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CS 268: Lecture 20
Distributed Hash Tables 

(DHTs)

Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776
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How Did it Start?

� A killer application: Naptser
- Free music over the Internet

� Key idea: share the content, storage and bandwidth of 
individual (home) users

Internet
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Model

� Each user stores a subset of files
� Each user has access (can download) files from all users in 

the system
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Main Challenge

� Find where a particular file is stored
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Other Challenges

� Scale: up to hundred of thousands or millions of machines 
� Dynamicity: machines can come and go any time
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Napster

� Assume a centralized index system that maps files (songs) 
to machines that are alive

� How to find a file (song)
- Query the index system 

�
return a machine that stores the required 

file
• Ideally this is the closest/least-loaded machine

- ftp the file
� Advantages: 

- Simplicity, easy to implement sophisticated search engines on top 
of the index system

� Disadvantages:
- Robustness, scalability (?)
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Napster: Example
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Gnutella

� Distribute file location
� Idea: flood the request
� Hot to find a file:

- Send request to all neighbors
- Neighbors recursively multicast the request
- Eventually a machine that has the file receives the request, 

and it sends back the answer
� Advantages:

- Totally decentralized, highly robust
� Disadvantages:

- Not scalable; the entire network can be swamped with 
request (to alleviate this problem, each request has a TTL)  
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Gnutella

� Ad-hoc topology
� Queries are flooded for bounded number of hops
� No guarantees on recall
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Distributed Hash Tables (DHTs)

� Abstraction: a distributed hash-table data structure 
- insert(id, item);
- item = query(id); (or lookup(id);)
- Note: item can be anything: a data object, document, file, 

pointer to a file…
� Proposals

- CAN, Chord, Kademlia, Pastry, Tapestry, etc
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DHT Design Goals

� Make sure that an item (file) identified is always found
� Scales to hundreds of thousands of nodes
� Handles rapid arrival and failure of nodes
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� Distributed Hash Tables (DHTs)
� Hash table interface: put(key,item), get(key)
� O(log n) hops 
� Guarantees on recall

Structured Networks
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Content Addressable Network 
(CAN)

� Associate to each node and 
item a unique id in an d-
dimensional Cartesian space 
on a d-torus

� Properties 
- Routing table size O(d)

- Guarantees that a file is found 
in at most d*n1/d steps, where n
is the total number of nodes
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CAN Example: Two Dimensional 
Space

� Space divided between nodes
� All nodes cover the entire space
� Each node covers either a 

square or a rectangular area of 
ratios 1:2 or 2:1

� Example: 
- Node n1:(1, 2) first node that joins �

cover the entire space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1



Page 8

15

CAN Example: Two Dimensional 
Space

� Node n2:(4, 2) joins � space is 
divided between n1 and n2
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CAN Example: Two Dimensional 
Space

� Node n2:(4, 2) joins � space is 
divided between n1 and n2
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CAN Example: Two Dimensional 
Space

� Nodes n4:(5, 5) and n5:(6,6) 
join
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CAN Example: Two Dimensional 
Space

� Nodes: n1:(1, 2); n2:(4,2); 
n3:(3, 5); n4:(5,5);n5:(6,6)

� Items: f1:(2,3); f2:(5,1); 
f3:(2,1); f4:(7,5);
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CAN Example: Two Dimensional 
Space

� Each item is stored by the node 
who owns its mapping in the 
space 
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CAN: Query Example

� Each node knows its neighbors 
in the d-space

� Forward query to the neighbor 
that is closest to the query id

� Example: assume n1 queries f4
� Can route around some failures
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CAN: Node Joining
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CAN: Node Joining
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CAN: Node Joining
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CAN: Node Joining
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Node departure

� Node explicitly hands over its zone and the associated 
(key,value) database to one of its neighbors

� In case of network failure this is handled by a take-over 
algorithm

� Problem : take over mechanism does not provide 
regeneration of data 

� Solution:
every node has a backup of its neighbours 
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Chord

� Associate to each node and item a unique id in an uni-
dimensional space 0..2m-1

� Key design decision
- Decouple correctness from efficiency

� Properties 
- Routing table size O(log(N)) , where N is the total number of nodes

- Guarantees that a file is found in O(log(N)) steps
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Identifier to Node Mapping Example

� Node  8 maps [5,8]
� Node 15 maps [9,15]
� Node 20 maps [16, 20]
� …
� Node 4 maps [59, 4]

� Each node maintains a 
pointer to its successor

4
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Lookup

� Each node maintains its 
successor 

� Route packet (ID, data) to 
the node responsible for ID 
using successor pointers

4

20

32
35

8

15

44

58

lookup(37)

node=44
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Joining Operation

� Each node A periodically sends a stabilize() message to its 
successor B

� Upon receiving a stabilize() message, node B 
- returns its predecessor B’=pred(B) to A by sending a notify(B’)

message

� Upon receiving notify(B’) from B, 
- if B’ is between A and B, A updates its successor to B’

- A doesn’t do anything, otherwise 

30

Joining Operation

4
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32
35
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44

58

50

� Node with id=50 joins the 
ring

� Node 50 needs to know at 
least one node already in the 
system
- Assume known node is 15

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35
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Joining Operation

4

20

3235
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15

44
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� Node 50: send 
join(50) to node 15 

� Node 44: returns 
node 58 

� Node 50 updates its 
successor to 58 join(50)

succ=58

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58
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Joining Operation

4

20

3235
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44

58

50

� Node 50: send 
stabilize() to 
node 58

� Node 58: 
- update 

predecessor 
to 50 

- send notify() 
back 

succ=58
pred=nil

succ=58
pred=35

stabilize()

no
tif

y(
pr

ed
=5

0)

pred=50
succ=4
pred=44
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Joining Operation (cont’d)
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� Node 44 sends a stabilize 
message to its successor, 
node 58

� Node 58 reply with a notify 
message

� Node 44 updates its 
successor to 50 succ=58

stabilize()no
tif

y(
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ed
=5

0)
succ=50

pred=50
succ=4

pred=nil

succ=58
pred=35
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Joining Operation (cont’d)
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� Node 44 sends a stabilize 
message to its new 
successor, node 50

� Node 50 sets its predecessor 
to node 44

succ=58

succ=50

Stabilize()
pred=44

pred=50

pred=35

succ=4

pred=nil
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Joining Operation (cont’d)
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� This completes the joining 
operation!

succ=58

succ=50

pred=44

pred=50
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Achieving Efficiency: finger tables

80 + 20
80 + 21

80 + 22
80 + 23

80 + 24

80 + 25

(80 + 26) mod 27 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=                          )2(mod2 min +

i   ft[i]
0  96
1  96
2  96
3  96
4  96
5  112
6  20

Finger Table at 80

32

45
80

20
112

96
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Achieving Robustness

� To improve robustness each node maintains the k (> 1) 
immediate successors instead of only one successor

� In the notify() message, node A can send its k-1 successors 
to its predecessor B

� Upon receiving notify() message, B can update its 
successor list by concatenating the successor list received 
from A with A itself 
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CAN/Chord Optimizations

� Reduce latency
- Chose finger that reduces expected time to reach destination
- Chose the closest node from range [N+2i-1,N+2i) as successor

� Accommodate heterogeneous systems
- Multiple virtual nodes per physical node
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Conclusions

� Distributed Hash Tables are a key component of scalable 
and robust overlay networks

� CAN: O(d) state,  O(d*n1/d) distance
� Chord: O(log n) state, O(log n) distance
� Both can achieve stretch < 2
� Simplicity is key
� Services built on top of distributed hash tables

- persistent storage (OpenDHT, Oceanstore)
- p2p file storage, i3 (chord)
- multicast (CAN, Tapestry)
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One Other Papers

� Krishna Gummadi et al, “The Impact of DHT Routing 
Geometry on Resilience and Proximity”, SIGCOMM’03
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Motivation

� New DHTs constantly proposed

- CAN, Chord, Pastry, Tapestry, Plaxton, Viceroy, Kademlia, Skipnet, 
Symphony, Koorde, Apocrypha, Land, ORDI …

� Each is extensively analyzed but in isolation

� Each DHT has many algorithmic details making it difficult to 
compare

Goals:
a) Separate fundamental design choices from algorithmic details
b) Understand their affect reliability and efficiency
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Our approach: Component-based 
analysis

� Break DHT design into independent components 

� Analyze impact of each component choice separately
- compare with black-box analysis:

• benchmark each DHT implementation
• rankings of existing DHTs vs. hints on better designs 

� Two types of components
- Routing-level : neighbor & route selection
- System-level : caching, replication, querying policy etc.
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Three aspects of a DHT design

1) Geometry: smallest network graph that ensures 
correct routing/lookup in the DHT  
- Tree, Hypercube, Ring, Butterfly, Debruijn

2) Distance function: captures a geometric structure
- d(id1, id2) for any two node identifiers

3) Algorithm: rules for selecting neighbors and routes 
using the distance function

44

Chord DHT has Ring Geometry
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Chord Distance function captures Ring

� Nodes are points on a clock-wise Ring
� d(id1, id2) = length of clock-wise arc between ids

= (id2 – id1) mod N

d(100, 111) = 3
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Chord Neighbor and Route selection 
Algorithms

� Neighbor selection: i th neighbor at 2i distance
� Route selection: pick neighbor closest to destination
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d(000, 001) = 1

d(000, 010) = 2

d(000, 001) = 4
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One Geometry, Many Algorithms

� Algorithm : exact rules for selecting neighbors, routes
- Chord, CAN, PRR, Tapestry, Pastry etc.

- inspired by geometric structures like Ring, Hyper-cube, Tree

� Geometry : an algorithm’s underlying structure
- Distance function is the formal representation of Geometry

- Chord, Symphony => Ring

- many algorithms can have same geometry

Why is Geometry important?
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Insight:
Geometry => Flexibility => Performance

� Geometry captures flexibility in selecting algorithms

� Flexibility is important for routing performance 
- Flexibility in selecting routes leads to shorter, reliable paths

- Flexibility in selecting neighbors leads to shorter paths
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Route selection flexibility 
allowed by Ring Geometry

� Chord algorithm picks neighbor closest to destination

� A different algorithm picks the best of alternate paths
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Neighbor selection flexibility
allowed by Ring Geometry

� Chord algorithm picks i th neighbor at 2i distance

� A different algorithm picks i th neighbor from [2i , 2i+1)
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Geometries we compare

Kademlia

Tapestry, Pastry

Plaxton

CAN

Chord, Symphony

Algorithm

XOR
d(id1, id2) = id1 XOR id2

Hybrid =
Tree + Ring

Tree

Hypercube

Ring

Geometry
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Metrics for flexibilities

� FNS: Flexibility in Neighbor Selection
= number of node choices for a neighbor

� FRS: Flexibility in Route Selection
= avg. number of next-hop choices for all destinations

� Constraints for neighbors and routes

- select neighbors to have paths of O(logN)
- select routes so that each hop is closer to destination
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Flexibility in neighbor selection (FNS) for 
Tree

��� ������ � ���� � � � � �� ��� �������� �

h = 2

h = 1

h = 3

� logN neighbors in sub-trees of varying heights
� FNS = 2i-1 for i th neighbor of a node
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Flexibility in route selection (FRS) for 
Hypercube

� Routing to next hop fixes one bit

� FRS =Avg. (#bits destination differs in)=logN/2
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Summary of our flexibility analysis

Tree  <<  XOR, Hybrid  <  Hypercube  <  Ring

(1)          (logN/2)               (logN/2)       (logN)

Hypercube  <<   Tree, XOR, Ring, Hybrid

(logN)                            (2i-1)      

Ordering of Geometries

Routes

(FRS)

Neighbors

(FNS)

Flexibility

How relevant is flexibility for DHT routing performance?
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Analysis of Static Resilience

Two aspects of robust routing
� Dynamic Recovery : how quickly routing state is recovered after 

failures
� Static Resilience : how well the network routes before recovery 

finishes
- captures how quickly recovery algorithms need to work

- depends on FRS

Evaluation:
� Fail a fraction of nodes, without recovering any state
� Metric: % Paths Failed
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Does flexibility affect Static 
Resilience?

Tree  <<  XOR  � Hybrid  <  Hypercube  <  Ring

Flexibility in Route Selection matters for Static Resilience
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Analysis of Overlay Path Latency

� Goal: Minimize end-to-end overlay path latency
- not just the number of hops

� Both FNS and FRS can reduce latency

- Tree has FNS, Hypercube has FRS, Ring & XOR have both

Evaluation:
� Using Internet latency distributions (see paper)
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Which is more effective, FNS or FRS?

Plain  <<   FRS   <<  FNS � FNS+FRS
Neighbor Selection is much better than Route Selection
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Does Geometry affect performance of 
FNS or FRS?

No, performance of FNS/FRS is independent of Geometry
A Geometry’s support for neighbor selection is crucial
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Summary of results

� FRS matters for Static Resilience 
- Ring has the best resilience

� Both FNS and FRS reduce Overlay Path Latency

� But, FNS is far more important than FRS
- Ring, Hybrid, Tree and XOR have high FNS
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Conclusions

� Routing Geometry is a fundamental design choice
- Geometry determines flexibility
- Flexibility improves resilience and proximity

� Ring has the greatest flexibility


