Internet Routing

- Internet organized as a two level hierarchy
- First level – autonomous systems (AS’s)
 - AS – region of network under a single administrative domain
- AS’s run an intra-domain routing protocols
 - Distance Vector, e.g., RIP
 - Link State, e.g., OSPF
- Between AS’s runs inter-domain routing protocols, e.g., Border Gateway Routing (BGP)
 - De facto standard today, BGP-4
Intra-domain Routing Protocols

- Based on unreliable datagram delivery
- Distance vector
 - Routing Information Protocol (RIP), based on Bellman-Ford
 - Each router periodically exchange reachability information to its neighbors
 - Minimal communication overhead, but it takes long to converge, i.e., in proportion to the maximum path length
- Link state
 - Open Shortest Path First Protocol (OSPF), based on Dijkstra
 - Each router periodically floods immediate reachability information to other routers
 - Fast convergence, but high communication and computation overhead
Inter-domain Routing

- Use TCP
- Border Gateway Protocol (BGP), based on Bellman-Ford path vector
- AS’s exchange reachability information through their BGP routers, only when routes change
- BGP routing information – a sequence of AS’s indicating the path traversed by a route; next hop
- General operations of a BGP router:
 - Learns multiple paths
 - Picks best path according to its AS policies
 - Install best pick in IP forwarding tables

End-to-End Routing Behavior in the Internet [Paxson ’95]

- Idea: use end-to-end measurements to determine
 - Route pathologies
 - Route stability
 - Route symmetry
Methodology

- Run Network Probes Daemon (NPD) on a large number of Internet sites

Methodology

- Each NPD site periodically measure the route to another NPD site, by using traceroute
- Two sets of experiments
 - D_1 – measure each virtual path between two NPD’s with a mean interval of 1-2 days, Nov-Dec 1994
 - D_2 – measure each virtual path using a bimodal distribution inter-measurement interval, Nov-Dec 1995
 - 60% with mean of 2 hours
 - 40% with mean of 2.75 days
- Measurements in D_2 were paired
 - Measure A\rightarrowB and then B\rightarrowA
Traceroute Example

traceroute to whistler.cmcl.cs.cmu.edu (128.2.181.87), 30 hops max, 38 byte packets
1 snr45 (128.32.45.1) 0.570 ms 0.434 ms 0.415 ms
2 gig10-cnr1.EECS.Berkeley.EDU (169.229.3.65) 0.506 ms 0.513 ms 0.434 ms
3 gigE5-0-0.inr-210-cory.Berkeley.EDU (169.229.1.45) 0.726 ms 0.570 ms 0.553 ms
4 fast1-0-0.inr-001-eva.Berkeley.EDU (128.32.0.1) 1.357 ms 0.998 ms 1.020 ms
5 pos0-0.inr-000-eva.Berkeley.EDU (128.32.0.65) 1.459 ms 2.371 ms 1.600 ms
6 pos3-0.c2-berk-gsr.Berkeley.EDU (128.32.0.90) 3.103 ms 1.406 ms 1.575 ms
7 SUNV--BERK.POS.calren2.net (198.32.249.14) 3.005 ms 3.085 ms 2.407 ms
8 abilene--QSV.POS.calren2.net (198.32.249.62) 6.112 ms 6.834 ms 6.218 ms
9 dnr-scrm.abilene.ucaid.edu (198.32.8.2) 34.213 ms 27.145 ms 27.368 ms
10 kscy-dnrv.abilene.ucaid.edu (198.32.8.14) 38.403 ms 38.121 ms 38.514 ms
11 ipsl-kscy.abilene.ucaid.edu (198.32.8.6) 47.855 ms 47.558 ms 47.649 ms
12 clev-ipls.abilene.ucaid.edu (198.32.8.26) 54.037 ms 53.849 ms 53.492 ms
13 abilene.psc.net (192.88.115.122) 57.109 ms 56.706 ms 57.343 ms
14 cmu.psc.net (198.32.224.36) 58.794 ms 58.237 ms 58.491 ms
15 CS-VLAN255.GW.CMU.NET (128.2.255.209) 58.072 ms 58.496 ms 57.747 ms
16 WHISTLER.CMCL.CS.CMU.EDU (128.2.181.87) 57.715 ms 57.932 ms 57.557 ms

Methodology

- Links traversed during D_1 and D_2
Methodology

- Exponential sampling
 - Unbiased sampling – measures instantaneous signal with equal probability
 - PASTA principle – Poisson Arrivals See Time Averages
- Is data representative?
 - Argue that sampled AS’s are on half of the Internet routes
- Confidence intervals for probability that an event occurs

Limitations

- Just a small subset of Internet paths
- Just two points at a time
- Difficult to say why something happened
- 5%-8% of time couldn’t connect to NPD’s → Introduces bias toward underestimation of the prevalence of network problems
Routing Pathologies

- Persistent routing loops
- Temporary routing loops
- Erroneous routing
- Connectivity altered mid-stream
- Temporary outages (> 30 sec)

Routing Loops & Erroneous Routing

- Persistent routing loops (10 in D_1 and 50 in D_2)
 - Several hours long (e.g., > 10 hours)
 - Largest: 5 routers
 - All loops intra-domain
- Transient routing loops (2 in D_1 and 24 in D_2)
 - Several seconds
 - Usually occur after outages
- Erroneous routing (one in D_1)
 - A route UK→USA goes through Israel
- **Question:** Why do routing loops occur even today?
Route Changes

- Connectivity change in mid-stream (10 in D_1 and 155 in D_2)
 - Route changes during measurements
 - Recovering bimodal: (1) 100’s msec to seconds; (2) order of minutes
- Route fluttering
 - Rapid route oscillation

Example of Route Fluttering

[Map showing route connections with nodes labeled Amsterdam and Bledsaddorf]
Problems with Fluttering

- Path properties difficult to predict
 - This confuses RTT estimation in TCP, may trigger false retransmission timeouts
- Packet reordering
 - TCP receiver generates DUPACK’s, may trigger spurious fast retransmits
- These problems are bad only for a large scale flutter; for localized flutter is usually ok

Infrastructure Failures

- NPD’s unreachable due to many hops (6 in D_2)
 - Unreachable \rightarrow more than 30 hops
 - Path length not necessary correlated with distance
 - 1500 km end-to-end route of 3 hops
 - 3 km (MIT – Harvard) end-to-end route of 11 hops
 - Question: Does 3 hops actually mean 3 physical links?
- Temporary outages
 - Multiple probes lost. Most likely due to:
 - Heavy congestions lasting 10’s of seconds
 - Temporary lost of connectivity
Distribution of Long Outages (> 30 sec)

- Geometric distribution

Pathology Summary

<table>
<thead>
<tr>
<th>Pathology</th>
<th>Probability</th>
<th>Trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Persistent routing loops</td>
<td>0.13–0.16%</td>
<td></td>
</tr>
<tr>
<td>Temporary routing loops</td>
<td>0.055–0.078%</td>
<td></td>
</tr>
<tr>
<td>Erroneous routing</td>
<td>0.004–0.004%</td>
<td></td>
</tr>
<tr>
<td>Connectivity altered mid-stream</td>
<td>0.16% // 0.44%</td>
<td>worse</td>
</tr>
<tr>
<td>Infrastructure failure</td>
<td>0.21% // 0.48%</td>
<td>worse</td>
</tr>
<tr>
<td>Temporary outage ≥ 30 secs</td>
<td>0.96% // 2.2%</td>
<td>worse</td>
</tr>
<tr>
<td>Total user-visible pathologies</td>
<td>1.5% // 3.4%</td>
<td>worse</td>
</tr>
</tbody>
</table>
Routing Stability

- Prevalence: likelihood to observe a particular route
 - Steady state probability that a virtual path at an arbitrary point in time uses a particular route
 - Conclusion: In general Internet paths are strongly dominated by a single route
- Persistence: how long a route remains unchanged
 - Affects utility of storing state in routers
 - Conclusion: routing changes occur over a wide range of time scales, i.e., from minutes to days

Route Prevalence
Route Persistence

<table>
<thead>
<tr>
<th>Time scale</th>
<th>% Paths</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>seconds</td>
<td>N/A</td>
<td>Load-balancing "flutter."</td>
</tr>
<tr>
<td>minutes</td>
<td>N/A</td>
<td>"Tightly-coupled" routers.</td>
</tr>
<tr>
<td>10’s of minutes</td>
<td>9%</td>
<td>Some involved different cities, AS's.</td>
</tr>
<tr>
<td>hours</td>
<td>4%</td>
<td>Usually intra-network changes.</td>
</tr>
<tr>
<td>6+ hours</td>
<td>19%</td>
<td>Also intra-network changes.</td>
</tr>
<tr>
<td>days</td>
<td>68%</td>
<td>or even weeks.</td>
</tr>
</tbody>
</table>

Problems:
- Break assumption that one-way latency is RTT/2

Route Symmetry

- 30% of the paths in D_1 and 50% in D_2 visited different cities
- 30% of the paths in D_2 visited different AS's
Summary of Paxson’s Findings

- Pathologies doubled during 1995
- Asymmetries nearly doubled during 1995
- Paths heavily dominated by a single route
- Over 2/3 of Internet paths are reasonable stable (> days). The other 1/3 varies over many time scales

End-to-end effects of Path Selection

- Goal of study: Quantify and understand the impact of path selection on end-to-end performance
- Basic metric
 - Let X = performance of default path
 - Let Y = performance of best path
 - Y-X = cost of using default path
- Technical issues
 - How to find the best path?
 - How to measure the best path?
Approximating the best path

- **Key Idea**
 - Use end-to-end measurements to extrapolate potential alternate paths
- **Rough Approach**
 - Measure paths between pairs of hosts
 - Generate synthetic topology – full NxN mesh
 - Conservative approximation of best path
- **Question: Given a selection of N hosts, how crude is this approximation?**

Methodology

- For each pair of end-hosts, calculate:
 - Average round-trip time
 - Average loss rate
 - Average bandwidth
- Generate synthetic alternate paths (based on long-term averages)
- For each pair of hosts, graph difference between default path and alternate path
Round-trip time

30%-55% of default paths have longer round-trip times

Loss rate

75%-85% of default paths have higher loss rates
Bandwidth

70%-80% of default paths have lower bandwidth

Time-of-day variation (latency)

Effect stronger during “peak” hours
Quick Summary of Results

- The default path is usually not the best
 - True for latency, loss rate and bandwidth
 - Despite of synthetic end-host transiting
- Many alternate paths are much better
- Effect stronger during peak hours
- This paper motivates overlay routing
 - Resilient Overlay Networks [Andersen01]
- **Question: What about herd mentality?**

Why Path Selection is imperfect?

- **Technical Reasons**
 - Single path routing
 - Non-topological route aggregation
 - Coarse routing metrics (AS_PATH)
 - Local policy decisions
- **Economic Reasons**
 - Disincentive to offer transit
 - Minimal incentive to optimize transit traffic
- **Question: Enumerate others?**
Concluding remarks

- [Paxson] Internet routing can have several problems due to loops, route fluttering, long outages.
- [Savage] Internet routing protocols are not well-tuned for choosing performance optimal paths.
- Where does this lead us to?
 - Possibility 1: Try to redesign a better protocol to fix the problem
 • Will such an approach ever work?
 - Possibility 2: Use overlay networks to route around them [RON]
 - Possibility 3: Reliability is important, but is optimal performance needed? Probably not.