the entire routing table could be held in
RAM. This would certainly hold for all enterprise and cam-
pus networks.

Whether an AS uses the all-in-memory approach or re-
lies on disks depends on its aggregate load and other factors.
However, we note that a single fully-loaded Sun Blackbox
(250 multi-core processors, 7TB RAM) [32] can easily han-
dle the memory and processing requirements of a large ISP,
so this is easily within the reach of today’s technology.

6.2 Design of an RH Infrastructure

The estimates above are for a domain’s single logical RH
(although an AS might choose to have several logical RHs
to avoid intercontinental coordination). Of course, ASes are
distributed, with many incoming links spread across a wide
geographic area. We now discuss, in very general terms,
how a Tier-1 AS might design its RH infrastructure. We
follow the model of RCP [4] in centralizing the design as
much as possible, thereby reducing problems of consistency
and coordination.

The RH infrastructure will be comprised of a Master RH
(MRH) and a set of Cache RHs (CRHs) situated in the PoPs.
The MRH receives and stores all registrations, and it dissem-
inates them further to its peers (and providers, if this is not a
Tier-1 ISP). We presume the MRH will be a cluster of PCs.
Depending on the size of the AS, it can choose whether to
use the all-RAM approach or use disks to serve requests.

CRHs route FINDs incoming from customer, peering and
transit links. If a CRH does not have an entry in its table, it
forwards the FIND to the MRH. We envision a CRH to be
a commodity PC, perhaps even diskless, using RAM as its
primary storage. This would allow a single PC to route, as
noted before, roughly 40,000 FINDs per second (for those
FINDs that had the necessary entry in memory). As noted
above, a PC’s individual RAM would hold a sizable fraction
of the database, so the cache hit rate should be substantial.
However, to increase the hit rate even further, CRHs could

use cooperative caching; CRHs at a single PoP could parti-
tion the entire namespace and dedicate a PC per slice.

In terms of failures, if a CRH crashes then it merely repop-
ulates its cache incrementally as FINDs and REGISTERs ar-
rive. If an MRH crashes, it can resynchronize with its peer-
ing MRHs to re-establish state once again operational.

7 Related Work

Almost every piece of DONA’s design has been discussed in
the literature. Here we give a very quick listing of some of
the most relevant pieces of related work.

DONA is built on name-based routing as is advocated in
TRIAD [17], which was arguably the first to explore the ben-
efits of diverging from the classic lookup-oriented Internet
architecture. We differ from TRIAD in several ways: our
use of flat, self-certifying names, the extended RH func-
tionality described in Section 4, and our consideration of
administrative access policies. IPNL argued for the ben-
efits of name-based routing in terms of improving reacha-
bility in modern NATted networks [13]. More recently, the
DTN work has favored name-based routing in challenged
networks (e.g., [6,10,30]). Finally, perhaps a bit surprisingly,
the most widely known incarnation of name-based routing is
HTTP [11], as its proxy-architecture is essentially a name-
based routing approach.

The flat self-certifying naming used by DONA has a long
history, at least in the research community, starting with HIP
[25] and SFS [22]. The role that this form of naming might
play in more general Internet architectures has been discussed
in, e.g., [2, 34, 35]. These proposals focused on naming
and name resolution, as DONA does; however, routing di-
rectly on flat names, at line rates, has also recently gained
some interest, although its scalability remains an open ques-
tion [5, 20]. Finally, the public-key-centric approach used
by DONA has shown its value in policy-enforcement, as the
SPKI efforts [8] testify.

The importance and applications of anycast have been dis-
cussed in many papers, and several in the research com-
munity have focused on building shared anycast infrastruc-
tures (e.g., [14, 26]). In a similar manner, DONA’s focus
on data availability has been shared by recent efforts to im-
prove availability through augmenting inter-domain routing
(as in [37]) or by isolating the applications entirely from the
transfer of data (as proposed in [33]). DONA builds on these
results and incorporates anycast and data-orientation deeper
into the network architecture.

Involving all stakeholders along the path, and incorporat-
ing middleboxes, via DONA’s signaling primitives is aligned
with more recent efforts in IRTF. The EME RG [9] proposes
using SIP as a generic signaling medium, whereas we are
taking a more clean-slate approach. Inclusion of end-point
imposed middleboxes has been considered in [2, 35].
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8 Broader Architectural Implications
Currently, applications obtain a hostname from some out-of-
band mechanism, issue a DNS query to translate that host-
name into an address, and then invoke the Socket API to ini-
tiate a byte-stream transfer to that host. Thus, applications
are oriented around hosts, addresses, and bytes.

With DONA, one could use an application interface that is
based on the FIND and REGISTER primitives. This straight-
forward change has several well-known benefits, which we
list first, but it also leads us towards deeper issues, about
which we can only speculate. First, this interface would
allow applications and application protocols to be oriented
around application objects (i.e., messages, not bytes) be-
cause that is the granularity of these named objects. This
is nothing new, and has been advocated in [7] and adopted
by many modern protocols (such as SCTP [28]).

Second, the applications would revolve around the names
of data and services, not the address or hostname of their
location. We have already discussed the advantages that ac-
crue from this, in terms of persistence, authentication, and
availability.

Third, and perhaps most importantly, raising the level of
abstraction in the interface would shield applications from
low-level communication details.

At a practical level, this shielding would allow the low-
level data communication protocols to be selected dynami-
cally. Transport could be tailored to the context (as in [33])
and extremely opportunistic, using whatever application and
transport protocols are available in the current operating con-
text (as suggested in Haggle [30], for instance), including
bluetooth, USB keys, and other non-IP mechanisms.

In similar manner, this higher-level interface would allow
the FIND and REGISTER propagation mechanisms to be
context-dependent. The particular propagation mechanisms
we presented here is appropriate for a well-connected Inter-
net infrastructure. One could use other methods (such as
flooding FINDs and merely caching REGISTERs locally) in
ad hoc networks or other challenged contexts. We consider
the extension of DONA to these other contexts to be an im-
portant part of our future research agenda.

However, at a more paradigmatic level, this new interface
is similar to a publish (REGISTER) and subscribe (FIND)
interface. When REGISTERing data, the application is es-
sentially transferring custody of the data to lower levels of
the protocol stack (i.e., those that would respond to a FIND
request) and no longer need be aware of any future retrieval.
This would cleave the portion of the application that served
content from the portion that gathered the content and de-
cided which to serve. This separation is broadly applicable,
even for real-time continuous media.

It has been mentioned informally by several Internet lumi-
naries that the Internet should switch from its current sender-
based paradigm to a receiver-based one, such as is used in
publish/subscribe or multicast. While DONA does not ac-
commodate such a radical change due to its position at the

naming layer, it does embody some of the same spirit. We
don’t know whether DONA is the right way to achieve this
end, but we hope to explore the extent DONA can lead us
down this receiver-based path.
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