CS 268: Lecture 8
Intra-domain Routing Protocols
Scott Shenker and Ion Stoica
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720-1776

Internet Routing
- Internet organized as a two level hierarchy
- First level – autonomous systems (AS’s)
 - AS – region of network under a single administrative domain
- AS’s run an intra-domain routing protocols
 - Distance Vector, e.g., Routing Information Protocol (RIP)
 - Link State, e.g., Open Shortest Path First (OSPF)
- Between AS’s runs inter-domain routing protocols, e.g., Border Gateway Routing (BGP)
 - De facto standard today, BGP-4

Example

Intra-domain Routing Protocols
- Based on unreliable datagram delivery
- Distance vector
 - Routing Information Protocol (RIP), based on Bellman-Ford
 - Each neighbor periodically exchange reachability information to its neighbors
- Link state
 - Open Shortest Path First (OSPF), based on Dijkstra
 - Each network periodically floods immediate reachability information to other routers

Routing
- Goal: determine a “good” path through the network from source to destination
 - Good means usually the shortest path
- Network modeled as a graph
 - Routers \rightarrow nodes
 - Link \rightarrow edges
 - Edge cost: delay, congestion level,…

Routing Problem
- Assume
 - A network with N nodes, where each edge is associated a cost
 - A node knows only its neighbors and the cost to reach them
- How does each node learns how to reach every other node along the shortest path?
Distance Vector: Control Traffic

- When the routing table of a node changes, the node sends its table to its neighbors
- A node updates its table with information received from its neighbors

Example: Distance Vector Algorithm

1. Initialization:
 2. for all neighbors V do
 3. if V adjacent to A
 4. \(D(A, V) = D(A, Y) \)
 5. else
 6. \(D(A, V) = \infty \)
 7. forever

Example: 1st Iteration (C \(\rightarrow \) A)

Example: 1st Iteration (B \(\rightarrow \) A, C \(\rightarrow \) A)

Example: 1st Iteration (B \(\rightarrow \) A, C \(\rightarrow \) A)
Example: End of 1st Iteration

Example: End of 3rd Iteration

Distance Vector: Link Cost Changes

Distance Vector: Count to Infinity Problem

Distance Vector: Poisoned Reverse

Link State: Control Traffic

- Each node floods its local information to every other node in the network.
- Each node keeps track of the entire network topology.
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2, A</td>
<td>5, A</td>
<td>1, A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4, D</td>
<td>2, D</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Initialization:
2. S = {A};
3. for all nodes v
4. if v adjacent to A
5. then D(v) = c(A,v);
6. else D(v) = ∞;
...

Loop
9. find w not in S s.t. D(w) is a minimum;
10. add w to S;
11. update D(v) for all v adjacent to w and not in S:
12. D(v) = min(D(v), D(w) + c(w,v));
13. until all nodes in S;
Example: Dijkstra’s Algorithm

<table>
<thead>
<tr>
<th>Step</th>
<th>Start S</th>
<th>D(B),p(B)</th>
<th>D(C),p(C)</th>
<th>D(D),p(D)</th>
<th>D(E),p(E)</th>
<th>D(F),p(F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>A</td>
<td>2,A</td>
<td>5,A</td>
<td>1,A</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>1</td>
<td>AD</td>
<td>4,D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ADE</td>
<td>3,E</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>ADEB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ADEBC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ADEBCF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-- Loop

9. Find w not in S s.t. D(w) is a minimum;
10. Add w to S;
11. Update D(v) for all v adjacent to w and not in S;
12. \(D(v) = \min(D(v), D(w) + c(w,v)) \);
13. Until all nodes in S;

Link State vs. Distance Vector

- **Message complexity**
 - LS: \(O(n^2 e) \) messages
 - \(n \): number of nodes
 - \(e \): number of edges
 - DV: \(O(d n k) \) messages
 - \(d \): node’s degree
 - \(k \): number of rounds

- **Time complexity**
 - LS: \(O(n \log n) \)
 - DV: \(O(n) \)

Open Shortest Path First (OSPF)

- All routers in the domain come to a consistent view of the topology by exchange of Link State Advertisements (LSAs)
- Router describes its local connectivity (i.e., set of links) in an LSA
 - Set of LSAs (self-originated + received) at a router = topology
- Hierarchical routing
 - OSPF domain can be divided into areas
 - Hub-and-spoke topology with area 0 as hub and other non-zero areas as spokes

OSPF Performance

- OSPF processing impacts convergence, (in)stability
 - Load is increasing as networks grow
 - Bulk of OSPF processing is due to LSAs
- LSAs can trigger Route calculation (Dijkstra’s algorithm)

Objectives for OSPF Monitor

- Real-time analysis of OSPF behavior
 - Troubleshooting, alerting, validation of maintenance
 - Real-time snapshots of OSPF network topology
- Off-line analysis
 - Post-mortem analysis of recurring problems
 - Generate statistics and reports about network performance
 - Identify anomaly signatures
 - Facilitate tuning of configurable parameters
 - Analyze OSPF behavior in commercial networks

Categorizing LSA Traffic

- A router originates an LSA due to...
 - Change in network topology
 - Example: Link goes down or comes up
 - Detection of anomalies and problems
 - Periodic soft-state refresh
 - Recommended value of interval is 30 minutes
 - Forms baseline LSA traffic
 - LSAs are disseminated using reliable flooding
 - Includes change and refresh LSAs
 - Flooding leads to duplicate copies of LSAs being received at a router

- Change LSAs
- Refresh LSAs
- Duplicate LSAs
- Overhead: wastes resources
Components

- **Data collection**: LSA Reflector (LSAR)
 - Passively collects OSPF LSAs from network
 - “Reflects” streams of LSAs to LSAG
 - Archives LSAs for analysis by OSPFScan
- **Real-time analysis**: LSA aGgregator (LSAG)
 - Monitors network for topology changes, LSA storms, node flaps and anomalies
- **Off-line analysis**: OSPFScan
 - Supports queries on LSA archives
 - Allows playback and modeling of topology changes
 - Allows emulation of OSPF routing

How LSAR attaches to Network

- **Host mode**: Join multicast group
- **Full adjacency mode**: form full adjacency (= peering session) with a router
- **Partial adjacency mode**: keep adjacency in a state that allows LSAR to receive LSAs, but does not allow data forwarding over link

Partial Adjacency for LSAR

- Router R does not advertise a link to LSAR
- LSAR does not originate any LSAs
- Routers (except R) not aware of LSAR’s presence
- Does not trigger routing calculations in network
- LSAR’s going up/down does not impact network
- LSAR←R link is not used for data forwarding

Performance Evaluation

- Performance of LSAR and LSAG through lab experiments
 - LSAR and LSAG are key to real-time monitoring
 - How performance scales with LSA-rate and network size

Example

LSAR
- Real-time Monitoring
- LSAG
- OSPFScan
- Off-line Analysis

LSA
- LSAs

Area 0

Area 1

Area 2

OSPF Network
Experimental Setup

- Measure LSA processing time for LSAG
- Measure LSA pass-through time for LSAR

Methodology

- Send a burst of LSAs from Zebra to LSAR
 - Vary number of LSAs \(n \) in a burst of 1 sec duration
- Use of fully connected graph as the emulated topology
 - Vary number of nodes \(n \) in the topology
- Performance measurements
 - LSAR performance: LSA "pass-through" time
 - Zebra measures time difference between sending and receiving an LSA from LSAR
 - LSAG performance: LSA processing time
 - Instrumentation of LSAG code

LSAR Performance

- Mean LSA pass-through time (LSAR) \(v/s \) burst-size

![Graph showing LSA pass-through time vs burst-size]

- \(n = 100, \text{LSAR} + \text{LSAG} \)
- \(n = 50, \text{LSAR} + \text{LSAG} \)
- \(n = 100, \text{LSAR only} \)
- \(n = 50, \text{LSAR only} \)

LSAG Performance

- Mean LSA processing time (LSAG) \(v/s \) network size

![Graph showing LSA processing time vs network size]

- \(n = 500 \) LSAs
- \(n = 100 \) LSAs

Enterprise Network Case Study

- The network provides customers with connectivity to applications and databases residing in the data center
- OSPF network
 - 15 areas, 500 routers
 - This case study covers 8 areas, 250 routers
 - One month: April 2002
 - Link-layer = Ethernet-based LANs
- Customers are connected via leased lines
 - Customer routes are injected via EIGRP into OSPF
 - The routes are propagated via external LSAs
 - Quite reasonable for the enterprise network in question

Enterprise Network Topology

- Monitor is completely passive
 - No adjacencies with any routers
 - Receives LSAs on a multicast group
Highlights of the Results

- Category, baseline and predict
 - Categories: Refresh, Change, Duplicate; External, Internal
 - Bulk of LSA traffic is due to refresh
 - Refresh LSA traffic is smooth: no evidence of refresh synchronization across network
 - Refresh LSA traffic is predictable from router configuration info

- Detect, diagnose and act
 - Almost all LSAs arise from persistent yet partial failure modes
 - Internal LSA spikes
 - Indicate router hardware degradation
 - Carry out preventive maintenance
 - External LSA spikes
 - Indicate degradation in customer connectivity
 - Call customer before customer calls you
 - Propose improvements
 - Simple configuration changes to reduce duplicate LSA traffic

Baseline LSA Traffic: Refresh LSAs

- Refresh LSA traffic can be reliably predicted using information available in router configuration files
 - Important for workload modeling
 - See paper for details

Anomaly Detection: Change LSAs

- Internal to OSPF domain versus external
 - Change LSAs due to external events dominated
 - Not surprising due to large number of leased lines used to import customer routes into OSPF
 - Customer volatility → network volatility

Root Causes of Change LSAs

- Persistent problem → flapping → numerous change LSAs
 - Internal LSA spikes → hardware router problems
 - OSPF monitor identified a problem early and led to preventive maintenance
 - External LSA spikes → customer route volatility
 - Overload of an external link to a customer between 8 pm – 4 am causes EIGRP session on that link to flap
 - Internal LSA spikes → customer route volatility

LSA Traffic in Different Areas

- Area 0
 - Genuine Anomaly
 - Artifac: 23h day (Apr 7)

- Area 1
 - No evidence of synchronization
 - Contrary to simulation-based study in [Basu01]
 - Reasons
 - Changes in the topology help break synchronization
 - LSA refresh at one router is not coupled with LSA refresh at other routers
 - Drift in the refresh interval of different routers

Refresh process is not synchronized

- Hour 12 of Apr 11, 2002 for area 3
 - Negligible LSA clumping

- Total LSAs in area 2
 - Total LSAs due to flapping link
 - Day in April, 2002

- Total LSAs in area 2
 - Total LSAs due to flapping link
 - Hour on April 11, 2002
Overhead: Duplicate LSAs

- Why do some areas witness substantial duplicate LSA traffic, while other areas do not witness any?
 - OSPF flooding over LANs leads to control plane asymmetries and to imbalances in duplicate LSA traffic

Control Plane Asymmetry

- Two LANs (LAN1 and LAN2) in each area
- Monitor is on LAN1
- Routers B1 and B2 are connected to LAN1 and LAN2
- LSAs originated on LAN2 can get duplicated depending on which routers have become DR and BDR on LAN1
 - Leads to control plane asymmetry
 - Four cases
- Note: If a BDR receives an LSA on another interface, it floods the LSA to all nodes (i.e., it sends the LSA to the all-rtrs address)

Eliminating Duplicate LSA Traffic

<table>
<thead>
<tr>
<th></th>
<th>Case 1</th>
<th>Case 2</th>
<th>Case 3</th>
<th>Case 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duplicate LSA traffic</td>
<td>High</td>
<td>None</td>
<td>High</td>
<td>None</td>
</tr>
<tr>
<td>Deterministic via configuration</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Area 2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Area 3</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

OSPF Operations over Broadcast Networks

1) Each node sends an LSA to multicast group DR-rtrs
 - Both designated router (DR) and backup designated router BDR subscribe to this group

2) DR floods the LSA back to all routers on the network
 - Send to all-rtrs multicast group to which all nodes subscribe

Four Cases

- Case 1 (B1, B2)
- Case 2 (B1, R)
- Case 3 (R, B1)
- Case 4 (R, R')

Summary

- Categorize and baseline LSA traffic
 - Refresh LSAs constitute bulk of overall LSA traffic
 - No evidence of synchronization between different routers
 - Refresh LSA traffic predictable from configuration information

- Detect, diagnose and act on anomalies
 - Change LSAs can indicate persistent yet partial failure modes
 - Internal LSA spikes → hardware router problems → preventive router maintenance
 - External LSA spikes → customer congestion problems → "preventive" customer care

- Propose changes to improve performance
 - Duplicate LSAs can arise from control plane asymmetries
 - Simple configuration changes can eliminate duplicate LSAs and improve performance
Other Problems Caught

- Configuration problem
 - Identified assignment of same router-id to two routers in enterprise network
- OSPF implementation bug
 - Caught a bug in type-3 LSA generation code of a router vendor in ISP network
 - Faster refresh of LSAs than standards-mandated rate

LSA aGregator (LSAG)

- Analyzes "reflected" LSAs from LSARs in real-time
- Generates console messages:
 - Change in OSPF network topology
 - ADJACENCY COST CHANGE: rtr 10.0.0.1 (inf 10.0.0.2) → rtr 10.0.0.5 old_cost 1000 new_cost 50000 area 0.0.0.0
 - Node flaps
 - RTR FLAP: rtr 10.0.0.12 no_flaps 7 flap_window 570 sec
 - LSA storms
 - LSA STORM: ls_type 3 lsid 10.1.0.0 advr 10.0.0.3 area 0.0.0.0 no_lsa 7 storm_window 470 sec
 - Anomalous behavior:
 - TYPE-3 ROUTE FROM NON-BORDER RTR: rtw 10.3.0.0/24 rtr 10.0.0.6 area 0.0.0.0
- Dumps snapshots of network topology

OSPFScan

- Tools for off-line analysis of LSA archives
 - Parse, select (based on queries), and analyze
- Functionality supported by OSPFScan
 - Classification of LSA traffic
 - Change LSAs, refresh LSAs, duplicate LSAs
 - Emulation of OSPF Routing
 - How OSPF routing tables evolved in response to network changes
 - How end-to-end path within OSPF domain looked like at any instance
 - Modeling of topology changes
 - Vertex addition/deletion and link addition/deletion/change_cost
 - Playback of topology change events
 - Statistics and report generation

Deployment

- Tier-1 ISP network
 - Area 0, 100+ routers; point-to-point links
 - Deployed since January, 2003
 - LSA archive size: 8 MB/day
 - LSAR connection: partial adjacency mode
- Enterprise network
 - 15 areas, 500+ routers; Ethernet-based LANs
 - Deployed since February, 2002
 - LSA archive size: 10 MB/day
 - LSAR connection: host mode

LSAG in Day-to-day Operations

- Generation of alarms by feeding messages into higher layer network management systems
 - Grouping of messages to reduce the number of alarms
 - Prioritization of messages
- Validation of maintenance steps and monitoring the impact of these steps on network-wide OSPF behavior
 - Example:
 - Network operators use cost-out/cost-in of links to carry out maintenance
 - A "link-audit" web-page allows operators to keep track of link costs in real-time

Long Term Analysis by OSPFScan

- LSA traffic analysis
 - Identified excessive duplicate LSA traffic in some areas of Enterprise Network
 - Led to root-cause analysis and preventative steps
- Statistics generation
 - Inter-arrival time of change LSAs in ISP network
 - Fine-tuning configurable timers related to route calculation (= SPF calculation)
 - Mean down-time and up-time for links and routers in ISP network
 - Assessment of reliability and availability
LSA Flooding over Broadcast LANs

- DR = Designated router, BDR = Backup Designated Router
- Who becomes DR and BDR depends on configuration

- Flooding on a LAN is a two-step process:
 1. A router multicasts LSA to DR and BDR
 2. DR or BDR multicasts LSA to other routers
- LSA appears only twice on LAN instead of n – 1 times