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How Did it Start?

= A killer application: Naptser
- Free music over the Internet

= Key idea: share the content, storage and bandwidth of
individual (home) users

Page 1




Model

= Each user stores a subset of files

= Each user has access (can download) files from all users in
the system

Main Challenge

= Find where a particular file is stored
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Other Challenges

Scale: up to hundred of thousands or millions of machines

= Dynamicity: machines can come and go any time

Napster

Assume a centralized index system that maps files (songs)
to machines that are alive
How to find a file (song)

- Query the index system - return a machine that stores the required
file

« Ideally this is the closest/least-loaded machine
- ftp the file
Advantages:

- Simplicity, easy to implement sophisticated search engines on top
of the index system

Disadvantages:
- Robustness, scalability (?)
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Napster: Example

. m3

Gnutella

Distribute file location
Idea: flood the request
Hot to find afile:
- Send request to all neighbors
- Neighbors recursively multicast the request

- Eventually a machine that has the file receives the request,
and it sends back the answer

Advantages:
- Totally decentralized, highly robust
Disadvantages:

- Not scalable; the entire network can be swamped with
request (to alleviate this problem, each request has a TTL)
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Gnutella

= Ad-hoc topology
= Queries are flooded for bounded number of hops
= No guarantees on recall

Distributed Hash Tables (DHTS)

= Abstraction: a distributed hash-table data structure
- insert(id, item);
- item = query(id); (or lookup(id);)

- Note: item can be anything: a data object, document, file,
pointer to a file...

= Proposals
- CAN, Chord, Kademlia, Pastry, Tapestry, etc

10
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DHT Design Goals

= Make sure that an item (file) identified is always found
= Scales to hundreds of thousands of nodes
= Handles rapid arrival and failure of nodes
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Structured Networks

= Distributed Hash Tables (DHTS)

= Hash table interface: put(key,item), get(key)
= O(log n) hops

= Guarantees on recall

kr (Koly)

12
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Content Addressable Network
(CAN)

= Associate to each node and
item a unique id in an d-
dimensional Cartesian space
on a d-torus

= Properties
- Routing table size O(d)

- Guarantees that a file is found
in at most d*n'/d steps, where n
is the total number of nodes

2-torus
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CAN Example: Two Dimensional
Space

= Space divided between nodes
= All nodes cover the entire space -

= Each node covers either a
square or a rectangular area of
ratios 1:2 or 2:1

= Example:

- Node nl1:(1, 2) first node that joins
-> cover the entire space
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CAN Example: Two Dimensional
Space

= Node n2:(4, 2) joins = space is

divided between n1 and n2

------------------------------------------
------------------------------------------
..........................................
..........................................
"""""""""""""

____________________

------------------------------------------

CAN Example: Two Dimensional
Space

= Node n2:(4, 2) joins = space is
divided between nl1 and n2

7

------------------------------------------

------------------------------------------

..........................................

____________________

""""""""""""""""""""""""

------------------------------------------
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CAN Example: Two Dimensional
Space

= Nodes n4:(5, 5) and n5:(6,6)

join

..........................................

""""""""""""""""""""""""

-------------------------------------------
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CAN Example: Two Dimensional
Space
= Nodes: nl:(1, 2); n2:(4,2);
n3:(3, 5); n4:(5,5);n5:(6,6) o ! !
- Items: f1:(2,3); f2:(5,1); N I R e
f3:(2,1); f4:(7,5); BB EECS RY )
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CAN Example: Two
Space

= Each item is stored by the node
who owns its mapping in the
space

7

Dimensional
n5 :----
BEENENE .

.....................

__________

CAN: Query Example

Each node knows its neighbors
in the d-space

Forward query to the neighbor
that is closest to the query id

Example: assume nl queries f4
Can route around some failures
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CAN: Node Joining

I
@
o
new node 1) Discover some node “I” already in CAN
21
CAN: Node Joining
(x,y)
I
®
o
new node 2) Pick random point in space
22
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CAN: Node Joining

(x,y)
9,

o /»‘
new node

3) I routes to (x,y), discovers node J
23

CAN: Node Joining

new

4) split J's zone in half... new node owns one half
24
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Node departure

= Node explicitly hands over its zone and the associated
(key,value) database to one of its neighbors

= In case of network failure this is handled by a take-over
algorithm

= Problem : take over mechanism does not provide
regeneration of data

= Solution:
every node has a backup of its neighbours

25

Chord

= Associate to each node and item a unique id in an uni-
dimensional space 0..2™-1

= Key design decision
- Decouple correctness from efficiency

= Properties
- Routing table size O(log(N)) , where N is the total number of nodes
- Guarantees that afile is found in O(log(N)) steps

26
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Identifier to Node Mapping Example

Node 8 maps [5,8] @ @ h
Node 15 maps [9,15] ;
Node 20 maps [16, 20]

Node 4 maps [59, 4]

Each node maintains a
pointer to its successor

27
Lookup
. il lookup(37
Each node maintains its @ @ ookup(37)
successor
Route packet (ID, data) to
the node responsible for ID
using successor pointers
i § .
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Joining Operation

Each node A periodically sends a stabilize() message to its
successor B

Upon receiving a stabilize() message, node B

- returns its predecessor B’=pred(B) to A by sending a notify(B’)
message

Upon receiving notify(B’) from B,
- if B’ is between A and B, A updates its successor to B’
- A doesn't do anything, otherwise

29

Joining Operation

Node with id=50 joins the succ=4 @
ring @

Node 50 needs to know at
least one node already in the
system

- Assume known node is 15

succ=nil
pred=nil {{—

50

succ=58
pred=35
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Joining Operation

Node 50: send

join(50) to node 15

Node 44: returns
node 58

Node 50 updates its

successor to 58

suco=4 B I

join(50)

succ=BB
pred=nil {{—

succ=58[=
pred=35

Joining Operation

Node 50: send
stabilize() to
node 58

Node 58:

update
predecessor
to 50

send notify()
back

succ=58 "
pred=nil {{—

50

succ=58[=
pred=35
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Joining Operation (cont'd)

succ=4 @
Node 44 sends a stabilize pred=50 =
message to its successor, @
node 58

~

Node 58 reply with a notify t/i/,?
message
Node 44 updates its

successor to 50  sycc=s8
pred=nil {{—

50

succ=58 [
pred=35

stabilize()

i -

Joining Operation (cont'd)

succ=4 =
Node 44 sends a stabilize pred=50 = @
message to its new @
successor, node 50

Node 50 sets its predecessor
to node 44

i Stabilize()
50

succ=50[=
pred=35

i y
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Joining Operation (cont'd)

= This completes the joining
operation!

pred=50 @

i -

Achieving Efficiency: finger tables

Finger Table at 80 0 Say m=7
——

T I

1 96

2 96 i

3 96 80 + 24

(80 + 26) mod 27 = 16

4 96 80 + 23
5 112 80 + 221
6 20 802 2% g

ith entry at peer with id n is first peer withid >= n+2'(mod 2™)
36
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Achieving Robustness

= To improve robustness each node maintains the k (> 1)
immediate successors instead of only one successor

= In the notify() message, node A can send its k-1 successors
to its predecessor B

= Upon receiving notify() message, B can update its
successor list by concatenating the successor list received
from A with A itself

37

CAN/Chord Optimizations

= Reduce latency
- Chose finger that reduces expected time to reach destination
- Chose the closest node from range [N+2-1,N+2/) as successor

= Accommodate heterogeneous systems
- Multiple virtual nodes per physical node

38
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Conclusions

= Distributed Hash Tables are a key component of scalable
and robust overlay networks

= CAN: O(d) state, O(d*n1/d) distance

= Chord: O(log n) state, O(log n) distance

= Both can achieve stretch < 2

= Simplicity is key

= Services built on top of distributed hash tables
- persistent storage (OpenDHT, Oceanstore)
- p2p file storage, i3 (chord)
- multicast (CAN, Tapestry)

39
One Other Papers
> Krishna Gummadi et al, “The Impact of DHT Routing
Geometry on Resilience and Proximity”, SIGCOMM’'03
40
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Motivation

= New DHTs constantly proposed

CAN, Chord, Pastry, Tapestry, Plaxton, Viceroy, Kademlia, Skipnet,
Symphony, Koorde, Apocrypha, Land, ORDI ...

= Each is extensively analyzed but in isolation
= Each DHT has many algorithmic details making it difficult to
compare

Goals:
a) Separate fundamental design choices from algorithmic details
b) Understand their affect reliability and efficiency

41

Our approach: Component-based
analysis

= Break DHT design into independent components

= Analyze impact of each component choice separately
- compare with black-box analysis:
¢ benchmark each DHT implementation
¢ rankings of existing DHTs vs. hints on better designs

= Two types of components
- Routing-level : neighbor & route selection
- System-level : caching, replication, querying policy etc.

42
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Three aspects of a DHT design

1) Geometry: smallest network graph that ensures
correct routing/lookup in the DHT
Tree, Hypercube, Ring, Butterfly, Debruijn

2) Distance function: captures a geometric structure
d(id1, id2) for any two node identifiers

3) Algorithm: rules for selecting neighbors and routes
using the distance function

43

Chord DHT has Ring Geometry

44
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Chord Distance function captures Ring

000
111 001
110 010
101 011
d(100, 111) = 3 100

= Nodes are points on a clock-wise Ring

= d(id1, id2) = length of clock-wise arc between ids
= (id2 —id1) mod N
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Chord Neighbor and Route selection
Algorithms

1000,
110

001 d(000,001) =1

110 010 d(000, 010) =2

101 ‘ 011

100
d(000, 001) = 4

» Neighbor selection: it" neighbor at 2' distance

= Route selection: pick neighbor closest to destination

46

Page 23




One Geometry, Many Algorithms

= Algorithm : exact rules for selecting neighbors, routes
- Chord, CAN, PRR, Tapestry, Pastry etc.
- inspired by geometric structures like Ring, Hyper-cube, Tree

= Geometry : an algorithm’s underlying structure
- Distance function is the formal representation of Geometry
- Chord, Symphony => Ring

- many algorithms can have same geometry

Why is Geometry important?

47

Insight:
Geometry => Flexibility => Performance

= Geometry captures flexibility in selecting algorithms

= Flexibility is important for routing performance
- Flexibility in selecting routes leads to shorter, reliable paths

- Flexibility in selecting neighbors leads to shorter paths

48
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Route selection flexibility
allowed by Ring Geometry

000
110

110 nf

101 : 011
100

= Chord algorithm picks neighbor closest to destination

= A different algorithm picks the best of alternate paths

49

Neighbor selection flexibility
allowed by Ring Geometry

000
111 001

110 010

101 011
100

» Chord algorithm picks it" neighbor at 2' distance

= A different algorithm picks i neighbor from [2 , 2i+1)

50
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Geometries we compare

Geometry

Algorithm

Ring

Chord, Symphony

Hypercube

CAN

Tree

Plaxton

Hybrid =
Tree + Ring

Tapestry, Pastry

XOR
d(id1, id2) = id1 XOR id2

Kademlia

51

Metrics for flexibilities

= FNS: Flexibility in Neighbor Selection
= number of node choices for a neighbor

= FRS: Flexibility in Route Selection
= avg. number of next-hop choices for all destinations

= Constraints for neighbors and routes

- select neighbors to have paths of O(logN)
- select routes so that each hop is closer to destination

52
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Flexibility in neighbor selection (FNS) for

Tree

“““““ A

“““““ 1

““““““ |

|

A h=3,
I h=2 ;
|_ 1
I I
¥ g \7

000 001 010 011 100 101 110 111

\__M_/Y

= logN neighbors in sub-trees of varying heights

« FNS = 2" for it" neighbor of a node
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Flexibility in route selection (FRS) for
Hypercube
110 111
d(010,011) =3
10
d(010, 011) = 1 011
000 001
d(000, 011) =2 d(001, 011) = 1
= Routing to next hop fixes one bit
 FRS =Avg. (#bits destination differs in)=logN/2
54
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Summary of our flexibility analysis

Flexibility Ordering of Geometries

Neighbors Hypercube << Tree, XOR, Ring, Hybrid
(FNS) (logN) (2

Routes |Tree << XOR, Hybrid < Hypercube < Ring
(FRS) (2) (logN/2) (logN/2) (logN)

How relevant is flexibility for DHT routing performance?

55

Analysis of Static Resilience

Two aspects of robust routing

= Dynamic Recovery : how quickly routing state is recovered after
failures

= Static Resilience : how well the network routes before recovery
finishes

- captures how quickly recovery algorithms need to work
- depends on FRS

Evaluation:
= Fail a fraction of nodes, without recovering any state
= Metric: % Paths Failed

56
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Does flexibility affect Static
Resilience?

100 /
80
Tree XOR
N b =
60 4 Hypnrr‘llhn
/ Hybrid
40 /

% Failed Paths

20

0 10 20 30 40 50 60 70 80 90
% Failed Nodes

Tree << XOR = Hybrid < Hypercube < Ring
Flexibility in Route Selection matters for Static Resilience

57

Analysis of Overlay Path Latency

= Goal: Minimize end-to-end overlay path latency

- not just the number of hops
= Both FNS and FRS can reduce latency
- Tree has FNS, Hypercube has FRS, Ring & XOR have both

Evaluation:
= Using Internet latency distributions (see paper)

58
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Which is more effective, FNS or FRS?

100

FNS + FRS Ring™

80
/F\NS ng FRS Ring /
60 X
/ / Plain Ring
40 / / /
20 /
0 T T T T

0 400 800 1200 1600 2000
Latency (msec)

Plain << FRS << FNS = FNS+FRS
Neighbor Selection is much better than Route Selection

CDF
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Does Geometry affect performance of
FNS or FRS?

1 —
80

NS XOR" FRSRing

60 / /

40

FRS Hypercube

CDF

20 7

0 T T T T

0 400 800 1200 1600 2000
Latency (msec)

No, performance of FNS/FRS is independent of Geometry
A Geometry’s support for neighbor selection is crucial

60
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Summary of results

« FRS matters for Static Resilience
- Ring has the best resilience

= Both FNS and FRS reduce Overlay Path Latency

= But, FNS is far more important than FRS
- Ring, Hybrid, Tree and XOR have high FNS

61
Conclusions
= Routing Geometry is a fundamental design choice
- Geometry determines flexibility
- Flexibility improves resilience and proximity
= Ring has the greatest flexibility
62
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