CS 294-42: Cloud Computing, Systems, Networking, and Frameworks

Fall 2011 (MW 1:00-2:30, 293 Cory Hall)
Ion Stoica
(http://www.cs.berkeley.edu/~istoica/classes/cs294/11/)

Cloud Computing in Numbers

- Datacenter instance:
 - Cost in billion range
 - > 100,000 servers

- Number of servers (estimates*)
 - Google: ~1 mil servers
 - Microsoft, Yahoo!, IBM, HP: several 100,000s each
 - Amazon, Ebay, GoDaddy, Facebook, Akamai: > 50,000

(*http://www.datacenterknowledge.com/archives/2009/05/14/whos-got-the-most-web-servers/)

Why does Cloud Computing Matter?

- Fundamental change
 - The way applications are written and deployed
 - Internet traffic: Internet becomes last-hop between hosts and datacenter
 - Economics: pay as you go

- Opportunity to rethink:
 - Large scale distributed systems
 - Network architectures
 - Tradeoffs in computer systems

How is Cloud Computing Different?

- How is different from distributed systems?
- How is different from parallel systems?

- Axis:
 - Environment constraints
 - Scale
 - Type of failures
 - Application requirements
 - …
Academia Challenges

- Rapid evolving field
 - Need to be in the avantgarde of understanding challenges and trends
 - Unfortunately, academia trails industry
 - Very hard to achieve the scale and generate the workload that reveal main challenges

- How to address above challenges?

Rising to the Challenge

- A thriving open source ecosystem
 - Hadoop/HDF, Hive, Pig, ...
 - Distributions: Cloudera, Hortonworks
 - Many users: Facebook, Twitter, Yahoo!, ...

- Strong collaboration between Berkeley and industry
 - Google, Microsoft, Facebook, Twitter, Yahoo!, ...

- Academia enables experimentation
 - Hard to explore alternatives in industry: usually pick a design and go with it for years

Research Trust

- Multiprogramming for datacenters: multiple frameworks sharing same datacenter

- Why?
 - Improve utilization, performance
 - Sharing data
 - Enable applications using different frameworks
 - Multiple frameworks sharing same datacenter

- Current project: Mesos, Orchestra, Memento, ...
- Future: towards an OS for clusters

Research Trust (con’d)

- Real-time, interactive processing of big data

- Why?
 - Need to process huge volumes of unstructure data
 - Batch processing doesn’t allow interactive data processing

- Current projects: Spark, Memento
- Future: trade between response time and accuracy
Grading

- Project: 60%
- Class presentations: 40%
 - Around 2 papers per student
 - See Randy’s guidelines for leading discussion on papers

Administrative Information

- Class website:
- Office Hours (Soda 465d):
 - Monday, 3-4pm
 - Wednesday, 11-noon
- Create a (anonymized) blog account for paper reviews if you don’t have one yet (e.g., www.blogger.com)
 - Sent me an e-mail by Wednesday, August 31, with your blog url
 - Preferred e-mail for the class e-mail list

Papers

- Is the problem real?
- What is the solution’s main idea (nugget)?
- Why is solution different from previous work?
 - Are system assumptions different?
 - Is workload different?
 - Is problem new?
- Does the paper (or do you) identify any fundamental/hard trade-offs?

Papers (cont’d)

- Do you think the work will be influential in 10 years?
 - Why or why not?
- Predicting the future always hard, but worth a try
 - Look at past examples for inspiration
Streaming Over TCP

- Countless papers:
 - Why cannot be done...
 - New protocols to do it...

- Today
 - Virtually all streaming over TCP
 - Trend to stream over HTTP!

Why did it Succeed?

Multicast

- Countless papers:
 - Why world will come to a standstill without multicast...
 - New protocols to do it...

- Today
 - Multicast is used only in enterprise settings at best
 - Overlay multicast widely used in the Internet
 - CDN based, e.g., WorldCup, March Madness, inaugurations, ...
 - P2P, mostly popular outside US (e.g., China)

Why Did it Fail?
Consistency Everywhere

- Many papers & systems:
 - Group synchronous communication
 - Causally ordered message delivery
 - ...

- Today:
 - Almost never used in WANs, and rarely used in LANs

Why Did it Fail?

Shared Memory

- Countless papers:
 - How shared memory simplifies programming parallel computers
 - Many, many systems proposed and build

- Today:
 - Message passing (MPI) took over as the de facto standard for writing parallel applications
Network Computer

- Big in 90s
 - Promoted by an alliance of Sun, Oracle, Acorn

- Promise: many of advantages of cloud computing
 - Easy to manage
 - Application sharing
 - ...

- Failed miserably

Why Did it Fail?

Coming Back: ChromeOS

- Will it succeed this time?

What are Hard/Fundamental Tradeoffs?

- Brewer’s CAP conjecture: “Consistency, Availability, Partition-tolerance”, you can have only two in a distributed system

- In a in-order, reliable communication protocol cannot minimize overhead and latency simultaneously

- Hard to simultaneously maximize evolvability and performance