CS 268: Lecture 20
Distributed Hash Tables
(DHTS)

lon Stoica
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720-1776

How Did it Start?

= A killer application: Naptser
- Free music over the Internet

= Key idea: share the content, storage and bandwidth of
individual (home) users

Page 1

Model

= Each user stores a subset of files

= Each user has access (can download) files from all users in
the system

Main Challenge

= Find where a particular file is stored

Page 2

Other Challenges

Scale: up to hundred of thousands or millions of machines

= Dynamicity: machines can come and go any time

Napster

Assume a centralized index system that maps files (songs)
to machines that are alive
How to find a file (song)

- Query the index system - return a machine that stores the required
file

« Ideally this is the closest/least-loaded machine
- ftp the file
Advantages:

- Simplicity, easy to implement sophisticated search engines on top
of the index system

Disadvantages:
- Robustness, scalability (?)

Page 3

Napster: Example

. m3

Gnutella

Distribute file location
Idea: flood the request
Hot to find afile:
- Send request to all neighbors
- Neighbors recursively multicast the request

- Eventually a machine that has the file receives the request,
and it sends back the answer

Advantages:
- Totally decentralized, highly robust
Disadvantages:

- Not scalable; the entire network can be swamped with
request (to alleviate this problem, each request has a TTL)

Page 4

Gnutella

= Ad-hoc topology
= Queries are flooded for bounded number of hops
= No guarantees on recall

Distributed Hash Tables (DHTS)

= Abstraction: a distributed hash-table data structure
- insert(id, item);
- item = query(id); (or lookup(id);)

- Note: item can be anything: a data object, document, file,
pointer to a file...

= Proposals
- CAN, Chord, Kademlia, Pastry, Tapestry, etc

10

Page 5

DHT Design Goals

= Make sure that an item (file) identified is always found
= Scales to hundreds of thousands of nodes
= Handles rapid arrival and failure of nodes

11

Structured Networks

= Distributed Hash Tables (DHTS)

= Hash table interface: put(key,item), get(key)
= O(log n) hops

= Guarantees on recall

kr (Koly)

12

Page 6

Content Addressable Network
(CAN)

= Associate to each node and
item a unique id in an d-
dimensional Cartesian space
on a d-torus

= Properties
- Routing table size O(d)

- Guarantees that a file is found
in at most d*n'/d steps, where n
is the total number of nodes

2-torus

13

CAN Example: Two Dimensional
Space

= Space divided between nodes
= All nodes cover the entire space -

= Each node covers either a
square or a rectangular area of
ratios 1:2 or 2:1

= Example:

- Node nl1:(1, 2) first node that joins
-> cover the entire space

Page 7

CAN Example: Two Dimensional
Space

= Node n2:(4, 2) joins = space is

divided between n1 and n2

--
--
..
..
"""""""""""""

--

CAN Example: Two Dimensional
Space

= Node n2:(4, 2) joins = space is
divided between nl1 and n2

7

--

--

..

""""""""""""""""""""""""

--

Page 8

CAN Example: Two Dimensional
Space

= Nodes n4:(5, 5) and n5:(6,6)

join

..

""""""""""""""""""""""""

17
CAN Example: Two Dimensional
Space
= Nodes: nl:(1, 2); n2:(4,2);
n3:(3, 5); n4:(5,5);n5:(6,6) o ! !
- Items: f1:(2,3); f2:(5,1); N I R e
f3:(2,1); f4:(7,5); BB EECS RY)
I I
s| o | i
"""" [£ S E I 1
G N N U O N S S
) o ! L
of T ozl

Page 9

CAN Example: Two
Space

= Each item is stored by the node
who owns its mapping in the
space

7

Dimensional
n5 :----
BEENENE .

.....................

CAN: Query Example

Each node knows its neighbors
in the d-space

Forward query to the neighbor
that is closest to the query id

Example: assume nl queries f4
Can route around some failures

Page 10

CAN: Node Joining

I
@
o
new node 1) Discover some node “I” already in CAN
21
CAN: Node Joining
(x,y)
I
®
o
new node 2) Pick random point in space
22

Page 11

CAN: Node Joining

(x,y)
9,

o /»‘
new node

3) I routes to (x,y), discovers node J
23

CAN: Node Joining

new

4) split J's zone in half... new node owns one half
24

Page 12

Node departure

= Node explicitly hands over its zone and the associated
(key,value) database to one of its neighbors

= In case of network failure this is handled by a take-over
algorithm

= Problem : take over mechanism does not provide
regeneration of data

= Solution:
every node has a backup of its neighbours

25

Chord

= Associate to each node and item a unique id in an uni-
dimensional space 0..2™-1

= Key design decision
- Decouple correctness from efficiency

= Properties
- Routing table size O(log(N)) , where N is the total number of nodes
- Guarantees that afile is found in O(log(N)) steps

26

Page 13

Identifier to Node Mapping Example

Node 8 maps [5,8] @ @ h
Node 15 maps [9,15] ;
Node 20 maps [16, 20]

Node 4 maps [59, 4]

Each node maintains a
pointer to its successor

27
Lookup
. il lookup(37
Each node maintains its @ @ ookup(37)
successor
Route packet (ID, data) to
the node responsible for ID
using successor pointers
i § .

Page 14

Joining Operation

Each node A periodically sends a stabilize() message to its
successor B

Upon receiving a stabilize() message, node B

- returns its predecessor B’=pred(B) to A by sending a notify(B’)
message

Upon receiving notify(B’) from B,
- if B’ is between A and B, A updates its successor to B’
- A doesn't do anything, otherwise

29

Joining Operation

Node with id=50 joins the succ=4 @
ring @

Node 50 needs to know at
least one node already in the
system

- Assume known node is 15

succ=nil
pred=nil {{—

50

succ=58
pred=35

Page 15

Joining Operation

Node 50: send

join(50) to node 15

Node 44: returns
node 58

Node 50 updates its

successor to 58

suco=4 B I

join(50)

succ=BB
pred=nil {{—

succ=58[=
pred=35

Joining Operation

Node 50: send
stabilize() to
node 58

Node 58:

update
predecessor
to 50

send notify()
back

succ=58 "
pred=nil {{—

50

succ=58[=
pred=35

Page 16

Joining Operation (cont'd)

succ=4 @
Node 44 sends a stabilize pred=50 =
message to its successor, @
node 58

~

Node 58 reply with a notify t/i/,?
message
Node 44 updates its

successor to 50 sycc=s8
pred=nil {{—

50

succ=58 [
pred=35

stabilize()

i -

Joining Operation (cont'd)

succ=4 =
Node 44 sends a stabilize pred=50 = @
message to its new @
successor, node 50

Node 50 sets its predecessor
to node 44

i Stabilize()
50

succ=50[=
pred=35

i y

Page 17

Joining Operation (cont'd)

= This completes the joining
operation!

pred=50 @

i -

Achieving Efficiency: finger tables

Finger Table at 80 0 Say m=7
——

T I

1 96

2 96 i

3 96 80 + 24

(80 + 26) mod 27 = 16

4 96 80 + 23
5 112 80 + 221
6 20 802 2% g

ith entry at peer with id n is first peer withid >= n+2'(mod 2™)
36

Page 18

Achieving Robustness

= To improve robustness each node maintains the k (> 1)
immediate successors instead of only one successor

= In the notify() message, node A can send its k-1 successors
to its predecessor B

= Upon receiving notify() message, B can update its
successor list by concatenating the successor list received
from A with A itself

37

CAN/Chord Optimizations

= Reduce latency
- Chose finger that reduces expected time to reach destination
- Chose the closest node from range [N+2-1,N+2/) as successor

= Accommodate heterogeneous systems
- Multiple virtual nodes per physical node

38

Page 19

Conclusions

= Distributed Hash Tables are a key component of scalable
and robust overlay networks

= CAN: O(d) state, O(d*n1/d) distance

= Chord: O(log n) state, O(log n) distance

= Both can achieve stretch < 2

= Simplicity is key

= Services built on top of distributed hash tables
- persistent storage (OpenDHT, Oceanstore)
- p2p file storage, i3 (chord)
- multicast (CAN, Tapestry)

39
One Other Papers
> Krishna Gummadi et al, “The Impact of DHT Routing
Geometry on Resilience and Proximity”, SIGCOMM’'03
40

Page 20

Motivation

= New DHTs constantly proposed

CAN, Chord, Pastry, Tapestry, Plaxton, Viceroy, Kademlia, Skipnet,
Symphony, Koorde, Apocrypha, Land, ORDI ...

= Each is extensively analyzed but in isolation
= Each DHT has many algorithmic details making it difficult to
compare

Goals:
a) Separate fundamental design choices from algorithmic details
b) Understand their affect reliability and efficiency

41

Our approach: Component-based
analysis

= Break DHT design into independent components

= Analyze impact of each component choice separately
- compare with black-box analysis:
¢ benchmark each DHT implementation
¢ rankings of existing DHTs vs. hints on better designs

= Two types of components
- Routing-level : neighbor & route selection
- System-level : caching, replication, querying policy etc.

42

Page 21

Three aspects of a DHT design

1) Geometry: smallest network graph that ensures
correct routing/lookup in the DHT
Tree, Hypercube, Ring, Butterfly, Debruijn

2) Distance function: captures a geometric structure
d(id1, id2) for any two node identifiers

3) Algorithm: rules for selecting neighbors and routes
using the distance function

43

Chord DHT has Ring Geometry

44

Page 22

Chord Distance function captures Ring

000
111 001
110 010
101 011
d(100, 111) = 3 100

= Nodes are points on a clock-wise Ring

= d(id1, id2) = length of clock-wise arc between ids
= (id2 —id1) mod N

45

Chord Neighbor and Route selection
Algorithms

1000,
110

001 d(000,001) =1

110 010 d(000, 010) =2

101 ‘ 011

100
d(000, 001) = 4

» Neighbor selection: it" neighbor at 2' distance

= Route selection: pick neighbor closest to destination

46

Page 23

One Geometry, Many Algorithms

= Algorithm : exact rules for selecting neighbors, routes
- Chord, CAN, PRR, Tapestry, Pastry etc.
- inspired by geometric structures like Ring, Hyper-cube, Tree

= Geometry : an algorithm’s underlying structure
- Distance function is the formal representation of Geometry
- Chord, Symphony => Ring

- many algorithms can have same geometry

Why is Geometry important?

47

Insight:
Geometry => Flexibility => Performance

= Geometry captures flexibility in selecting algorithms

= Flexibility is important for routing performance
- Flexibility in selecting routes leads to shorter, reliable paths

- Flexibility in selecting neighbors leads to shorter paths

48

Page 24

Route selection flexibility
allowed by Ring Geometry

000
110

110 nf

101 : 011
100

= Chord algorithm picks neighbor closest to destination

= A different algorithm picks the best of alternate paths

49

Neighbor selection flexibility
allowed by Ring Geometry

000
111 001

110 010

101 011
100

» Chord algorithm picks it" neighbor at 2' distance

= A different algorithm picks i neighbor from [2 , 2i+1)

50

Page 25

Geometries we compare

Geometry

Algorithm

Ring

Chord, Symphony

Hypercube

CAN

Tree

Plaxton

Hybrid =
Tree + Ring

Tapestry, Pastry

XOR
d(id1, id2) = id1 XOR id2

Kademlia

51

Metrics for flexibilities

= FNS: Flexibility in Neighbor Selection
= number of node choices for a neighbor

= FRS: Flexibility in Route Selection
= avg. number of next-hop choices for all destinations

= Constraints for neighbors and routes

- select neighbors to have paths of O(logN)
- select routes so that each hop is closer to destination

52

Page 26

Flexibility in neighbor selection (FNS) for

Tree

“““““ A

“““““ 1

““““““ |

|

A h=3,
I h=2 ;
|_ 1
I I
¥ g \7

000 001 010 011 100 101 110 111

__M_/Y

= logN neighbors in sub-trees of varying heights

« FNS = 2" for it" neighbor of a node

53
Flexibility in route selection (FRS) for
Hypercube
110 111
d(010,011) =3
10
d(010, 011) = 1 011
000 001
d(000, 011) =2 d(001, 011) = 1
= Routing to next hop fixes one bit
 FRS =Avg. (#bits destination differs in)=logN/2
54

Page 27

Summary of our flexibility analysis

Flexibility Ordering of Geometries

Neighbors Hypercube << Tree, XOR, Ring, Hybrid
(FNS) (logN) (2

Routes |Tree << XOR, Hybrid < Hypercube < Ring
(FRS) (2) (logN/2) (logN/2) (logN)

How relevant is flexibility for DHT routing performance?

55

Analysis of Static Resilience

Two aspects of robust routing

= Dynamic Recovery : how quickly routing state is recovered after
failures

= Static Resilience : how well the network routes before recovery
finishes

- captures how quickly recovery algorithms need to work
- depends on FRS

Evaluation:
= Fail a fraction of nodes, without recovering any state
= Metric: % Paths Failed

56

Page 28

Does flexibility affect Static
Resilience?

100 /
80
Tree XOR
N b =
60 4 Hypnrr‘llhn
/ Hybrid
40 /

% Failed Paths

20

0 10 20 30 40 50 60 70 80 90
% Failed Nodes

Tree << XOR = Hybrid < Hypercube < Ring
Flexibility in Route Selection matters for Static Resilience

57

Analysis of Overlay Path Latency

= Goal: Minimize end-to-end overlay path latency

- not just the number of hops
= Both FNS and FRS can reduce latency
- Tree has FNS, Hypercube has FRS, Ring & XOR have both

Evaluation:
= Using Internet latency distributions (see paper)

58

Page 29

Which is more effective, FNS or FRS?

100

FNS + FRS Ring™

80
/F\NS ng FRS Ring /
60 X
/ / Plain Ring
40 / / /
20 /
0 T T T T

0 400 800 1200 1600 2000
Latency (msec)

Plain << FRS << FNS = FNS+FRS
Neighbor Selection is much better than Route Selection

CDF

59

Does Geometry affect performance of
FNS or FRS?

1 —
80

NS XOR" FRSRing

60 / /

40

FRS Hypercube

CDF

20 7

0 T T T T

0 400 800 1200 1600 2000
Latency (msec)

No, performance of FNS/FRS is independent of Geometry
A Geometry’s support for neighbor selection is crucial

60

Page 30

Summary of results

« FRS matters for Static Resilience
- Ring has the best resilience

= Both FNS and FRS reduce Overlay Path Latency

= But, FNS is far more important than FRS
- Ring, Hybrid, Tree and XOR have high FNS

61
Conclusions
= Routing Geometry is a fundamental design choice
- Geometry determines flexibility
- Flexibility improves resilience and proximity
= Ring has the greatest flexibility
62

Page 31

