Scaling Distributed Machine Learning with the Parameter Server

Presented by: Liang Gong
CS294-110 Class Presentation
Fall 2015
Machine Learning in Industry

- Large training dataset (1TB to 1PB)
- Complex models (10^9 to 10^{12} parameters)
- → ML must be done in distributed environment

- Challenges:
 - Many machine learning algorithms are proposed for sequential execution
 - Machines can fail and jobs can be preempted
Motivation

Balance the need of *performance, flexibility and generality* of machine learning algorithms, and the *simplicity* of systems design.

How to:

- Distribute workload
- Share the model among all machines
- Parallelize sequential algorithms
- Reduce communication cost
Main Idea of Parameter Server

- **Servers** manage parameters
- **Worker Nodes** are responsible for computing updates (training) for parameters based on part of the training dataset
- **Parameter updates** derived from each node are pushed and aggregated on the server.
A Simple Example

- Server node
A Simple Example

- Server node + worker nodes
A Simple Example

- Server node + worker nodes
- Server node: all parameters
A Simple Example

- Server node + worker nodes
- Server node: all parameters
- Worker node: owns part of the training data
A Simple Example

- Server node + worker nodes
- Server node: all parameters
- Worker node: owns part of the training data
- Operates in iterations
A Simple Example

• Server node + worker nodes
• Server node: all parameters
• Worker node: owns part of the training data

• Operates in iterations
• Worker nodes pull the updated w
A Simple Example

- Server node + worker nodes
- Server node: all parameters
- Worker node: owns part of the training data
- Operates in iterations
- Worker nodes pull the updated w
- Worker node computes updates to w (local training)
A Simple Example

- Server node + worker nodes
- Server node: all parameters
- Worker node: owns part of the training data

- Operates in iterations
- Worker nodes pull the updated w
- Worker node computes updates to w (local training)
- Worker node pushes updates to the server node
A Simple Example

- Server node + worker nodes
- Server node: all parameters
- Worker node: owns part of the training data
- Operates in iterations
- Worker nodes pull the updated w
- Worker node computes updates to w (local training)
- Worker node pushes updates to the server node
- Server node updates w
A Simple Example

- Server node + worker nodes
- Server node: all parameters
- Worker node: owns part of the training data

- Operates in iterations
- Worker nodes pull the updated w
- Worker node computes updates to w (local training)
- Worker node pushes updates to the server node
- Server node updates w
A Simple Example

- Server node + worker nodes
- Server node: all parameters
- Worker node: owns part of the training data
- Operates in iterations
- Worker nodes pull the updated w
- Worker node computes updates to w (local training)
- Worker node pushes updates to the server node
- Server node updates w
A Simple Example

- Server node + worker nodes
- Server node: all parameters
- Worker node: owns part of the training data
- Operates in iterations
- Worker nodes pull the updated w
- Worker node computes updates to w (local training)
- Worker node pushes updates to the server node
- Server node updates w
A Simple Example

- Server node + worker nodes
- Server node: all parameters
- Worker node: owns part of the training data
- Operates in iterations
- Worker nodes pull the updated w
- Worker node computes updates to w (local training)
- Worker node pushes updates to the server node
- Server node updates w
A Simple Example

- Server node + worker nodes
- Server node: all parameters
- Worker node: owns part of the training data
- Operates in iterations
- Worker nodes pull the updated w
- Worker node computes updates to w (local training)
- Worker node pushes updates to the server node
- Server node updates w
A Simple Example

- Server node + worker nodes
- Server node: all parameters
- Worker node: owns part of the training data
- Operates in iterations
- Worker nodes pull the updated w
- Worker node computes updates to w (local training)
- Worker node pushes updates to the server node
- Server node updates w
A Simple Example

- Server node + worker nodes
- Server node: all parameters
- Worker node: owns part of the training data
- Operates in iterations
- Worker nodes pull the updated w
- Worker node computes updates to w (local training)
- Worker node pushes updates to the server node
- Server node updates w
A Simple Example

- Server node + worker nodes
- Server node: all parameters
- Worker node: owns part of the training data

- Operates in iterations
- Worker nodes pull the updated w
- Worker node computes updates to w (local training)
- Worker node pushes updates to the server node
- Server node updates w
A Simple Example

- 100 nodes → 7.8% of w are used on one node (avg)
- 1000 nodes → 0.15% of w are used on one node (avg)
Architecture
Architecture

Server manager: Liveness and parameter partition of server nodes
Architecture

All server nodes partition parameters keys with **consistent hashing**.
Worker node: communicate only with its server node
Updates are replicated to slave server nodes synchronously.
Architecture

Updates are replicated to **slave server nodes synchronously**.
Architecture

Optimization: replication after aggregation

resource manager

server manager

server group

worker group

task scheduler

a worker node

training data

key ring

replicated by S_1

owned by S_1

Liang Gong, Electric Engineering & Computer Science, University of California, Berkeley.
Data Transmission / Calling

• The shared parameters are presented as `<key, value>` vectors.
• Data is sent by *pushing* and *pulling* key range.
• Tasks are issued by RPC.
• Tasks are executed *asynchronously*.
 • Caller executes without waiting for a return from the callee.
• Caller can specify dependencies between callees.

Sequential Consistency Eventual Consistency 1 Bounded Delay Consistency
Trade-off: Asynchronous Call

- 1000 machines, 800 workers, 200 parameter servers.
- 16 physical cores, 192G DRAM, 10Gb Ethernet.
Trade-off: Asynchronous Call

- 1000 machines, 800 workers, 200 parameter servers.
- 16 physical cores, 192G DRAM, 10Gb Ethernet.

Asynchronous updates require more iterations to achieve the same objective value.
Assumptions

• It is OK to lose part of the training dataset.
 → Not urgent to recover a fail worker node
 → Recovering a failed server node is critical

• An approximate solution is good enough
 → Limited inaccuracy is tolerable
 → Relaxed consistency (as long as it converges)
Optimizations

- **Message compression** → save bandwidth
- **Aggregate** parameter changes before synchronous replication on server node
- Key lists for parameter updates are likely to be the same as last iteration
 - → **cache** the list, send a hash
 - \(<3,4>, <6,7.5>, <7,4.5> \ldots\)
- **Filter** before transmission:
 - gradient update that is less than a threshold.
Network Saving

- 1000 machines, 800 workers, 200 parameter servers.
- 16 physical cores, 192G DRAM, 10Gb Ethernet.
Trade-offs

- Consistency model vs Computing Time + Waiting Time

Sequential Consistency ($\tau=0$)

Eventual Consistency ($\tau=\infty$)

1 Bounded Delay Consistency ($\tau=1$)
Discussions

• Feature selection? Sampling?
• Trillions of features and trillions of examples in the training dataset \Rightarrow overfitting?
• Each worker do multiple iterations before push?
• Diversify the labels each node is assigned $>$ Random?
• If one worker only pushes trivial parameter changes, probably its training dataset are not very useful \Rightarrow remove and re-partition.
• A hierarchy of server node
Fact: The total size of parameters (features) may exceed the capacity of a single machine.
Fact: The total size of parameters (features) may exceed the capacity of a single machine.

Assumption: Each instance in the training set only contains a small portion of all features.
Fact: The total size of parameters (features) may exceed the capacity of a single machine.

Assumption: Each instance in the training set only contains a small portion of all features.

Problem: What if one example contains 90% of features (trillions of features in total)?
Fact: The total size of parameters (features) may exceed the capacity of a single machine.

Assumption: Each instance in the training set only contains a small portion of all features.

Problem: What if one example contains 90% of features (trillions of features in total)?
Fact: The total size of parameters (features) may exceed the capacity of a single machine.

Assumption: Each instance in the training set only contains a small portion of all features.

Problem: What if one example contains 90% of features (trillions of features in total)?
Sketch Based Machine Learning Algorithms

- **Sketches** are a class of data stream summaries
- **Problem**: An infinite number of data items arrive continuously, whereas the memory capacity is bounded by a small size
 - Every item is seen once
- **Approach**: Typically formed by linear projections of source data with appropriate (pseudo) random vectors
- **Goal**: use small memory to answer interesting queries with strong precision guarantees

http://web.engr.illinois.edu/~vvnktrm2/talks/sketch.pdf
Assumption / Problem

Assumption: It is OK to calculate updates for models on each portion of data separately and aggregate the updates.

Problem: What about clustering and other ML/DM algorithms?