Clock Synchronization

- Distributed systems often require roughly consistent notions of time
- Usually the requirement isn’t that time is accurate (UTC), only that it is synchronized
- However, synchronizing machines with UTC automatically synchronizes all machines with each other
- Two well-known methods:
 - Cristian’s algorithm (UTC time-server based)
 - Berkeley algorithm (no UTC signal, but master)

Clock Synchronization (Cristian)

- Client polls time server (which has external UTC source)
- Gets time from server
- Adjusts received time by adding estimate of one-way delay
 - Estimates travel time as 1/2 of RTT
 - Adds this to server time
- Errors introduced not by delays, but by asymmetry in delays (path to server and path from server)

Clock Synchronization (Berkeley)

- Time master polls clients (master has no UTC)
- Gets time from each client, and averages
- Sends back message to each client with a recommended adjustment
- Clocks are synchronized, but not UTC
- Errors arise when nodes have different delays from master

Logical Clocks

- Most algorithms don’t require tightly synchronized clocks, but they often require a common notion of causality
- That is, events can be ordered arbitrarily, as long as causality isn’t violated
- For example, it doesn’t matter whether I updated my password in Japan before or after someone saved a file in Chile, as long as no messages or other interactions occurred between the two systems
- Lamport captured this notion of causality
Lamport Timestamps

- When message arrives, if process time is less than timestamp s, then jump process time to s+1
- Clock must tick once between every two events
- If A → B then must have L(A) < L(B)
 - logical clock ordering never violates causality
- If L(A) < L(B), it does NOT follow that A → B
 - Lamport clocks leave some causal ambiguity

Questions

- Can a message from I to J have v[J] greater than the current value of V[J]?
- Can it be equal? (not after J updates after receipt!)
- Right after a message from I to J is received and V_j is updated, can you have V[K] > V_j[K]?
- Therefore, after a message from I to J arrives, V_j dominates V_i
 - Greater than or equal in every entry

Electons

- Need to select a special node, that all other nodes agree on
- Assume all nodes have unique ID
- Example methods for picking node with highest ID
 - Bully algorithm
 - Gossip method

Vector Timestamps Definition

- V[I]: number of events occurred in process I
 - Not using Lamport’s rule of jumping clocks ahead!
- V[J] = K: process I knows that K events have occurred at process J
- All messages carry vectors
- When J receives vector v, for each K it sets V[J][K] = v[K] if it is larger than its current value
- It then updates V[J] by one (to reflect recv event)

Vector Timestamps Properties

- A → B, if and only if the vector associated with B dominates that of A
- A and B are concurrent if and only if the vectors from A and B are not comparable:
 - At least one element from A greater than that of B
 - At least one element from B greater than that of A

Exclusion

- Ensuring that a critical resource is accessed by no more than one process at the same time
- Methods:
 - Centralized coordinator: ask, get permission, release
 - Distributed coordinator: treat all nodes as coordinator
 - If two nodes are competing, timestamps resolve conflict
 - Interlocking permission sets: Every node I asks permission from set P[I], where P[I] and P[J] always have nonempty intersections
Concurrency Control

- Want to allow several transactions to be in progress
- But the result must be the same as some sequential order of transactions
- Use locking policies:
 - Grab and hold
 - Grab and unlock when not needed
 - Lock when first needed, unlock when done
 - Two-phase locking
- Which policies can have deadlock?

Alternative to Locking

- Use timestamp ordering
 - Retrying an aborted transaction uses new timestamp
- Data items have:
 - Read timestamp IR: timestamp of transaction that last read it
 - Write timestamp IW: timestamp of transaction that last wrote it
- Pessimistic timestamp ordering:
 - When reading, abort if ts<IR(A)
 - When writing, abort if ts<IR(A)
- Optimistic: do all your work, then check to make sure no timestamp conditions are violated

Data Replication and Consistency

- Scalability requires replicated data
- Application correctness requires some form of consistency
 - Here we focus on individual operations, not transactions
- How do we reconcile these two requirements?

Models of Consistency

- Strict consistency (in your dreams…)
- Linearizable (in your proofs…)
- Sequential consistency: same order of operations
- Causal consistency: all causal operations ordered
- FIFO consistency: operations within process ordered

Mechanisms for Sequential Consistency

- Local cache replicas: pull, push, lease
 - Why does this produce sequential consistency?
- Primary-based replication protocols: [won’t ask]
- Replicated-write protocols: quorum techniques
- Cache-coherence protocols [didn’t cover]

Quorum-based Protocols

- Assign a number of votes V(I) to each replica I
 - Let V be the total number of votes
- VR= read quorum, VW= write quorum
- Requirements: VR+VW > V and VW > V/2
- Examples:
 - Read-one, write-all
 - Majority
Scaling

- None of these protocols scale
- To read or write, you have to either
 - (a) contact a primary copy
 - (b) contact over half of the replicas
- All this complication is to ensure sequential consistency
- Can we weaken sequential consistency without losing some important features?

Eventual Consistency

- Rather than insisting that the order of operations meet some standard, we ask only that in the end all nodes eventually agree
 - If updates are stopped, will mechanism produce uniform replicas?
- Some of the previous notions of consistency did not produce this!
 - FIFO, and causal

Implementing Eventual Consistency

- All writes eventually propagate to all replicas
- Writes, when they arrive, are applied in the same order at all replicas
 - Easily done with timestamps and “undo”

Update Propagation

- Rumor or epidemic stage:
 - Attempt to spread an update quickly
 - Willing to tolerate incompletely coverage in return for reduced traffic overhead
 - Push/pull methods spreading methods (pull better than push)
- Correcting omissions:
 - Making sure that replicas that weren’t updated during the rumor stage get the update
 - Anti-entropy

Bayou Design Choices

- Variable connectivity ⇒ Flexible update propagation
 - Incremental progress, pairwise communication
- Variable end-nodes ⇒ Flexible notion of clients and servers
 - Some nodes keep state (servers), some don’t (clients)
 - Laptops could have both, PDAs probably just clients
- Availability crucial ⇒ Must allow disconnected operation
 - Conflicts inevitable
 - Use application-specific conflict detection and resolution

Bayou

Will NOT be on midterm!
Components of Design

- Update propagation
- Conflict detection
- Conflict resolution
- Session guarantees

The CAP Theorem

- Perspective on tradeoffs in distributed systems
- Asks why there are different design philosophies

BASE or ACID?

- Classic distributed systems: focused on ACID semantics
 - A: Atomic
 - C: Consistent
 - I: Isolated
 - D: Durable
- Modern Internet systems: focused on BASE
 - Basically Available
 - Soft-state (or scalable)
 - Eventually consistent

Why the Divide?

- What goals might you want from a shared-date system?
 - C, A, P
- Strong Consistency: all clients see the same view, even in the presence of updates
- High Availability: all clients can find some replica of the data, even in the presence of failures
- Partition-tolerance: system as a whole can survive partition

CAP Theorem

- You can only have two out of these three properties
- The choice of which feature to discard determines the nature of your system

Consistency and Availability

- Comment:
 - Providing transactional semantics requires all functioning nodes to be in contact with each other
- Examples:
 - Single-site and clustered databases
 - Other cluster-based designs
- Typical Features:
 - Two-phase commit
 - Cache invalidation protocols
 - Classic DS style
Consistency and Partition-Tolerance

- **Comment:**
 - If one is willing to tolerate system-wide blocking, then can provide consistency even when there are temporary partitions

- **Examples:**
 - Distributed databases
 - Distributed locking
 - Quorum (majority) protocols

- **Typical Features:**
 - Pessimistic locking
 - Minority partitions unavailable
 - Also common OS style
 - Voting vs primary replicas

Partition-Tolerance and Availability

- **Comment:**
 - Once consistency is sacrificed, life is easy….

- **Examples:**
 - DNS
 - Web caches
 - Coda
 - Bayou

- **Typical Features:**
 - TTLs and lease cache management
 - Optimistic updating with conflict resolution
 - This is the “Internet design style”

Summary of Techniques/Tradeoffs

- **Expiration-based caching:** AP not C
- **Quorum/majority algorithms:** PC not A
- **Two-phase commit:** AC not P