CS19%4:

Distributed Systems

Communication Protocols, RPC

Computer Science Divison

Department of Electrica Engineering and Computer Sciences
Universty of California, Berkeley

Berkeley, CA 94720-1776

SO OSI Reference Model for Layers

Application
Presentation
Session
Transport
Network
Datalink
Physical

Mapping Layers onto

Routers and Hosts

—Lower three layers are implemented everywhere
—Next four layers are implemented only at hosts

Host A

Host B

Application Application
Presentation Presentation
Session Session
Transport Router Transport
Network Network Network
Datalink Datalink Datalink
Physical Physical Physical

Physical medium

Encapsulation

< A layer can use only the service provided by the layer immediate
below it

¢ Eachlayer may change and add a header to data packet
—higher layer’ s header istreated as payload

data
lm l data |
r data [] L r data []
[

OSl Model Concepts

* Service—says what alayer does

* Interface — says how to access the service

* Protocol — says how isthe service
implemented

—A set of rules and formats that govern the

communication between two peers

Layering: Internet
* Universal Internet layer:
* Internet has only IP at the Internet layer
» Many options for modules above IP
» Many options for modules below IP

........... ol

Application

= = [TeP uDP
ransport | .-

Internet
Net access/

Physical radio

Internet’ s Hourglass

SMTP HTTP RTP.

Application Layer

Network Layer

ethernet PPP .

CSMA async sonet .

Physical Layer { a copper fiber radio . . . ‘

Datalink Layer

Application
Transport

Physical Layer
D- Signal

%Audplul f daptor] %E

* Service: moveinformation between two systems
connected by a physical link

* Interface: specifies how to send a bit

* Protocal: coding scheme used to represent a bit,
voltage levels, duration of a bit

» Examples: coaxial cable, optical fiber links;
transmitters, receivers

Application

e Datalink Layer
" physical
* Service:
—Framing (attach frame separators)
—Send data frames between peers
—Medium access: arbitrate the access to common
physical media
—Error detection and correction
* Interface: send a data unit (packet) to a
machine connected to the same physical media
* Protocol: layer addresses, implement Medium
Access Control (MAC) (e.g., CSMA/CD)...

Application
Transport

Network Layer

* Service:
—Deliver a packet to specified network destination
—Perform segmentation/reassembly
—Others
* Packet scheduling
< Buffer management
* Interface: send a packet to a specified destination
* Protocol: define global unique addresses; construct
routing tables

Application
Transport

Jemm Datagram (Packet) Switching
‘am

Host C

[mm] Host D

Host A =i

router 4 —

Application
Transport

e Datagram (Packet) Switching
‘mm

router 4

Application

Transport Layer

» Services:

—Multiplex multiple transport connections to one network
connection

—Provide an error-free and flow-controlled end-to-end
connection

—Split one transport connection in multiple network
connections

* Interface: send a packet to specify destination
* Protocols: implement reliability and flow control
» Examples: TCP and UDP

End-to-End View

* Process A sends a packet to process B

Proc. B
(port7)

Internet

End-to-End Layering View

r' o =
Proc. A —~ Proc. B
— Internet Sa
i

16.25.31.10 -

/ 128.15.11.12

Proc. A\ Proc. B
(port 10), {_cata | (port 7)

Transport Transport
Network Network
Datalink Datalink
Physical Physical
16.25.31.10 Internet 128151112

Client-Server TCP

Client Server Client

Server
L S L -
TTTSYN SYN, request,FIN
S e
. SYNACK(SYN) SYNACK(EIN) answerFIN”| 2
3 _ 3
A ACKSYNY T ACKEFIN)
5 T request | I
~ T
FIN~——_
B
6
__ ACK(req+FIN)
- 7
_answer 18
[FIN
s
Time O~ ___ Time
L ACK(FIN) __
>

@ (®)

Conventional Procedure Call

Stack pointer
Main program's Main program's
local variables local variables
bytes
buf

fd

return address
read's local
variables

@) (b)

a) Parameter passinginalocal procedure call: the sack before the
call toread

b) The stack while the called procedureisactive

Example: Local Procedure Call

Machine

Process

ﬁ sum(i, j)
. J inti, j;
n=sum(4, 7); {

return (i+j);

}

Example: Remote Procedure Call Client and Server Stubs

Stubs ¢ Principle of RPC between aclient and server program.

Wait for result
ClioNt e—

Call remote Return
procedure from call

Request

Call local procedure Time —»
and return results

oS oS

Steps of a Remote Procedure Call Parameter Passing

Client procedure calls client stub in normal way
Client stub builds message, callslocal OS
Client's OS sends message to remote OS
Remote OS gives message to server stub

Server stub unpacks parameters, calls server
Server does work, returns result to the stub
Server stub packsit in message, callslocal OS
Server's OS sends message to client's OS

. Client's OS gives message to client stub

10. Stub unpacks result, returnsto client

» Server and client may encode parameters differently
—E.g., big endian vs. little endian
* How to send parameters “ call-by-reference’ ?
— Basically do “call-by-copy/restore”
— Wokswhen there is an array of fixed size
— How about arbitrary data structures?

©oOoNOOR~WDNPRE

Different Encodings Parameter Specification and Stub Generation

foobar's local

variables

[12] 1] 1o [oy 17 [27 [3] or [17 [21 T3 @ A procedure _ [
0170770 s ol ol ol 00 s b) The corresponding message. y
7] te| 5| ia 6] |7 a; |50 |61 |7 5
Loje 1| JIol oL Ll L] 1| Z[0]
z[1]
. L 2 fookar(char x; float y; int z[5]) 2]
b 0
a) Original message on the Pentium } z[4]
b) The message after receipt on the SPARC @ @

c) The message after being inverted. Thelittle numbersin
boxesindicate the address of each byte

Binding a Client to a Server

 Client-to-server binding in DCE.

Directory machine

Directory
server :
3. Leokupissrver 4] ¥-l_2. Register service

Client machine R _Server machine

— |/

4. Ask for endpoint T ™oce =
daemon >~ Endpoint

table

- =
|1 5.DoRPC | Seiver 1. Register endpoint
Client — k)

¢ Theprinciple of using doorsas|PC mechanism.
Computer
Client process Server process

server_door(...) €———_
{

door_return(...); ————

E" cy ;nam()

fd = open(door_name, ...);

door_callfd, ..); — Registerdoor, |

| fd = door_create(...):
fattach(fd. door_name, ...):

}

»
}

\
{ Operating system \ $
X &
4
Invoke registered door /
at other process Return to calling process

» Theclient isunableto locate the server

* Thereply message from the client islost
» The server crashes after sending arequest
» Theclient crashes after sending a request

RPC Semantics in the Presence of Failures

* Thereguest message from the client to server islost

Client is Unable to Locate Server

e Causes. server down, different version of server

binary, ...

» Fixes

— Return -1 to indicate failure (in Unix use errno to
indicate failure type)
* What if -1 isalegal returnvalue?
— Use exceptions
e Trangoarency islost

Lost Request Message

» Easiest to deal with
* Just retransmit the message!

* If multiple message arelost then
—“client isunable to locate server” error

Lost Reply Message

» Far more difficult to deal with: client doesn’t know

what happened at server

— Did server execute the procedure or not?
Possible fixes

— Retransmit the request

» Only worksif operationisidempontent: it'sfine to execute it
twice

— What if operation not idempotent?
< Assgn unique sequence numbersto every request

Server Crashes

e Two cases
— Crash after execution
— Crash before execution
 Three possible semantics
— At least once semantics
« Client keepstrying until it getsareply
— At most once semantics
« Client gives up on failure
— Exactly once semantics
« Can thisbe correctly implemented?

Client Crashes: Possible Solutions

 Extermination:
— Client keepsalog, readsit when reboots, and killsthe orphan
— Disadvantage: high overhead to maintain thelog

* Reincarnation:

— Dividetimesin epochs

— Client broadcags epoch when reboots

— Upon hearing a new epoch serverskillsthe orphans

— Disadvantage: doesn't solve problem when network partitioned

» Expiration:

— EachRPCisgivenalease T to finish computation

— If it doesnot, it needsto ask for another lease

— If client reboots after T sec al orphansare gone

— Problem: what isa good value of T?

Client Crashes

 Let'sthe server computation or phan
» Orphans can

— Waste CPU cycles

— Lock files

— Client reboots and it gets the old reply immediately

RPC Semantics; Discussion

* Theorigina goal: provide the same semantics as a
local call

* Impossibleto achievein a distributed system

— Dealing with remote failures fundamentally affects
transparency

* ldeal interface: balance the easy of use with making
visiblethe errorsto users

Asynchronous RPC (1)

Client Wait for result

] v
Call remote Return
procedure from call

Server

Call local procedure Time —»
and return results

@

a) Theinterconnection between client and server ina
traditiona RPC

b) Theinteraction using asynchronous RPC

Asynchronous RPC (2)
A client and server interacting through two
asynchronous RPCs
Wait for Interrupt client
Cilerh acceptance *
A 3
Call remote Return o
procedure from call r;lﬂg Acknowledge
Accept
Request request
BTV ommrmmm i S ———
Call local procedure K Time ——»
Call client with
one-way RPC

