
Page 1

1

CS 268: Lecture 20
Distributed Hash Tables

(DHTs)

Ion Stoica
Computer Science Division

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

Berkeley, CA 94720-1776

2

How Did it Start?

� A killer application: Naptser
- Free music over the Internet

� Key idea: share the content, storage and bandwidth of
individual (home) users

Internet

Page 2

3

Model

� Each user stores a subset of files
� Each user has access (can download) files from all users in

the system

4

Main Challenge

� Find where a particular file is stored

A
B

C

D

E

F

E?

Page 3

5

Other Challenges

� Scale: up to hundred of thousands or millions of machines
� Dynamicity: machines can come and go any time

6

Napster

� Assume a centralized index system that maps files (songs)
to machines that are alive

� How to find a file (song)
- Query the index system

�
return a machine that stores the required

file
• Ideally this is the closest/least-loaded machine

- ftp the file
� Advantages:

- Simplicity, easy to implement sophisticated search engines on top
of the index system

� Disadvantages:
- Robustness, scalability (?)

Page 4

7

Napster: Example

A
B

C

D

E

F

m1
m2

m3

m4

m5

m6

m1 A
m2 B
m3 C
m4 D
m5 E
m6 F

E?
m5

E? E

8

Gnutella

� Distribute file location
� Idea: flood the request
� Hot to find a file:

- Send request to all neighbors
- Neighbors recursively multicast the request
- Eventually a machine that has the file receives the request,

and it sends back the answer
� Advantages:

- Totally decentralized, highly robust
� Disadvantages:

- Not scalable; the entire network can be swamped with
request (to alleviate this problem, each request has a TTL)

Page 5

9

Gnutella

� Ad-hoc topology
� Queries are flooded for bounded number of hops
� No guarantees on recall

���������
	���
������

����

����

10

Distributed Hash Tables (DHTs)

� Abstraction: a distributed hash-table data structure
- insert(id, item);
- item = query(id); (or lookup(id);)
- Note: item can be anything: a data object, document, file,

pointer to a file…
� Proposals

- CAN, Chord, Kademlia, Pastry, Tapestry, etc

Page 6

11

DHT Design Goals

� Make sure that an item (file) identified is always found
� Scales to hundreds of thousands of nodes
� Handles rapid arrival and failure of nodes

12

� Distributed Hash Tables (DHTs)
� Hash table interface: put(key,item), get(key)
� O(log n) hops
� Guarantees on recall

Structured Networks

���

���

���

���

���

���

���

���

���

put(K1,I1)

(K1,I1)

get (K1)

���

Page 7

13

Content Addressable Network
(CAN)

� Associate to each node and
item a unique id in an d-
dimensional Cartesian space
on a d-torus

� Properties
- Routing table size O(d)

- Guarantees that a file is found
in at most d*n1/d steps, where n
is the total number of nodes

14

CAN Example: Two Dimensional
Space

� Space divided between nodes
� All nodes cover the entire space
� Each node covers either a

square or a rectangular area of
ratios 1:2 or 2:1

� Example:
- Node n1:(1, 2) first node that joins �

cover the entire space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1

Page 8

15

CAN Example: Two Dimensional
Space

� Node n2:(4, 2) joins � space is
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

16

CAN Example: Two Dimensional
Space

� Node n2:(4, 2) joins � space is
divided between n1 and n2

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3

Page 9

17

CAN Example: Two Dimensional
Space

� Nodes n4:(5, 5) and n5:(6,6)
join

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

18

CAN Example: Two Dimensional
Space

� Nodes: n1:(1, 2); n2:(4,2);
n3:(3, 5); n4:(5,5);n5:(6,6)

� Items: f1:(2,3); f2:(5,1);
f3:(2,1); f4:(7,5);

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

Page 10

19

CAN Example: Two Dimensional
Space

� Each item is stored by the node
who owns its mapping in the
space

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

20

CAN: Query Example

� Each node knows its neighbors
in the d-space

� Forward query to the neighbor
that is closest to the query id

� Example: assume n1 queries f4
� Can route around some failures

1 2 3 4 5 6 70

1

2

3

4

5

6

7

0

n1 n2

n3 n4
n5

f1

f2

f3

f4

Page 11

21

CAN: Node Joining

�

���������	�
� �
���
� ������������������� �!�#"$��%'&)(+*�,-�.�$*$"$/0�-�21�3
4

22

CAN: Node Joining

5 �76#� �!82�.*9�!"#���;:<���-�<=7�-�2�
:<*$���

>

?A@#B /��

C�D�E�C�F	G
D

Page 12

23

CAN: Node Joining

?A@#B /��

��� >�� F���� D
	�� F
���
��� � �7G���	�� F���D � 	 C�F	G
D��

>

�

C�D�E�C�F	G
D

24

CAN: Node Joining

C�D�E�

� � 	���� � �!�#" 	%$�F+C�D&� C('�)�� *,+ C�D�E�C�F	G
D F	E C
	 F+C�D&'�)�� *

Page 13

25

Node departure

� Node explicitly hands over its zone and the associated
(key,value) database to one of its neighbors

� In case of network failure this is handled by a take-over
algorithm

� Problem : take over mechanism does not provide
regeneration of data

� Solution:
every node has a backup of its neighbours

26

Chord

� Associate to each node and item a unique id in an uni-
dimensional space 0..2m-1

� Key design decision
- Decouple correctness from efficiency

� Properties
- Routing table size O(log(N)) , where N is the total number of nodes

- Guarantees that a file is found in O(log(N)) steps

Page 14

27

Identifier to Node Mapping Example

� Node 8 maps [5,8]
� Node 15 maps [9,15]
� Node 20 maps [16, 20]
� …
� Node 4 maps [59, 4]

� Each node maintains a
pointer to its successor

4

20

32
35

8

15

44

58

28

Lookup

� Each node maintains its
successor

� Route packet (ID, data) to
the node responsible for ID
using successor pointers

4

20

32
35

8

15

44

58

lookup(37)

node=44

Page 15

29

Joining Operation

� Each node A periodically sends a stabilize() message to its
successor B

� Upon receiving a stabilize() message, node B
- returns its predecessor B’=pred(B) to A by sending a notify(B’)

message

� Upon receiving notify(B’) from B,
- if B’ is between A and B, A updates its successor to B’

- A doesn’t do anything, otherwise

30

Joining Operation

4

20

32
35

8

15

44

58

50

� Node with id=50 joins the
ring

� Node 50 needs to know at
least one node already in the
system
- Assume known node is 15

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

Page 16

31

Joining Operation

4

20

3235

8

15

44

58

50

� Node 50: send
join(50) to node 15

� Node 44: returns
node 58

� Node 50 updates its
successor to 58 join(50)

succ=58

succ=4
pred=44

succ=nil
pred=nil

succ=58
pred=35

58

32

Joining Operation

4

20

3235

8

15

44

58

50

� Node 50: send
stabilize() to
node 58

� Node 58:
- update

predecessor
to 50

- send notify()
back

succ=58
pred=nil

succ=58
pred=35

stabilize()

no
tif

y(
pr

ed
=5

0)

pred=50
succ=4
pred=44

Page 17

33

Joining Operation (cont’d)

4

20

3235

8

15

44

58

50

� Node 44 sends a stabilize
message to its successor,
node 58

� Node 58 reply with a notify
message

� Node 44 updates its
successor to 50 succ=58

stabilize()no
tif

y(
pr

ed
=5

0)
succ=50

pred=50
succ=4

pred=nil

succ=58
pred=35

34

Joining Operation (cont’d)

4

20

3235

8

15

44

58

50

� Node 44 sends a stabilize
message to its new
successor, node 50

� Node 50 sets its predecessor
to node 44

succ=58

succ=50

Stabilize()
pred=44

pred=50

pred=35

succ=4

pred=nil

Page 18

35

Joining Operation (cont’d)

4

20

3235

8

15

44

58

50

� This completes the joining
operation!

succ=58

succ=50

pred=44

pred=50

36

Achieving Efficiency: finger tables

80 + 20
80 + 21

80 + 22
80 + 23

80 + 24

80 + 25

(80 + 26) mod 27 = 16

0
Say m=7

ith entry at peer with id n is first peer with id >=)2(mod2 min +

i ft[i]
0 96
1 96
2 96
3 96
4 96
5 112
6 20

Finger Table at 80

32

45
80

20
112

96

Page 19

37

Achieving Robustness

� To improve robustness each node maintains the k (> 1)
immediate successors instead of only one successor

� In the notify() message, node A can send its k-1 successors
to its predecessor B

� Upon receiving notify() message, B can update its
successor list by concatenating the successor list received
from A with A itself

38

CAN/Chord Optimizations

� Reduce latency
- Chose finger that reduces expected time to reach destination
- Chose the closest node from range [N+2i-1,N+2i) as successor

� Accommodate heterogeneous systems
- Multiple virtual nodes per physical node

Page 20

39

Conclusions

� Distributed Hash Tables are a key component of scalable
and robust overlay networks

� CAN: O(d) state, O(d*n1/d) distance
� Chord: O(log n) state, O(log n) distance
� Both can achieve stretch < 2
� Simplicity is key
� Services built on top of distributed hash tables

- persistent storage (OpenDHT, Oceanstore)
- p2p file storage, i3 (chord)
- multicast (CAN, Tapestry)

40

One Other Papers

� Krishna Gummadi et al, “The Impact of DHT Routing
Geometry on Resilience and Proximity”, SIGCOMM’03

Page 21

41

Motivation

� New DHTs constantly proposed

- CAN, Chord, Pastry, Tapestry, Plaxton, Viceroy, Kademlia, Skipnet,
Symphony, Koorde, Apocrypha, Land, ORDI …

� Each is extensively analyzed but in isolation

� Each DHT has many algorithmic details making it difficult to
compare

Goals:
a) Separate fundamental design choices from algorithmic details
b) Understand their affect reliability and efficiency

42

Our approach: Component-based
analysis

� Break DHT design into independent components

� Analyze impact of each component choice separately
- compare with black-box analysis:

• benchmark each DHT implementation
• rankings of existing DHTs vs. hints on better designs

� Two types of components
- Routing-level : neighbor & route selection
- System-level : caching, replication, querying policy etc.

Page 22

43

Three aspects of a DHT design

1) Geometry: smallest network graph that ensures
correct routing/lookup in the DHT
- Tree, Hypercube, Ring, Butterfly, Debruijn

2) Distance function: captures a geometric structure
- d(id1, id2) for any two node identifiers

3) Algorithm: rules for selecting neighbors and routes
using the distance function

44

Chord DHT has Ring Geometry

Page 23

45

Chord Distance function captures Ring

� Nodes are points on a clock-wise Ring
� d(id1, id2) = length of clock-wise arc between ids

= (id2 – id1) mod N

d(100, 111) = 3

�����

� � �

� ���

� ���

� � �

��� �

��� �

�����

46

Chord Neighbor and Route selection
Algorithms

� Neighbor selection: i th neighbor at 2i distance
� Route selection: pick neighbor closest to destination

�����

� � �

� ���

� ���

� � �

��� �

��� �

�����
d(000, 001) = 1

d(000, 010) = 2

d(000, 001) = 4

��� �

Page 24

47

One Geometry, Many Algorithms

� Algorithm : exact rules for selecting neighbors, routes
- Chord, CAN, PRR, Tapestry, Pastry etc.

- inspired by geometric structures like Ring, Hyper-cube, Tree

� Geometry : an algorithm’s underlying structure
- Distance function is the formal representation of Geometry

- Chord, Symphony => Ring

- many algorithms can have same geometry

Why is Geometry important?

48

Insight:
Geometry => Flexibility => Performance

� Geometry captures flexibility in selecting algorithms

� Flexibility is important for routing performance
- Flexibility in selecting routes leads to shorter, reliable paths

- Flexibility in selecting neighbors leads to shorter paths

Page 25

49

Route selection flexibility
allowed by Ring Geometry

� Chord algorithm picks neighbor closest to destination

� A different algorithm picks the best of alternate paths

�����

� � �

� ���

� ���

� � �

��� �

��� �

����� ��� �

50

Neighbor selection flexibility
allowed by Ring Geometry

� Chord algorithm picks i th neighbor at 2i distance

� A different algorithm picks i th neighbor from [2i , 2i+1)

�����

� � �

� ���

� ���

� � �

��� �

��� �

�����

Page 26

51

Geometries we compare

Kademlia

Tapestry, Pastry

Plaxton

CAN

Chord, Symphony

Algorithm

XOR
d(id1, id2) = id1 XOR id2

Hybrid =
Tree + Ring

Tree

Hypercube

Ring

Geometry

52

Metrics for flexibilities

� FNS: Flexibility in Neighbor Selection
= number of node choices for a neighbor

� FRS: Flexibility in Route Selection
= avg. number of next-hop choices for all destinations

� Constraints for neighbors and routes

- select neighbors to have paths of O(logN)
- select routes so that each hop is closer to destination

Page 27

53

Flexibility in neighbor selection (FNS) for
Tree

��� ������ � ���� � � � � �� ��� �������� �

h = 2

h = 1

h = 3

� logN neighbors in sub-trees of varying heights
� FNS = 2i-1 for i th neighbor of a node

54

Flexibility in route selection (FRS) for
Hypercube

� Routing to next hop fixes one bit

� FRS =Avg. (#bits destination differs in)=logN/2

�����

� ���

��� �

� � �

��� � �����

� ���

� � �

� ���

d(000, 011) = 2 d(001, 011) = 1

d(010, 011) = 1

d(010, 011) = 3

Page 28

55

Summary of our flexibility analysis

Tree << XOR, Hybrid < Hypercube < Ring

(1) (logN/2) (logN/2) (logN)

Hypercube << Tree, XOR, Ring, Hybrid

(logN) (2i-1)

Ordering of Geometries

Routes

(FRS)

Neighbors

(FNS)

Flexibility

How relevant is flexibility for DHT routing performance?

56

Analysis of Static Resilience

Two aspects of robust routing
� Dynamic Recovery : how quickly routing state is recovered after

failures
� Static Resilience : how well the network routes before recovery

finishes
- captures how quickly recovery algorithms need to work

- depends on FRS

Evaluation:
� Fail a fraction of nodes, without recovering any state
� Metric: % Paths Failed

Page 29

57

Does flexibility affect Static
Resilience?

Tree << XOR � Hybrid < Hypercube < Ring

Flexibility in Route Selection matters for Static Resilience

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90
% Failed Nodes

%
 F

ai
le

d
 P

at
h

s

Ring

Hybrid

XORTree

Hypercube

58

Analysis of Overlay Path Latency

� Goal: Minimize end-to-end overlay path latency
- not just the number of hops

� Both FNS and FRS can reduce latency

- Tree has FNS, Hypercube has FRS, Ring & XOR have both

Evaluation:
� Using Internet latency distributions (see paper)

Page 30

59

0

20

40

60

80

100

0 400 800 1200 1600 2000
Latency (msec)

C
D

F

FNS Ring

Plain Ring

FRS Ring

FNS + FRS Ring

Which is more effective, FNS or FRS?

Plain << FRS << FNS � FNS+FRS
Neighbor Selection is much better than Route Selection

60

0

20

40

60

80

100

0 400 800 1200 1600 2000
Latency (msec)

C
D

F

FNS Ring

FRS RingFNS XOR

FRS Hypercube

Does Geometry affect performance of
FNS or FRS?

No, performance of FNS/FRS is independent of Geometry
A Geometry’s support for neighbor selection is crucial

Page 31

61

Summary of results

� FRS matters for Static Resilience
- Ring has the best resilience

� Both FNS and FRS reduce Overlay Path Latency

� But, FNS is far more important than FRS
- Ring, Hybrid, Tree and XOR have high FNS

62

Conclusions

� Routing Geometry is a fundamental design choice
- Geometry determines flexibility
- Flexibility improves resilience and proximity

� Ring has the greatest flexibility

