Hot-Carrier Effects in Thin-Film Fully Depleted SOI MOSFET's

Z. J. Ma, Member, IEEE, H. J. Wann, M. Chan, J. C. King, Y. C. Cheng, Senior Member, IEEE, P. K. Ko, Member, IEEE, and C. Hu, Fellow, IEEE

Abstract—Previous conflicting reports concerning fully depleted SOI device hot electron reliability may result from overestimation of channel electric field (E_m). Experimental results using SOI MOSFET’s with body contacts indicate that E_m is just a weak function of thin-film SOI thickness (T_{th}) and that E_m can be significantly lower than in a bulk device with drain junction depth (X_j) comparable to SOI’s T_{th}. The theoretical correlation between SOI MOSFET’s gate current and substrate current are experimentally confirmed. This provides a means (I_G) of studying E_m in SOI device without body contacts. Thin-film SOI MOSFET’s have better prospects for meeting breakdown voltage and hot-electron reliability requirements than previously thought.

I. INTRODUCTION

THIN-FILM fully-depleted (FD) SOI MOSFET’s have attracted much attention because of their larger drain saturation current, absence of kink effect, and superior sub-threshold leakage. However, as far as device reliability and breakdown voltage are concerned, previous reports are divided on whether FD SOI devices have reduced or enhanced hot-carrier susceptibility and the sensitivity to SOI film thickness [1]-[7]. The main difficulty is that substrate current (I_{SUB}), the convenient monitor of channel field for bulk MOS devices, cannot be measured on the conventional SOI devices with floating body. While gate current has been suggested as a lifetime parameter for SOI devices [6], [7], gate current is small, difficult to measure, and sensitive to charge trapping and the vertical field. Gate current characterization cannot be confirmed as a valid monitor of channel field without substrate current. In this study, for the first time, using a special SOI device structure with body contact, both substrate (body) current (I_{SUB}) and gate current (I_G) were directly measured in the same devices. Based on this experiment, not only is the channel field in SOI devices quantified, but also the correlation between I_{SUB} and I_G is established.

II. EXPERIMENTS

The FD n- and p-channel SOI devices were fabricated on SIMOX wafers using a CMOS process. The buried oxide thickness is about 3500 Å. LOCOS isolation and 3000-Å in-situ doped n+ poly gate were used. To collect I_{SUB}, the n-MOS devices have a special p$^+$ region to contact the p-type body. The p$^+$ region was formed by p-MOS S/D implant (B_{11}, 4×10^{15} cm$^{-2}$, 30 keV). Similarly, p-MOS devices have an n$^+$ region to contact n-type body using n-MOS S/D implant (A_{S}, 4×10^{15} cm$^{-2}$, 70 keV). The measured I_{SUB} in these structures is found to be proportional to the channel width, indicating the high efficiency in collecting I_{SUB}.

III. RESULTS AND DISCUSSIONS

In bulk MOSFET’s, the maximum channel field can be estimated as follows [8]:

$$E_m = (V_D - V_DSAT)/l = (V_D - V_DSAT)/(0.22T_{ox}^{1/3}X_j^{1/2})$$

(1)

where l is the characteristic length. The hot-carrier currents, I_{SUB} and I_G, can be expressed as [9]

$$I_{SUB} = A_t/B_t(V_D - V_DSAT)I_D \exp(-B_t/E_m)$$

(2)

$$I_G = C(E_{ox})I_D \exp(-\varphi_b/E_m)$$

(3)

By combining (2) and (3), we get

$$\ln\left(\frac{I_{SUB}}{V_D - V_DSAT}\right) = \ln\left(\frac{A_t}{B_t}\right) - \frac{B_t l}{V_D - V_DSAT}$$

(4)

$$I_G = \frac{C(E_{ox})B_t}{A_t(V_D - V_DSAT)}\left(\frac{I_{SUB}}{I_D}\right)^{(\varphi_b)/(B_t)}$$

(5)

where A_t and B_t are known constants for impact ionization rate, i.e., $\alpha = A_t \exp(-B_t/E)$ [9], φ_b is the barrier height at Si/SiO$_2$ interface, λ is the scattering mean-free path, and all the other parameters have their usual meanings.

In SOI devices, the definition of drain junction depth (X_j) is not clear. Colinge used T_{th} to substitute X_j in (1) to estimate the channel field [3], while Chen et al. [6] reported that this overestimates E_m. From expression (4), a plot of $\ln(I_{SUB}/(I_D(V_D - V_DSAT)))$ versus $1/(V_D - V_DSAT)$ should yield one straight line for all bias voltages, as shown in Fig. 1. The slope of this straight line gives $B_t l$, from which l and hence E_m can be determined experimentally. It is found
that using thin-film SOI thickness (T_{si}) to substitute X_J can overestimate E_m by a factor of 2 (roughly equivalent to overestimating V_{th} by more than 50%).

I_{SUB}/I_D is a simple monitor of the channel filed E_m. Figs. 2(a) and (b) show the distribution of measured I_{SUB}/I_D for the SOI and bulk devices, respectively. Although T_{si} variation across a wafer is as high as 200 Å, the I_{SUB}/I_D variation is only ±10% and comparable to the ±10% variation in the bulk case, confirming the weak E_m sensitivity to T_{si}. Besides, an SOI device has lower I_{SUB}/I_D, and hence E_m, by around 400% than the bulk device (see Figs. 2(a) and (b)), although V_{DSAT} are about the same. T_{si} was determined by the CV technique [10].

Both the lower E_m and weaker E_m dependence on T_{si} for SOI devices can be attributed to the lateral drain doping gradient effect in thin-film SOI devices based on 2D simulation [11]. The simulation found relatively low E_m and weak E_m sensitivity on T_{si} within the range of interest (500–1100 Å). E_m is a function of the lateral drain doping gradient even for non-LDD As drains. In the case of bulk MOSFETs, the doping gradient varies with X_J; this contributes to the E_m dependence on X_J. In the case of SOI MOSFETs, lateral doping gradient is decoupled from X_J (or T_{si}). Hence, E_m can be lower in SOI device with small T_{si} than in a bulk device with small X_J, and E_m is a weak dependence on T_{si} as well.

Previous reports have been divided on whether FD SOI devices are less [3]–[7], or more [11], [12] vulnerable to hot-carrier effects. The knowledge that FD SOI devices can have a lower channel field E_m than the bulk devices should also be reflected from the device degradation in terms of hot-carrier stress. Fig. 3 shows the lifetime versus I_{SUB} for n-channel SOI and bulk devices under the worst case (maximum I_{SUB}) stress conditions. Although X_J for the bulk devices is as large as 2000 Å, the SOI devices with T_{si} = 800 Å are still less

Fig. 1. Experimental determination of the characteristic length l in $E_m = (V_D - V_{DSAT})/l$ in SOI and bulk n-MOS devices. In bulk device, the measured l is 461 Å. In SOI device, the measured l is 1194 and 1254 Å, while the l, based on the bulk MOSFET E_m model with $X_J = T_{si}$, are 554 Å and 616 Å, implying that E_m in SOI devices can be much lower than in bulk devices with shallow abrupt drain.

Fig. 2. Distribution of I_{SUB}/I_D of SOI and bulk n-MOS devices. (a) SOI. (b) Bulk n-MOS devices. Both I_{SUB} and I_D were measured at the maximum I_{SUB}/I_D point with V_D = 4 V. The sensitivity to SOI T_{si} is very weak. The variations of I_{SUB}/I_D across both wafers are about ±10%. SOI has lower I_{SUB}/I_D and hence E_m (by around 400%) than the comparable bulk MOSFET.

Fig. 3. Device hot-carrier lifetime versus substrate current for SOI and bulk n-MOS devices. $W_{eff}/L_{eff} = 4.5 / 0.8 \mu m$. Under stress, $V_D = 4.5 - 6.5 V$ with V_G varied so that I_{SUB} can be adjusted. The lifetime τ is defined as the stress time to reach 10% $\Delta I_D/I_D$. The slope is about -3.5.
MOSFET. The decoupling of SOI MOSFET junction depth \(T_{\text{sil}} \) and lateral doping gradient is a little discussed but significant advantage in drain engineering. The correlation between \(I_{\text{SUB}} \) and \(I_G \) is confirmed and suggests that the channel field may be characterized through the measurable \(I_G \). This realization improves the prospects of thin-film SOI devices meeting breakdown voltage and hot-carrier effects requirements. \(I_G \) measurement should help drain structure design engineering.

REFERENCES

