The Effects of Furnace N$_2$O Annealing on MOSFETs

Department of EECS, University of California, Berkeley, CA 94720, USA

*The Directorate, City Polytechnic of Hong Kong, Hong Kong

Abstract—MOSFETs with 70-110Å thick furnace N$_2$O-annealed gate oxides are examined at both room and liquid nitrogen temperatures. The N$_2$O anneal not only improves device performance, e.g. by increasing the high normal field mobility and current drivability, but it also suppresses degradation induced by Fowler-Nordheim and channel hot-carrier injection. Random telegraph noise measurements reveal a possible correlation between the interface properties and the mobility.

I. INTRODUCTION

Thermal nitridation of conventional oxides in a nitrogen rich ambient, most notably NH$_3$ and N$_2$O, has been shown to improve many properties of the oxide films [1]-[3]. N$_2$O nitridation, in particular, is appealing because of the absence of deleterious hydrogen which has been correlated with electron trapping and because the films requires no reoxidation [2]-[4]. It has been reported previously [2]-[4] that a post-oxidation N$_2$O anneal (two-step process) is more promising than direct oxynitride growth in N$_2$O (one-step process) because the self-limiting nature of the direct oxynitride growth limits the film thicknesses to about 40Å unless rapid thermal processing (RTP) techniques are used [5]. The two-step process, however, allows the fabrication of much thicker nitrided oxide films. In this work, we report the characteristics of nMOSFETs with 70-110 Å N$_2$O-annealed gate oxides.

II. DEVICE PREPARATION

The nMOSFETs used in this work were fabricated on 15-30 Ω·cm p-Si (100) wafers using a four mask self-aligned poly-Si process. A boron channel implant was used to adjust the threshold voltage to around 0.7 V. The initial gate oxides were grown at 850°C in dry O$_2$ and then annealed at atmospheric pressure in N$_2$O at 900 or 950°C for 5-40 minutes. To achieve better uniformity than that allowed by RTP, both the oxidation and anneal steps were performed in a conventional furnace. The control oxides received a 20 minute N$_2$ anneal at the oxidation temperature. Following the gate oxidation, in situ phosphorous doped poly-Si was deposited and patterned using a photoresist ashing technique by which deep submicron dimensions could be achieved. After the contact pad definition, a 20 min forming gas anneal at 400°C completed the fabrication process.

III. RESULTS AND DISCUSSION

a. Composition and Kinetics

Typical compositional profiles of N, O, and Si in the gate oxides determined by Auger electron spectroscopy (AES) are shown in Fig. 1. A nitrogen pile-up at the oxide-substrate interface can be seen for all the N$_2$O-annealed oxides. Depending on the annealing time, temperature and initial oxide thickness, the interfacial nitrogen concentration varies from 0.8 to 4 at%. No nitrogen pile up is observed at the oxide surface.

Fig. 1 Typical depth compositional profiles for control and N$_2$O-annealed oxides. Note that for all 4 N$_2$O-annealed oxides, nitrogen pile up can be observed at the oxide-Si interface where the oxygen concentration is about half of their bulk value.

b. Oxidation Kinetics

Fig. 2 Film thickness increase versus anneal time for 50Å (open markers) and 100Å (solid markers) oxides annealed in N$_2$O at different temperatures.

25.3.1
The growth kinetics of the one-step N2O oxynitride film growth have been shown to be self limiting [5]. Similarly, the thickness increase of conventional oxides induced by N2O annealing is relatively insensitive to the anneal time (Fig. 2). Comparing the growth rate at different temperatures, one finds that increasing the anneal temperature only increases the initial growth rate; the subsequent growth rate for all temperatures studied is hardly changed. In addition, the thickness increase induced by annealing is only a weak function of the initial oxide thickness. These findings suggest that the kinetics of the N2O-anneal, while initially reaction controlled, are dominated by the oxidant diffusion through the nitrogen rich layer at the interface.

b. Device Performance

The normalized linear transconductance G_m/C_{ox} of devices with different anneal conditions is shown in Fig. 3 as a function of the gate drive V_G-V_{TH}. At larger gate drives, e.g., $V_G-V_{TH} = 4 V$, most of the N2O-annealed devices show a 45% increase in G_m, though their peak G_m is degraded by 5-10%. This G_m cross-over is directly correlated with similar characteristics of the channel effective electron mobility μ_{eff} which is plotted as a function of the effective field in Fig. 4. The improvement in the high-field μ_{eff} for N2O-annealed devices is enhanced at low temperatures while the field dependencies of μ_{eff} are hardly changed. It is also important to notice that the low field mobility degradation observed in the N2O-annealed devices is substantially reduced at low temperatures. This is unlike NH3-nitrided devices in which enhanced peak low field mobility degradation is observed at low temperatures [1]. For the anneal conditions examined here, the high-field mobility enhancement is only a weak function of the anneal time and temperature while the peak mobility degradation increases with increasing anneal time and temperature.

![Fig. 3](image)

Fig. 3 The effects of N2O annealing on the linear transconductance. The channel doping concentration is about 2×10^{17} cm$^{-3}$ ($V_{TH} = 0.75 V$) and the oxide thickness is about 110Å. V_{DS} in this measurement is 50 mV and $W_{eff}/L_{eff} = 29.5 \mu m/19.4 \mu m$.

![Fig. 4](image)

Fig. 4 The effective electron mobility versus effective field E_{eff} for MOSFETs with control and N2O-annealed gate oxides. E_{eff} is calculated from $E_{eff}=(0.5Q_B+Q_A)/\varepsilon_A$, where the mobile charge Q_A is obtained by integrating the gate to channel capacitance against the gate voltage. The device parameters are $N_{ox} = 3.3 \times 10^{11} \text{cm}^{-2}$, $T_{ox} = 70 \text{ Å}$, and $W_{eff}/L_{eff} = 29.5 \mu m/19.4 \mu m$.

Due to the increase in high-field mobility, N2O-annealed devices show an increased current drivability (Fig. 5). Typically, the saturation drain current will increase by 15% at 300 K to 30% at 85 K when $E_{eff} > 0.8 \text{ MV/cm}$.

The high-field mobility increase induced by thermal nitridation has long been thought to be due to the nitrogen incorporation at the oxide-silicon interface which modifies such interface properties as the surface potential roughness and interface trap density [1], or the interfacial strain [7]. However, under the condition of strong inversion at which the mobility increase occurs, most available techniques (C-V, charge pumping, etc.) are not applicable. In this work, we use Random Telegraph Signal (RTS) measurements [8] to study the interface property modification induced by the N2O anneal. RTS fluctuations in the drain current of small-area MOSFETs arise due to the charge influence of single oxide interface traps. Typical RTS drain current fluctuations observed for devices with $W_{eff}/L_{eff} = 0.5 \mu m/0.4 \mu m$ are...

626-IEDM 92
shown in Fig. 6. For n-channel devices these drain current fluctuations have been shown to be the result of single empty (current high) or filled (current low) interface traps [8]. It can be seen that an N2O anneal significantly changes the ratio of trap-empty time to trap-filled time. Also, a weaker RTS with a much shorter time constant is induced by the anneal and superimposed on the stronger RTS. This suggests that an N2O anneal not only affects the capture and emission times of the interface traps but also introduces new interface traps which have little effect on \(\mu_\text{c} \) because of their large empty to fill time ratio (Fig. 6c).

The scattering coefficient \(\alpha \) extracted from RTS measurements is shown in Fig. 7. Interestingly, as the gate voltage increases, \(\alpha \) of N2O-annealed devices crosses over that of the control oxide. This observation is qualitatively in agreement with the mobility measurements. We therefore attribute the increase in the high-field mobility to less efficient interface trap scattering resulting from the increased trapping distance from the interface (Fig. 8).

Device reliability was examined under FN and channel hot-carrier injections. As shown in Fig. 9, although the lifetime under FN injection increases with N2O anneal, the field acceleration factor (impact ionization coefficient) remains unchanged. The lifetime increase is further enhanced at high stress frequencies. The lifetime increase induced by N2O annealing shown in Fig. 10 is a factor of ten at the stress frequency of 1 MHz while under DC stressing it is only a factor of 2-3. This lifetime increase can be explained by a reduction in the hole trapping and hole mobility in the annealed oxide [9].

DC channel hot-carrier injection was performed at the two worst-case stress conditions of peak \(\text{I}_{\text{SLA}} \) (VG = 0.425V) and peak \(\text{I}_{\text{G}} \) (VG = 1.25V) stressing. Shown in Fig. 11 is the linear transconductance degradation \(\Delta G_m \) under peak \(\text{I}_{\text{SLA}} \) injection. A reduction in device degradation is
observed for all \text{N}_2\text{O}-annealed devices. Charge pumping measurements (not shown) indicate that this suppressed G_m degradation is due to an improvement in the interfacial hardness. The interface hardness improves with increasing anneal time and temperature.

![Graph](image1)

Fig. 10 Time-to-breakdown (TBD) under bipolar square-wave voltage stressing plotted against the stressing frequency. $T_{ox}=70\text{Å}, E_{ox}=12.5\text{ MV/cm}$.

![Graph](image2)

Fig. 11 The degradation in the maximum linear transconductance resulting from channel hot electron stressing. The stress condition is $V_{G} = V_{D}/2$ with the stress drain voltages chosen to match an initial substrate current level. The oxide thicknesses are 70Å and $W_{eff}/L_{eff} = 6.5\text{ μm}/0.3\text{ μm}$.

It has been shown that \text{N}_2\text{O} annealing reduces both electron and hole trapping under F-N injection [4]. Thus, the threshold voltage shift ΔV_t for MOSFETs stressed at peak I_G as shown as a function of the stress time in Fig. 12 is reduced for the \text{N}_2\text{O} devices. Although enhanced electron trapping is frequently observed for \text{NH}_3 annealed devices [1], [7], no enhanced electron trapping is observed for the \text{N}_2\text{O} annealed devices examined here. Furthermore, F-N injection results indicate that electron trapping monotonically decreases with increasing anneal time and temperature while subsequent re-oxidation does not further reduce electron trapping [4]. We therefore conclude that the incorporation of nitrogen alone does not introduce new bulk electron traps.

![Graph](image3)

Fig. 12 Shifts in the extrapolated threshold voltage versus stress time under high V_{G} channel hot electron injection $(V_{G} = 1.25V_{D})$. The stress drain voltages were chosen to match initial stress gate current levels. The device dimensions were the same as those in Fig. 11.

The hydrogen present in NH$_3$-nitrided oxides should be responsible for the inherent high trap density in these films.

IV. SUMMARY

Though a simple and flexible process, \text{N}_2\text{O} annealing has been shown to improve device performance and hot carrier immunity. RTS measurements indicate that the anneal-induced interface modification is responsible for the increase in high-field mobility.

ACKNOWLEDGMENT

This work was supported by SRC, the California MICRO, and AFOSR/JSEP under contract F49620-90-0029. It was also supported in part by a Graduate Fellowship provided by the National Science Foundation and by a UPGC Research Grant of Hong Kong.

REFERENCES