NY Times news article:

• Intel will use 3D FinFET for 22nm
• Most radical change in decades
• There is a competing SOI technology
• TSMC, IBM…new transistors soon
• Since 2001 ITRS shows FinFET and ultra-thin-body UTB-SOI as the two successor MOSFETs
• SOITEC UTB-SOI recently available
• IBM 2009 5nm UTB SOI paper
New MOSFET Structures

FinFET

UTBSOI

Ultra Thin Body SOI
Good Old MOSFET Nearing Limits

Vt, S (swing) and Ioff are sensitive to Lg & dopant variations.

- high design cost
- high Vdd, hence high power usage

Finally painful enough for change.

Chenming Hu, July 2011
Power Consumption Problems

1. Not just a chip and package thermal issue.

2. ICs use a few % of world’s electricity today and
 • Power per chip is growing.
 • IC units in use also growing.

3. If power consumption is not reduced, industry future growth is at risk.

Chenming Hu, July 2011
Want Low Vt and Low Ioff

Need smaller S and less variations of S and Vt

Chenming Hu, July 2011
MOSFET becomes “resistor” at very small L --- Drain competes with Gate to control the channel barrier.

How V_t Variation & S Got So Bad

Smaller size or larger V_d
Reducing EOT is Not Enough

Gate cannot control the leakage current paths that are far from the gate.

Chenming Hu, July 2011
One of Two Ways to Better V_t and S

The gate controls a thin body from more than one side.

FinFET body is a thin fin

N. Lindert et al., DRC paper II.A.6, 2001

Chenming Hu, July 2011
FinFET - 1999

Undoped Body. 30nm etched thin fin. Vt set with gate work-function (SiGe).

X. Huang et al., IEDM, p. 67, 1999

Chenming Hu, July 2011
State-of-the-Art FinFET on Buk Si

20nm Hi Perf
C.C. Wu et al., 2010 IEDM

28nm SoC
C.C. Yeh et al., 2010 IEDM

Chenming Hu, July 2011
FinFET is “Easy” to Scale

because leakage is well suppressed if

Fin thickness =or< Lg

• Thin fin can be made with the same Lg patterning/etching tools.

Chenming Hu, July 2011
Second Way to Better V_t and S
Ultra-thin-body SOI (UTB-SOI) \rightarrow
No leakage path far from the gate.

Chenming Hu, July 2011
Most Leakage Flows >5nm Below Surface

Leakage Current Density

Vgs=0V, Vds=0.7V
Lg=25nm, Tox=1.5nm

Chenming Hu, July 2011
Silicon Body Needs to be $<Lg/3$

For good swing and device variation

Chenming Hu, July 2011
UTB-SOI

3nm Silicon Body, Raised S/D

Chenming Hu, July 2011
State-of-the-Art 5nm Thin-Body SOI

ETSOI, IBM
K. Cheng et al, IEDM, 2009

Chenming Hu, July 2011
Both Thin-Body Transistors Provide

- Better swing.
- S & Vt less sensitive to Lg and Vd.
- No random dopant fluctuation.
- No impurity scattering.
- Less surface scattering (lower Eeff).

↓

- Higher on-current and lower leakage
- Lower Vdd and power consumption
- Further scaling and lower cost
Back-Gate Bias Option

UTB-SOI

FinFET

Chenming Hu, July 2011
Similarities

• **1996**: UC Berkeley proposed to DARPA two “25nm Transistors”. Both of them
 • use body thickness as a new scaling parameter
 • can use undoped body for high μ and no RDF

• **1999**: demonstrated FinFET

• **2000**: demonstrated UTB-SOI (Ultra-Thin Body)

• **Since 2001**: ITRS highlights FinFET and UTBSOI

• **Now**: Intel will use Trigate FinFET.
 Soitec readies +-0.5nm substrates for UTBSOI

• **Both FinFET & UTBSOI better than planar bulk!**

Chenming Hu, July 2011
Main Differences

- FinFET body thickness ~ Lg. Investment by fabs
- UTBSOI thickness ~ 1/3 Lg. Investment by Soitec
- FinFET has clear long term scalability. UTBSOI may be ready sooner depending on each firm’s readiness with FinFET.
- FinFET has larger Ion or can use lower Vdd. UTBSOI has a good back-gate bias option.
What May Happen

• FinFET will be used at 22nm by Intel and later by more firms through and beyond 10nm.

• Some firms may use UTBSOI to gain/protect market at 20 or 18nm if FinFET is not option.

 If so, competition between FinFET and UTBSOI will bring out the best of both.

 If not----- back to first bullet.

Chenming Hu, July 2011
BSIM Family Compact Models

Berkeley Short-channel IGFET Models

- BSIM4
- BSIMSOI
- BSIM-MG for FinFETs: in CMC standardization process
- BSIM-IMG for UTB-SOI
FinFET BSIM Compact Model Verified

- FinFET Fabricated at TSMC.
- \(L_g = 30 \text{ nm-10um} \)

\[\begin{align*}
\text{Drain Current (A)} & \quad \text{Gate Voltage (V)} \\
\text{25 \mu} & \quad 0.0 \quad 0.4 \quad 0.8 \quad 1.2 \\
\text{50 \mu} & \quad 0.0 \quad 0.4 \quad 0.8 \quad 1.2 \\
\end{align*} \]

\[\begin{align*}
\text{Drain Voltage (V)} & \quad \text{Drain Current (\mu A)} \\
\text{0.0} & \quad 0.0 \quad 0.4 \quad 0.8 \quad 1.2 \\
\text{50} & \quad 0.0 \quad 0.4 \quad 0.8 \quad 1.2 \\
\end{align*} \]

M. Dunga, 2008 VLSI Tech Sym

Chenming Hu, July 2011
Global fitting with 30nm-10um FinFETs

N-Channel MOS
Vds=1.0V
Lg increases

Drain Current (mA)

Gate Voltage (V)

Drain Current (A)

10^-13

10^-10

10^-7

10^-4

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0

Chenming Hu, July 2011
Global fitting with 30nm-10um FinFETs

Transconductance (mA/V) vs. Gate Voltage (V)

N-Channel MOS
Vds=1.0V

Lg increases

Chenming Hu, July 2011
Global fitting with 30nm-10um FinFETs
Temperature Model Verified for FinFET

Drain Current (μA) vs. Vgs (V)

-50C \rightarrow 200C in steps of 50C
Increasing T

$L_g = 60$nm
20 fins

Drain Current (A) vs. Vgs (V)

-50C \rightarrow 200C in steps of 50C
Increasing T

$L_g = 60$nm
20 fins
Reduce all capacitances.

\[f \cdot C \cdot V_{dd}^2 \]
Vacuum-Sheath Interconnect

- $C_{\text{TOTAL}} \propto \text{Delay}$, $C_M \propto \text{Crosstalk Noise}$

Load Capacitance: C_O
Mutual Capacitance: C_M
Total Capacitance: C_{TOTAL}

Chenming Hu, July 2011
Effective k of Vacuum-Sheath Interconnects

Chenming Hu, July 2011
Vacuum Spacer to Reduce C_{GC}

- C_{GOX}: Gate Oxide Capacitance
- C_{GC}: Gate-to-Contact Capacitance

$C_{GOX} \gg C_{GC}$

$C_{GOX} < C_{GC}$

Chenming Hu, July 2011
Vacuum Spacer Self-Aligned Contact

20nm MOSFET comparison

<table>
<thead>
<tr>
<th></th>
<th>Oxide Spacer</th>
<th>Vacuum Spacer Self-aligned contact (SAC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter Delay, ps</td>
<td>6.15 (1)</td>
<td>5.05 (0.82)</td>
</tr>
<tr>
<td>Inverter switching energy, fJ</td>
<td>24.2 (1)</td>
<td>18.8 (0.78)</td>
</tr>
<tr>
<td>Relative Area</td>
<td>1</td>
<td>0.7</td>
</tr>
</tbody>
</table>

J. Park, IEEE EDL, p.1368, 2009

Chenming Hu, July 2011
Future Low Voltage Green Transistor

Log Drain Current I_d

Gate Voltage V_g

$S < 60 \text{mV/dec}$

$S > 60 \text{mV/dec}$

GFET

MOSFET

Chenming Hu, July 2011
How to reduce V_{dd} to 0.15V?

1. Reduce $V_{dd} - V_t$ to < 0.1V with high-mobility-channel material, or sub-threshold circuits.

2. Reduce V_t to 50mV. Need a device that is free of the 60mV/decade turn-off limit.

Chenming Hu, July 2011
Origin of the 60mV/decade Limit

A potential barrier controls the electron flow.

Leakage current is determined by Boltzmann distribution or 60 mV/decade, limiting MOSFET, bipolar, graphene MOSFET...

So, let electrons go **through, not over**, the energy barrier → **semiconductor tunneling** or **MEMS**
Semiconductor Band-to-Band Tunneling: generating electron/hole pairs

A known mechanism of leakage current since 1985.

Called Gate Induce Drain Leakage (GIDL).

J. Chen, P. Ko, C. Hu, IEDM 1985

Chenming Hu, July 2011
Abrupt turn-on due to overlap of valence/conduction bands; adjustable turn-on voltage.
Reduce Vdd by Reducing Eg
Simulated impact of Eg scaling

Vdd scales down faster than Eg.

Eg=0.36eV, Vdd=0.2V, EOT=5 Å, CV/I=0.42pS
Eg=0.69eV, Vdd=0.5V, EOT=7 Å, CV/I=2.2pS
Eg=1.1eV, Vdd=1V, EOT=10 Å, CV/I=4.2pS

Chenming Hu, July 2011
Simulated gFET Inverter VTC

Good voltage gain at 0.1V

Chenming Hu, July 2011

Hetero-junction gFET

• Strained Si on Ge has 0.18eV “effective tunneling Eg”.

• III-V.

A. Bowonder, Intern’l Workshop Junction Tech., 2008

Chenming Hu, July 2011
Summary

- FinFET and UTB-SOI are viable new sub-22nm transistors.
- Different performances, investment costs, wafer costs, scaling barriers.
- Their BSIM SPICE models are available – free 😊
- Capacitance and tunnel gFET are potential opportunities.