A NEW APPROACH FOR SIMULATION OF CIRCUIT DEGRADATION
DUE TO HOT-ELECTRON DAMAGE IN NMOSFETS

Khandker N. Quader, Chester Li, Robert Tu, Elyse Rosenbaum, Ping Ko, and Chenming Hu

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

In this paper, we present a new approach for modeling hot-electron induced change in drain current for both forward and reverse modes of operation. The change in drain current, ΔI_D, is implemented as an asymmetrical voltage controlled current source. We will first present the physical basis of the model and derive the analytical model equations. This will be followed by the implementation scheme for the analytical ΔI_D model in BERT (Berkeley Reliability Tool) simulator and a detailed evaluation of the model as a function of different device and circuit parameters. Finally simulation results of uni-directional and bi-directional circuits based on the new model will be presented.

I. INTRODUCTION

Hot-electron induced MOSFET degradation is becoming an increasing concern for constant voltage scaling. Although physical mechanisms for hot-electron damage have been extensively studied [1-5], a clear understanding of hot-carrier effects in an actual circuit environment [6-7] is essential to ensure product reliability and to the evaluation of hot-carrier reliability in the early stages of process optimization. Hot-carrier reliability programs which can predict circuit reliability can form an integral part of this process. Simulation tools, such as CAS [8], HOTRON [9], and RELAY [10] have been developed to predict circuit reliability. Accurate modeling of fresh and degraded drain current in these simulation tools require the tedious and often difficult task of generating stressed process files.

In this paper, we present a new approach for modeling the hot-electron induced change in the drain current (ΔI_D) for forward and reverse operation and for uni-directional and bi-directional stress. The new model is adaptable to any SPICE model and does not require any stressed process files. This can simplify the process of predicting circuit degradation. Conventional NMOSFET’s with $W/L = 17.0$ and $L_{dr} = 0.6$ – 5.0μm are used for this study.

II. PHYSICAL BASIS OF ΔI_D MODEL

Fig. 1 shows the fresh I_D, degraded I_D, and ΔI_D due to hot-electron stressing. In Fig. 2, $\Delta I_D/\Delta V_D$ and ΔI_D are shown as function of V_D. The forward $\Delta I_D/\Delta V_D$ initially increases with V_D at a voltage lower than V_{MOS}, and eventually decreases. Studies [1-5] have shown that NMOS hot-electron damage is dominated by acceptor type interface states. For low V_{MOS}, the interface states are occupied and negatively charged thus resulting in the flat $\Delta I_D/\Delta V_D$ region (I). In region I as I_D increases with V_{MOS}, ΔI_D also increases. As V_{MOS} is further increased, the lowering of the quasi fermi level decreases the number of charged states. This results in the $\Delta I_D/\Delta V_D$ roll-off in region II. As shown in Fig. 2, the slope of this region is a function of V_{MOS}. We now have two competing mechanisms: 1) the deviation of I_D from its linear V_{DSS} dependence due to velocity saturation effects, and 2) the decreasing $\Delta I_D/\Delta V_D$ due to the reduction of charged interface states. These two mechanisms cause ΔI_D to peak at a voltage lower than V_{MOS} and then linearly decrease with V_{MOS} (region II). Beyond V_{MOS}, the channel pinchoff region (ΔI_D) partially screens the damage, causing $\Delta I_D/\Delta V_D$ to deviate from its linear V_{MOS} dependence (region III). In the reverse mode (source and drain switched after hot-electron stressing), the damage is located near the source and no reduction in occupied states occurs as V_{MOS} is increased. Thus $\Delta I_D/\Delta V_D$ remains constant and reverse ΔI_D tracks the I_D behaviour as shown in Fig. 1.

III. ΔI_D MODEL

Recent study [11] on dynamic degradation of MOSFET's has shown that in digital circuits interface traps is the dominant hot-carrier degradation mechanism of NMOSFET's. Fig. 3a shows a NMOSFET cross-section with a damaged region of length L_D and a uniform interface-state charge density, N_{IT}. Interface-layer mobility, μ, due to hot-carrier damage has been empirically modeled as [12],

$$\mu = \mu_{0}(1 + KN_{IT})$$

(1)

where μ_{0} corresponds to inversion-layer mobility of a fresh device. Assuming that all the interface states are charged (which holds only for very small V_{DSS}), the percent degradation of drain current, ΔI_D, has been modeled as [13],

$$\Delta I_D/\Delta V_D = CK(8L_{dr}/1)^{1/2}$$

(2)

where C is a technology constant, K is the time dependence of degradation and m is the slope of lifetime plot [10]. With $E_{IT} = (V_D - V_T)/V_{MOS}$, it is given by [13],

$$K = 3.2 \times 10^{-13} \text{cm}^2/[1 + (2.66 \times 10^6 E_{IT})^{1.25}]$$

(3)

However, for circuit simulation a model for the entire V_{DSS} range is needed.

Forward Mode ΔI_D: In the previous section, we showed that the forward mode has three distinct regions: two in the linear region and one in the saturation region.

Linear Region: We first define ΔI_{lin} and the fresh drain current I_D [14] as

$$\Delta I_{lin} = \frac{W}{L} C_{IT}(8L_{dr}/1)^{1/2}$$

(4)

$$I_D = \frac{W}{L} C_{IT}(V_D - V_T) \frac{1}{2} \left(1 + \frac{1}{(1 + V_{DSS}/E_{IT})} \right)$$

(5)

Using eqns. 2-5 and defining V_{PK} as the voltage at which ΔI_D peaks, we model region I (low V_{DSS}) as,

$$\Delta I_D = I_D \Delta I_{lin}$$

(6)

$$V_{DSS} < V_{PK}$$

(7)

In region II, $\Delta I_D/\Delta V_D$ was empirically determined to have a linear V_{DSS} dependence and a $1/(V_D - V_T)^{1.5}$ dependence. ΔI_D in region II can then be expressed as,

12.4.1

CH3075-99/0000-0337 $1.00 © 1991 IEEE

JEDM 91-337
\[
V_{\text{DRAT}} = \sqrt{\frac{\Delta \alpha N_{\text{th}}}{V_{\text{TH}}}}
\]

From eqns. 7 and 8, we find that \(V_{\text{DRAT}} = A_2 V_{\text{DIAT}}\), where \(A_2\) is a constant for a given technology and \(A_3\) is a fitting parameter.

Saturation Region: Fig. 3b shows the cross-section of the NMOSFET in the saturation region with channel pinch-off region, \(\Delta L\). Since the channel pinch-off region screens off part of the damage, only \((\Delta L - \Delta L_{\text{c}})\) portion of the damaged region effects the inversion-layer mobility. The drain current and the channel voltage \(V(y)\) is related by [14],

\[
\frac{dV(y)}{dy} = \frac{I_D}{(W \mu_{\text{sat}} V_{\text{TH}} - V(y))} - \frac{I_D}{\mu_{\text{sat}}}
\]

Integrating from \(y = 0\) to \(y = L_{\text{c}} - \Delta L\) with \(V(0) = 0\), \(V(y) = V_{\text{DIAT}}\), we obtain for \(V_D = V_{\text{DIAT}}\),

\[
\Delta L = \frac{1}{V_{\text{TH}}} \left(1 - \frac{A_3 V_{\text{DIAT}}}{V(y)} \right) \frac{\Delta L_{\text{c}}}{A_3} \frac{\Delta L_{\text{c}} - \Delta L}{V_{\text{DIAT}}}
\]

where the saturation voltage of the fresh device is given by

\[
V_{\text{SAT}} = \frac{W \mu_{\text{sat}} (V_D - V_D)}{(V_D - V_{\text{TH}}) + E_{\text{sat}} L}
\]

Reverse Mode \(\Delta L\): In the reverse mode (drain and source switched after stress) the damage is located near the source and not the drain. With the \((\Delta \alpha \text{s})\), as the reverse age the reverse mode \(\Delta L_{\text{r}}\) can be expressed as,

\[
\Delta L_{\text{r}} = \frac{I_D}{\mu_{\text{sat}}} K \frac{A_3}{\Delta L_{\text{c}}} \frac{\Delta L_{\text{c}} - \Delta L}{V_{\text{DIAT}}}
\]

The \(\Delta L_{\text{r}}\) model equations presented above require only six parameters: \(m, n, C, A_1, A_2, \Delta L_{\text{c}}\). All these six parameters can be extracted from simple stress experiments.

IV. MODEL IMPLEMENTATION

In this section we will discuss the implementation scheme of the \(\Delta L\) model in BERT (Berkley Reliability Tool). The hot-electron induced asymmetrical change in drain current is implemented as a voltage controlled current source as shown in Fig. 4. By including the sign of \(V_{\text{TH}}\) in the \(\Delta L\) model, the asymmetrical drain current can easily be simulated. Bi-directional hot-electron stress proceeds independently of each junction [15]. Fig. 4c shows that after a bi-directional stress, both source and drain have a damaged region. We include the effect of bi-directional stress by a linear superposition of the contributions from the forward mode \(\Delta L_{\text{f}}\) and the reverse mode \(\Delta L_{\text{r}}\).

Fig.5 shows the two different implementation schemes we have developed. In method 1, \(\Delta L_{\text{f}}\) equations are implemented outside SPICE and the second pre-BERT step adds a voltage controlled current source to the SPICE input file. This scheme thus requires no modification of the existing SPICE source codes. In the second method, the second pre-BERT step adds the forward and the reverse Ages to each transistor cell in the SPICE input file. The original \(I_D\) of NMOSFET in SPICE is multiplied by the hot-carrier degradation factor based on the forward and the reverse Ages calculated by BERT. Thus if \(I_D\) is the fresh drain current, then in the forward operating mode (\(V_D > 0\)), the SPICE drain current equation is modified to the following

\[
I_D = I_D \{ 1 - (\Delta \alpha \text{s}0 V_{\text{DIAT}} + \Delta \alpha \text{s}1 V_{\text{DIAT}}) \}
\]

where \(\Delta \alpha \text{s}0\) and \(\Delta \alpha \text{s}1\) are the \(\alpha \) equations due to forward and reverse ages given above. In the reverse operating mode (\(V_D < 0\)), the \(I_D\) equation is same as eqn. 14. Except that \(\alpha \text{f}\) and \(\alpha \text{r}\) are swapped and \(\Delta \alpha \text{s}0\) and \(\Delta \alpha \text{s}1\) are swapped. Since the hot-carrier drain current degradation is implemented as an adjustment factor to the original \(I_D\) equation in SPICE, both implementation schemes are adaptable to any SPICE MOS level.

V. EXPERIMENTAL AND SIMULATION RESULTS

Model Verification: Fig. 6 demonstrates the \((V_{\text{DIAT}} - V_D)\) dependence of the model in the three regions discussed in sections II and III. Figs. 7 and 8 show very good agreement between the modeled and measured values of \(\alpha \) for different \(V_D\) and \(V_{\text{DIAT}}\) respectively. In order to evaluate the effect of bi-directional model, we stressed each junction of a NMOSFET independently for 20 minutes. Fig. 9 shows that the model can accurately predict the degradation of both source and drain due to bi-directional stress.

Circuit Simulation: We simulated a ring oscillator and a dynamic latch as illustrations of unidirectional and bi-directional stress stresses respectively. Fig. 10 shows the simulated fresh and degraded waveform of the ring oscillator after 10 years of aging. Fig. 11a is the schematic of the dynamic latch and fig. 11b is the stressing waveform. Fig. 12 shows the simulated fresh and degraded waveform of the dynamic latch. Curve a is the fresh waveform, curve b is the degraded waveform with only unidirectional model and curve c is the degraded waveform when the bi-directional model is included. We can clearly see that the uni-directional model underestimates the degradation.

VI. CONCLUSION

A new approach for simulation of circuit degradation due to hot-electron damage in NMOSFETs is presented. Hot-electron damage is modeled as a bi-directional voltage controlled current source (\(\Delta L\)) which does not require any stress process files. The new \(\Delta L\) hot-electron model is adaptable to any SPICE model and requires only six parameters which can be extracted from simple stress experiments. Good agreement has been observed between the modeled and experimental data for different \(V_{\text{DIAT}}\), \(\text{L}_{\text{c}}\), stressing time and stressing drain voltage. Simulation results show that the new approach can be extremely useful in accurately predicting both uni-directional and bi-directional circuit degradation.

ACKNOWLEDGEMENT

This project was funded by ISEP under contract F49620-87-C-0041, SRC, MICRO, and MOTOROLA.

REFERENCES

Fig. 1 NMOS drain current I_D and change in drain current, ΔI_D, as a function of drain voltage, V_{DS} after hot-electron stressing.

Fig. 3 Interface trap dominated ΔI_D model: a) Linear region, b) Saturation region, and c) bi-directional mode. δI_T is hot-electron damage region, δI_{R} is pinch off region, δI_{F} and δI_{R} are the forward and reverse damage region.

Fig. 4 Change in drain current ΔI_D stressing, modeled as a bi-directional voltage controlled current source.

Fig. 2 Percent change in drain current I_D, and change in drain current, ΔI_D, in forward mode as a function of drain voltage. I = linear 1, II = linear 2, and III = saturation.

Fig. 5 Flowchart for ΔI_D model implementation in BERT. Method I requires no SPICE modification. Method II requires simple multiplicative change to I_D in SPICE.

Fig. 6 Dependence of the change in drain current ΔI_D on $(V_{DS} \cdot V_T)$ in the three regions: linear I, linear II, and saturation.
Fig. 7 Change in drain current ΔI_D in forward and reverse modes as a function of V_{DS} for $V_{GS} = 3v$ and $V_{G} = 5v$.

Fig. 8 Change in drain current ΔI_D in forward mode as a function of V_{DS} for different L_{eff}.

Fig. 9 Change in drain current ΔI_D in forward and reverse modes as a function of V_{DS} after bi-directional stress. Each junction independently stressed for 20min. ΔI_D modeled as a linear sum of drain and source stresses.

Fig. 10 Hot-carrier degradation simulation of a 17-stage ring oscillator using the new ΔI_D model in BERT.

Fig. 11 a) Schematic of a dynamic latch, and b) Waveform used in simulating the bi-directional degradation of the dynamic latch.

Fig. 12 Hot-carrier degradation simulation of a dynamic latch using the new ΔI_D model in BERT. a,b and c are the fresh, degraded (uni-directional model only), and degraded (bi-directional model) waveforms respectively.