Oktopus: Towards Predictable Datacenter Networks

Hitesh Ballani, Paolo Costa, Thomas Karagiannis, Ant Rowstron

Presented by: Eric Tu
The Setting

- Multi-tenant datacenters: Private and Cloud
- Tenants pay as you go for compute and storage resources
- **BUT: the hidden cost of the network**
 - Unpredictable Application performance and tenant cost
 - network load outside tenant control
 - Limited Cloud Applicability
 - some applications can’t run well: MapReduce
 - Inefficiencies in production datacenters as well
 - Hard to reason about performance -> bad productivity and revenue
The variability of network bandwidth

Figure 1: Percentiles (1-25-50-75-99th) for intra-cloud network bandwidth observed by past studies.
The Goal

- Maintain simplicity between tenants and providers
- Extend relationship to include network resources
- Offer better cost vs performance options to tenants
- **Everybody wins!**
 - Tenants: Lower Cost, Predictable Performance
 - Provider: More Revenue
The Solution: Virtual Networks

- Tenants get a virtual network for all their compute instances
- Decouples tenant performance from underlying infrastructure
- No need to change application, switches, routers
- **Goals:**
 - **Tenant Suitability:** Tenants can understand application performance
 - **Provider Flexibility:** Maximize sharing
Two Options for Virtual Networks

- Virtual Cluster
 - Illusion of all VMs having a non-oversubscribed switch

- Virtual Oversubscribed Cluster
 - Makes use of local communication

- **Tradeoffs**: Tenant Guarantees, Tenant Cost, Provider Revenue
Virtual Cluster: No Oversubscription

- Suitable for data-intensive apps: MapReduce
- Medium Provider Flexibility
- Reliable dedicated rate similar to Amazon’s running on dedicated Ethernet

Request $<N, B>$
Each VM can send and receive at rate B
Switch bandwidth needed $= N \times B$

Figure 2: Virtual Cluster abstraction.
Virtual Oversubscribed Cluster

- Make use of localized traffic
- No oversubscription within group, only intergroup
- **Greater flexibility**: Limits tenant and provider costs

![Diagram of Virtual Oversubscribed Cluster](image)

Request \langle N, S, B, O \rangle

N VMs in groups of size S, Oversubscription factor O

Group switch bandwidth = $S \times B$, Root switch bandwidth = $N \times B / O$

Figure 3: Virtual Oversubscribed Cluster abstraction.
<table>
<thead>
<tr>
<th>Abstraction</th>
<th>Max Rate</th>
<th>Suitable for applications</th>
<th>Provider Flexibility</th>
<th>Tenant Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virtual Cluster</td>
<td>$O(N)$</td>
<td>All</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Oversub.</td>
<td>$O(N)$</td>
<td>Many</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Clique</td>
<td>$O(N^2)$</td>
<td>All</td>
<td>Very Low</td>
<td>Very High</td>
</tr>
</tbody>
</table>

Table 1: Virtual network abstractions present a trade-off between application suitability and provider flexibility.
Oktopus Implementation

- **Management Plane:** *Allocate VNs*
 - Centralized network manager,
 - Ensures physical links connecting tenant VMs have sufficient bandwidth
- **Allocation:** *Observation: data centers have less bw at root than edges*
 - Try to pack VMs in smallest subtree
 - Choose subtree with least amount of residual BW to accommodate future tenants
- **Data Plane:** *Enforcing VNs*
 - Rate-limiting at endhost hypervisors
 - Each VM measures traffic, sends to centralized Controller VM that computes max-min fair share
Allocation of VMs

Figure 4: An allocation for a cluster request r: $<3, 100\text{ Mbps}>$. Three VMs are allocated for the tenant at the highlighted slots. The dashed edges show the tenant tree T.
Production DC Evaluation

- Lagging jobs from network performance limit throughput

Figure 7: Completion time for a batch of 10,000 tenant jobs with Baseline and with various virtual network abstractions.
Production DC Evaluation

Figure 11: Completion time with varying flow lengths. Mean BW = 500 Mbps.
Cloud Datacenters

- Arriving VM requests over time
- VM rejections: Can I fit network/comp/storage?

Figure 13: Percentage of rejected tenant requests with varying datacenter load and varying mean tenant bandwidth requirements. At load > 20%, virtual networks allow more requests to be accepted.
Cloud Datacenter Cost Savings

Figure 14: Provider revenue with virtual network abstractions. Mean BW = 500Mbps.

Figure 15: Relative tenant costs based on bandwidth charging model while maintaining provider revenue neutrality.
Discussion

- **Impact of physical topologies on Oktopus**
 - Fat-tree topologies, need load balancing
 - Tree optimization assumption
 - Will allocation be a problem in the future?

- **Fault Tolerance**
 - Can support, but is it expensive to redo the virtual topology?

- **Usage: Is this being used, which abstraction used?**
 - How to determine the abstraction used?