
1

EECS122 - UCB 1

CS 194:
Distributed Systems

Communication Protocols, RPC

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley
Berkeley, CA 94720-1776

ISO OSI Reference Model for Layers

Application

Presentation

Session

Transport

Network

Datalink

Physical

Mapping Layers onto
Routers and Hosts

–Lower three layers are implemented everywhere

–Next four layers are implemented only at hosts

Application
Presentation

Session

Transport

Network

Datalink

Physical

Application
Presentation

Session

Transport

Network

Datalink

Physical

Network

Datalink

Physical

Physical medium

Host A Host B

Router

Encapsulation

• A layer can use only the service provided by the layer immediate
below it

• Each layer may change and add a header to data packet

– higher layer’ s header is treated as payload

data

data

data

data

data

data

data

data

data

data

data

data

data

data

OSI Model Concepts

• Service – says what a layer does

• Interface – says how to access the service

• Protocol – says how is the service
implemented
–A set of rules and formats that govern the

communication between two peers

Layering: Internet
• Universal Internet layer:

• Internet has only IP at the Internet layer

• Many options for modules above IP

• Many options for modules below IP

Internet

Net access/
Physical

Transport

Application

IP

LAN Packet
radio

TCP UDP

Telnet FTP DNS

2

Internet’ s Hourglass

Physical Layer

Datalink Layer

Network Layer

Application Layer

Physical Layer

• Service: move information between two systems
connected by a physical link

• Interface: specifies how to send a bit

• Protocol: coding scheme used to represent a bit,
voltage levels, duration of a bit

• Examples: coaxial cable, optical fiber links;
transmitters, receivers

AdaptorAdaptor AdaptorAdaptor
Signal

Network

Application
Transport

Link
Physical

Datalink Layer

• Service:
–Framing (attach frame separators)

–Send data frames between peers

–Medium access: arbitrate the access to common
physical media

–Error detection and correction

• Interface: send a data unit (packet) to a
machine connected to the samephysical media

• Protocol: layer addresses, implement Medium
Access Control (MAC) (e.g., CSMA/CD)…

Network

Application
Transport

Link
Physical

Network Layer

• Service:
–Deliver a packet to specified network destination

–Perform segmentation/reassembly

–Others
• Packet scheduling

• Buffer management

• Interface: send a packet to a specified destination

• Protocol: define global unique addresses; construct
routing tables

Network

Application
Transport

Link
Physical

Datagram (Packet) Switching

Host A

Host B
Host E

Host D

Host C

router 1 router 2

router 3

router 4

router 5

router 6 router 7

Network

Application
Transport

Link
Physical

Datagram (Packet) Switching

Host A

Host B
Host E

Host D

Host C

router 1 router 2

router 3

router 4

router 5

router 6 router 7

Network

Application
Transport

Link
Physical

3

Transport Layer

• Services:
–Multiplex multiple transport connections to one network

connection

–Provide an error-freeand flow-controlled end-to-end
connection

–Split one transport connection in multiple network
connections

• Interface: send a packet to specify destination

• Protocols: implement reliability and flow control

• Examples: TCP and UDP

Network

Application
Transport

Link
Physical

End-to-End View

• Process A sends a packet to process B

16.25.31.10 128.15.11.12

Proc. A
(port 10)

Proc. B
(port 7)

Internet

End-to-End Layering View

16.25.31.10 128.15.11.12

Proc. A
(port 10)

Internet
Proc. B
(port 7)

Transport

Network

Datalink

Physical

Proc. A
(port 10)

Proc. B
(port 7)

Transport

Network

Datalink

Physical

data

16.25.31.10 128.15.11.12data 10 7

data 10 7

16.25.31.10 128.15.11.12

data

data

data

10 7

10 7

Internet16.25.31.10 128.15.11.12

Client-Server TCP

a) Normal operation of TCP.
b) Transactional TCP.

2-4

Conventional Procedure Call

a) Parameter passing in a local procedure call: the stack before the
call to read

b) The stack while the called procedure is active

Example: Local Procedure Call

.

.

.
n = sum(4, 7);

.

.

.

sum(i, j)
int i, j;
{

return (i+j);
}

Machine

Process

4

Example: Remote Procedure Call

.

.

.

n = sum(4, 7);
.
.
.

sum(i, j)
int i, j;
{

return (i+j);
}

Client

Process

sum
4
7

message

OS

Server

Process

sum
4
7

message

OS

Stubs

Client and Server Stubs

• Principle of RPC between a client and server program.

Steps of a Remote Procedure Call
1. Client procedure calls client stub in normal way
2. Client stub builds message, calls local OS
3. Client's OS sends message to remote OS
4. Remote OS gives message to server stub
5. Server stub unpacks parameters, calls server
6. Server does work, returns result to the stub
7. Server stub packs it in message, calls local OS
8. Server's OS sends message to client's OS
9. Client's OS gives message to client stub
10. Stub unpacks result, returns to client

Parameter Passing

• Server and client may encode parameters differently
– E.g., big endian vs. little endian

• How to send parameters “call-by-reference” ?
– Basically do “call-by-copy/restore”

– Woks when there is an array of fixed size

– How about arbitrary data structures?

Different Encodings

a) Original message on the Pentium
b) The message after receipt on the SPARC
c) The message after being inverted. The little numbers in

boxes indicate the address of each byte

Parameter Specification and Stub Generation

a) A procedure
b) The corresponding message.

5

Binding a Client to a Server
• Client-to-server binding in DCE.

2-15

Doors
• The principle of using doors as IPC mechanism.

RPC Semantics in the Presence of Failures

• The client is unable to locate the server

• The request message from the client to server is lost

• The reply message from the client is lost

• The server crashes after sending a request

• The client crashes after sending a request

Client is Unable to Locate Server

• Causes: server down, different version of server
binary, …

• Fixes
– Return -1 to indicate failure (in Unix use errno to

indicate failure type)
• What if -1 is a legal return value?

– Use exceptions
• Transparency is lost

Lost Request Message

• Easiest to deal with

• Just retransmit the message!

• If multiple message are lost then
– “client is unable to locate server” error

Lost Reply Message

• Far more difficult to deal with: client doesn’ t know
what happened at server
– Did server execute the procedure or not?

• Possible fixes
– Retransmit the request

• Only works if operation is idempontent: it’ s fine to execute it
twice

– What if operation not idempotent?
• Assign unique sequence numbers to every request

6

Server Crashes

• Two cases
– Crash after execution
– Crash before execution

• Three possible semantics
– At least once semantics

• Client keeps trying until it gets a reply

– At most once semantics
• Client gives up on failure

– Exactly once semantics
• Can this be correctly implemented?

Client Crashes

• Let’s the server computation orphan
• Orphans can

– Waste CPU cycles

– Lock files

– Client reboots and it gets the old reply immediately

Client Crashes: Possible Solutions

• Extermination:
– Client keeps a log, reads it when reboots, and kills the orphan
– Disadvantage: high overhead to maintain the log

• Reincarnation:
– Divide times in epochs
– Client broadcasts epoch when reboots
– Upon hearing a new epoch servers kills the orphans
– Disadvantage: doesn’ t solve problem when network partitioned

• Expiration:
– Each RPC is given a lease T to finish computation
– If it does not, it needs to ask for another lease
– If client reboots after T sec all orphans are gone
– Problem: what is a good value of T?

RPC Semantics: Discussion

• The original goal: provide the same semantics as a
local call

• Impossible to achieve in a distributed system
– Dealing with remote failures fundamentally affects

transparency

• Ideal interface: balance the easy of use with making
visible the errors to users

Asynchronous RPC (1)

a) The interconnection between client and server in a
traditional RPC

b) The interaction using asynchronous RPC

2-12

Asynchronous RPC (2)

• A client and server interacting through two
asynchronous RPCs

