CS 194: Distributed Systems
DHT Applications. What and Why

Scott Shenker and lon Stoica
Computer Science Divison
Department of Electrica Engineering and Computer Sciences
Universty of California, Berkeley
Berkeley, CA 94720-1776

Project Phase Il

» What: Murali will discuss Phase Il of the project
= When: Tonight, 6:30pm

= Where: 306 Soda

Remaining Lecture Schedule

4/11 DHT applications (start) (Scott)
4/13 Web Services (lon)
4/18 DHTapps+OpenDHT (Scott)
4/20 Jini (lon)
4/25 Sensornets (Scott)
4/27 Robust Protocols (Scott)
5/2 Resource Allocation (lon)
5/4 Game theory (Scott)
5/9 Review (both)

Note about Special Topics

= We won't require additional reading

= We will make clear what you need to know for the final

Outline for Today’s Lecture

What is a DHT? (review)

Three classes of DHT applications (with examples):
- rendezvous
- storage
- routing

Why DHTs?

DHTSs and Internet Architecture?

A DHT in Operation: Peers

~
<

|~
<

~
<

~
<

|lD|
[
[

~
<

ll
=
<

Page 1

A DHT in Operation: Overlay

A DHT in Operation: put()

A DHT in Operation: put()

put(K,,V,)

A DHT in Operation: put()

10

A DHT in Operation: get()

= [«

11

A DHT in Operation: get()

= [«

12

Page 2

Key Requirement

= All puts and gets for a particular key must end up at the
same machine

- Evenin the presence of failures and new nodes (churn)

= This depends on the DHT routing algorithm (last time)
- Must be robust and scalable

13

Two Important Distinctions

= When talking about DHTs, must be clear whether you mean
- Peers vs Infrastructure
- Library vs Service

14

Peers or Infrastructure

= Peer:
- Application users provide nodes for DHT
- Example: music sharing, cooperative web cache
- Easier to get, less well behaved

= Infrastructure:
- Set of managed nodes provide DHT service
- Perhaps serve many applications
- Example: Planetlab
- Harder to get, but more reliable

15

Library or Service

= Library: DHT code bundled into application
- Runs on each node running application
- Each application requires own routing infrastructure
- Allows customization of interface
- Very flexible, but much duplication

= Service: single DHT shared by applications
- Requires common infrastructure
- But eliminates duplicate routing systems

- Harder to get, and much less flexible, but easier on each individual
app

16

Not Covered Today

= Making lookup scale under churn
- Better routing algorithms

= Manage data under churn
- Efficient algorithms for creating and finding replicas

= Network awareness
- Taking advantage of proximity without relying on it

= Developing proper analytic tools
- Formalizing systems that are constantly in flux

17

Not Covered Today (cont’'d)

Dealing with adversaries
- Robustness with untrusted participants

Maintaining data integrity
- Cryptographic hashes and Merkle trees
- Consistency

= Privacy and anonymity

= More general functionality
- Indexing, queries, etc.

= Load balancing and heterogeneity
18

Page 3

DHTs vs Unstructured P2P

DHTs good at:
- exact match for “rare” items

DHTs bad at:
- keyword search, etc. [can’'t construct DHT-based Google]
- tolerating extreme churn

Gnutella etc. good at:

- general search

- finding common objects

- very dynamic environments
Gnutella etc. bad at:

- finding “rare” items

19

Three Classes of DHT Applications

Rendezvous, Storage, and Routing

20

Rendezvous Applications

Consider a pairwise application like telephony

If A wants to call B (using the Internet), A can do the
following:

- Alooks up B's “phone number” (IP address of current machine)

- A’s phone client contacts B's phone client

What is needed is a way to “look up” where to contact
someone, based on a username or some other global
identifier

21

Using DHT for Rendezvous

= Each person has a globally unique key (say 128 bits)
- Can be hash of a unique name, or something else

= Each client (telephony, chat, etc.) periodically stores the IP
address (and other metadata) describing where they can
be contacted

- This is stored using their unique key

= When A wants to “call” B, it first does a get on B’s key

22

Key Point

The key (or identifier) is globally unique and static

The DHT infrastructure is used to store the mapping
Ibetw_een that static (persistent) identifier and the current
ocation

- DHT functions as a dynamic and flat DNS

= This can handle:
- IP mobility
- Chat
- Internet telephony
- DNS
- The Web!

23

Using DHTSs for the Web

Oversimplified:
= Name data with key

= Store IP address of file server(s) holding data
- replication trivial!

= To get data, lookup key

= If want CDN-like behavior, make sure IP address handed
back is close to requester (several ways to do this)

24

Page 4

Three Classes of DHT Applications

Rendezvous, Storage, and Routing

25

Storage Applications

= Rendezvous applications use the DHT only to store small
pointers (IP addresses, etc.)

= What about using DHTSs for more serious storage, such as
file systems

26

Examples of Storage Applications

= File Systems

= Backup

= Archiving

= Electronic Malil

= Content Distribution Networks

27

Why store data in a DHT?

= High storage capacity: many disks
= High serving capacity: many access links
= High availability by replication

= Simple application model

28

Example: CFS (DHash over Chord)

Goal: serve a read-only file system
Publisher inserts file system into DHT

CFS client looks like an NFS file system:
- [cfs/71f23bda0092

CFS client fetches data from the DHT

29

CFS Uses Tree of Blocks

A “pointer”: Root
..contains DHT key
of Directory

Root

Directory Directory block contains

filename/blockID pairs

[File1] [pir2] [File3]

30

Page 5

CFS Uses Self-authentication

Immutable block: (Content-Hash Block)
key = Cryptographi cHash(val ue)
encour ages data sharing!

Mutable block: (Public-key Block)
key = Ky
val ue = data + Sign[data]y,,,

Most Blocks are Immutable

Mutable block

Root

Directory| Immutable blocks

[File1] [pir2] [File3]

¢ This is a single-writer mutable data structure
32

31
Adding a File to a Directory
[Root| Mutable block
’ Directory‘ ’ Directory v2
Immutable
blocks
33

Data Availability via Replication

= Get(k) from closest

DHash replicates each key/value pair
at the nodes after it on the circle

It's easy to find replicas

Put(k,v) to all

34

First Live Successor Manages Replicas

35

Usenet over a DHT

Bulletin board (started in 1981)
- Has grown exponentially in volume
- 2004 volume is 1.4 Terabyte/day

Hosting full Usenet has high costs
- Large storage requirement
- Bandwidth required: OC3+ (I $30,000/month)

Only 50 sites with full feed

Goal: save Usenet news by reducing needed storage and
bandwidth

36

Page 6

Posting a Usenet Article

- 5 M

\D

- User posts article to local server

« Server exchanges headers & article w. peers
 Headers allow sorting into newsgroups

37

UsenetDHT

= Store article in shared DHT
= Only “single” copy of Usenet needed
= Can scale DHT to handle increased volume

= Incentive for ISPs: cut external bandwidth by providing
high-quality hosting for local DHT server

38

Usenet Architecture

=
g = =

|
-

¢ User posts article to local server
¢ Server writes article to DHT

 Server exchanges headers only
¢ All servers know about each article 30

UsenetDHT Tradeoff

= Distribute headers as before:

- clients have local access to headers

= Bodies held in global DHT

- only accessed when read
- greater latency, lower overhead

40

UsenetDHT: potential savings

‘ Net bandwidth Storage
Usenet 12 Megabyte/s 10 Terabyte/week
UsenetDHT 120 Kbyte/s 60 Gbyte/week

= Suppose 300 site network
= Each site reads 1% of all articles

41

Three Classes of DHT Applications

Rendezvous, Storage, and Routing

42

Page 7

“Routing” Applications

= Application-layer multicast
= Video streaming
= Event naotification systems

43

DHT-Based Multicast

= Application-layer, not IP layer
= Single-source, not any-source multicast

= Easy to extend to anycast

Tree Formation

= Group is associated with key
= “root” of group is node that owns key

= Any node that wants to join sends message to root, leaving
forwarding state along path

= Message stops when it hits existing state for group
= Data sent from root reaches all nodes

45

Multicast

« v Root(k)

46

Multicast Join

« v Root(Kk)

47

Multicast Join

, Root(k)

K

48

Page 8

Multicast Join

, Root(k)

K

Multicast Send

, Root(k)

K

Join(k)
49 50
Challenges Internet-Scale Query Processing
B = Superficial motivation:
= Repairing tree - Database joins implemented with hash tables so...
- Distributed joins can be implemented with DHTs
= Balancing duties among peers - Scaling: latency O(log n) while computation O(n)
= Low-latency routing (proximity-based DHT routing)
jm | ju | jm |
KL | A K2 | E A k1| A
K1 B K2 A K2 A
K1 C K2 F y K2 A
ki | o k| a b7
51 52
SELECT subnet, port, proto
ffic T,
PIER WHERE T.sourés = U-source %
AND U.port < 1024 &
™ GROUP BY T.subnet .
ORDER BY Tsubnet N/W}ﬂ -
= Range of operators Declarative dn éan =l
- Joins, aggregation (routing!), recursive, continuous queries Queries Query Plan | s
I T L
L]
+ Intended targets: Overlay Network
- Data “in the wild” (filesharing, net monitoring, etc.) Physical Network
- No need for ACID semantics, just best-effort
= Future: more sophisticated queries Network Query DHT
R h " Monitoring Optimizer Core Wrapper
- Range searches, etc. Relational
- Prefix Hash Tree Execution
Catalog Engine Overlay
Apps Manager Routing
Applications PIER DHT Network
53 54

Page 9

What's the Fuss about DHTs?

Goals, Strategy, Tactics

55

Distributed Systems Pre-Internet

= Connected by LANs (low loss and delay)
= Small scale (10s, maybe 100s per server)

= PODC literature focused on algorithms to achieve strict
semantics in the face of failures

- Two-phase commits
- Synchronization

- Byzantine agreement
- Etc.

56

Distributed Systems Post-Internet

= Very different context:
- Huge scales (thousands if not millions)
- Highly variable connectivity
- Failures common
- Organic growth

= Abandoned distributed strict semantics
- Adaptive apps rather than “guaranteed” infrastructure

= Adopted pairwise client-server approach
- Server is centralized (even if server farm)
- Relatively primitive approach (no sophisticated dist. algms.)
- Little support from infrastructure or middleware

57

Problems with Centralized Server Farms

= Weak availability:
- Susceptible to point failures and DoS attacks

= Management overhead
- Data often manually partitioned to obtain scale
- Management and maintenance large fraction of cost

= Per-application design (e.g., GoogleOS)
- High hurdle for new applications

= Don't leverage the advent of powerful clients
- Limits scalability and availability

58

The DHT Community’s Goal

Produce a common infrastructure that will help solve these
problems by being:

= Robust in the face of failures and attacks
- Availability solved

= Self-configuring and self-managing
- Management overhead reduced

= Usable for a wide variety of applications
- No per-application design

= Able to support very large scales, with no assumptions
about locality, etc.

- No scaling limits, few restrictive assumptions

59

The Strategy

Define an interface for this infrastructure that is:

= Generally useful for a wide variety of applications
- So many applications can leverage this work

= Can be supported by a robust, self-configuring, widely-
distributed infrastructure

- Addressing the many problems raised before

60

Page 10

Research Plan (Tactics)

Two main research themes:

- Many prototypes, trying to stretch limits
- Some exploratory, others more definitive

- Many designs and performance experiments
- Looking at extreme limits (size, churn, etc.)

« Above Interface: Investigate the variety of applications that
can use this interface

Hourglass Analogy

e

Appcat(%
Interface
= Below Interface: Investigate techniques for supporting this
interface

N

Infrastructure
Algorithms

61

62

Two Crucial Design Decisions

= Technology for infrastructure: P2P
- Take advantage of powerful clients
- Decentralized

- Nodes can be desktop machines or server quality

= Choice of interface: Lookup and Hash Table

- Lookup(key) returns IP of host that “owns” key
- Put()/Get() standard HT interface

- Some flexibility in interface (no strict layers)

63

What is a P2P system?

]
=] Node =
j——Y _
Node Node

Internet

[
Node

= Adistributed system architecture:
- No centralized control

- Nodes are symmetric in function

P2P as Design Style

= Resistant to DoS and failures
- Safety in numbers, no single point of attack or failure
= Self-organizing
- Nodes insert themselves into structure
- Need no manual configuration or oversight

= Flexible: nodes can be

- Widely distributed or colocated
- Powerful hosts or low-end PCs
- Trusted or unknown peers

65

= Large number of (perhaps) server-quality nodes
= Enabled by technology improvements

64

But What Interface?

= Challenge for P2P systems: finding content
- Many machines, must find one that holds file

= Essential task: Lookup(key)
- Given key, find host (IP) that has file with that key
= Higher-level interface: Put()/Get()

- Easy to layer on top of lookup()

- Allows application to ignore details of storage
« System looks like one hard disk

- Good for some apps, not for others

66

Page 11

DHT Layering

put(key, data) get (key) T data

Distributed hash table

lookup(key) l node IP address
__node | node __node_|

* Application may be distributed over many nodes
o DHT distributes data storage over many nodes

Virtues of DHT Interface

= Simple and proven useful
- Hash tables common implementation tool

= API supports a wide range of applications
- No structure/meaning imposed on keys
- Scalable, flat name space!

= Key/value pairs are persistent and global
- Can store keys in other DHT values
- And thus build complex data structures

68

67
Scenarios for DHT Usage
Where might there be a need for another
approach?
69

Scenario #1: Public Infrastructure

= Consider CiteSeer or other nonprofit systems:
- Service is very valuable to community
- No source of revenue

= How can it expand?
- Not enough support for expanding centralized facility

- But many institutions would donate remote use of their local
machines

= System problem:
- Coordinating donated distributed infrastructure

70

The DHT Approach

= DHTs are well-suited to such settings
- Inherently distributed with general interface
- Naturally provides rendezvous and data sharing

= Developers can focus on how to layer app on top of DHT
library
- Resilience, scaling, all taken care of by DHT

= Typical assumption for important services:
- Server-like nodes with good network access

71

Examples

= CiteSeer

- Replicate current service (OverCite), but with 10x performance
improvement

- Ulse e;dditional capacity to provide new features (e.g., SmartSeer's
alerts

= Cooperative CDNs

- Coral allows universities to collaboratively handle “slashdot”
workloads

- Operational today with many users

= UsenetDHT
- Allows cooperative institutions to share bandwidth load
- Operational system with small feed running

72

Page 12

Scenario #2: Scaling Enterprise Apps

= Enterprises rely on several crucial services
- Email, backup, file storage

= These services must be
- Scalable
- Robust
- Easy to deploy
- Easyto manage
- Inexpensive

73

The DHT approach

= Build all services on DHT interface

= DHT infrastructure:
- Scalable (just add nodes, need not be local)
- Robust
- Easy to deploy
- Easyto manage
- Exploits inexpensive commodity components

74

Examples

= Email
- ePOST (Rice)

= Backup
- MIT

= File storage
- OceanStore

75

Scenario #3: Supporting Tiny Apps

= Many apps could use DHT interface, but are too small to
deploy one themselves
- Small: user population, importance, etc.

= Such an application could use a DHT service

= OpenDHT is a public DHT service
- Lecture on this next week...

Scenario #4: Super-Resilence

= DHTs are a natural way to build super-resilient services

= DHTs would be a natural candidate for the next generation
name service, or other such crucial pieces of the
infrastructure

7

76
Not Just for Applications
= DHTs resolve flat names scalably
- We haven't been able to do this before
= How would we redesign the Internet, now that we can
resolve flat names?
78

Page 13

DHTs and Internet Architecture?

79

Early Applications Were Host-Centric

= Destination part of user’s goal:
- e.g., Telnet

= Specified by hostname, not IP address
- DNS translates between the two

= DNS built around hierarchy:
- local decentralized control (writing)
- efficient hostname resolution (reading)

80

Internet Naming is Host-Centric

= DNS names and IP addresses are the only global naming
systems in Internet

= These structures are host-centric:
- IP addresses: network location of host
- DNS names: domain of host

= Both are closely tied to an underlying structure:

- IP addresses: network topology
- DNS names: domain structure

81

The Web is Data-Centric

= URLSs function as the name of data
- Users usually care about content, not location
- www.chn.com is a brand, not a host
- Tying data to hosts is unnatural

= URLSs are bad names for data:
- Not persistent (name changes when data moves)
- Can't handle piecewise replication
- Legal contention over names

82

Larger Lesson

= For many objects, we will want persistent names

= If a name refers to properties of its referent that can
change, the name is necessarily ephemeral.
- IP addresses can't serve as persistent host names
- URLs can't serve as persistent data names

= Why do names have structure, anyway?

83

Old Implicit Assumption

= Internet names must have hierarchical structure in order to
be resolvable

= Setting up a new naming scheme requires defining a new
(globally recognized) hierarchy

= Problem: For these names to be persistent, the hierarchy
must match the natural structure of the objects they name.
- What is the natural hierarchy of documents?

84

Page 14

DHTs Enable Flat Names

= Flat names are names with no structure

» DHTs resolve flat names in logarithmic time
- And often much faster
- Thisis the same asin atree
- No longer need hierarchy for resolution speed

= But, flat names pose other problems (return to later)
- Control (used to be locally managed)
- Locality (part of DNS's success)
- User-friendliness

85

Why Are Flat Names Good?

= Flat names impose no structure on the objects they name
- Not true with structured names like DNS or IP add’s

= Flat names can be used to name anything

= Once you have a large flat namespace, you never need
another naming system
- One namespace
- One resolution infrastructure

86

Semantic-Free Referencing (SFR)

= Replace URLs by flat, semantic-free keys
- Persistent
- No contention

= Use a DHT to resolve keys to host/path
- “ADNS for data”
- Replication easy: multiple entries

= Other design issues:
- Ensure data security and integrity

- Provide fate-sharing and locality

87

Elegant but Unusable?

= How to get the keys you want?

- Third-party services will provide mapping between user-level names
and keys (think: Google)

- Competitive market outside infrastructure

= Do you have the key you wanted?
- Metadata includes signed “testimonials” (3rd party)

= Who is going to supply the resolution service?

- Competitive market much like tier-1 ISPs?
- Each access or store is by or for customers

88

Why Stop with the Web?

= DHTSs enable use of flat names

= Names should not impose structure on referents
- Flat names can name anything

= Why not a single name resolution infrastructure?
- Ageneralized DNS

= New architecture proposed to support:

- endpoint identifiers
- service identifiers

89

Layered Naming for the Internet

Software should use names at the proper level of abstraction

SID Resolution (to EID)

EID Resolution (to IP address)

90

Page 15

