Balancing Chemical Equations

Write a program that, given an equation such as

$$
{ }_{-} \mathrm{H}_{2} \mathrm{O}+_\mathrm{CO}_{2}=__{2} \mathrm{O}_{2}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} .
$$

will fill in the blanks to produce a balanced equation, such as

$$
6 \mathrm{H}_{2} \mathrm{O}+6 \mathrm{CO}_{2}=6 \mathrm{O}_{2}+\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}
$$

More specifically, an equation is input in the form of a sequence of lines, one for each molecule (e.g., $\mathrm{H}_{2} \mathrm{O}$ or CO_{2}) in the formula. The $k^{\text {th }}$ line has the following form:

$$
\operatorname{sign}_{k} n_{k} \text { atom }_{k, 1} \text { count }_{k, 1} \cdots \text { atom }_{k, n} \text { count }_{k, n}
$$

where $\operatorname{sign}_{k}, k$, atom $_{k, j}$, and count ${ }_{k, j}$ separated by whitespace; sign_{k} is \pm; each atom ${ }_{k, j}$ consists of one or two alphabetic characters, and each count $t_{k, j}$ is a positive integer. After all the lines describing molecules, there is a delimiting line of the form

00
If there are m input lines, the problem is find m positive integer values, C_{1}, \ldots, C_{m}, such that for every distinct two-character atom name, a, appearing in the input,

$$
\sum \operatorname{sign}_{i} \cdot C_{i} \cdot \text { count }_{i, j}=0
$$

where the sum is over all i and j for which atom ${ }_{i}, j=a$.
For example, if part of the input is "N 2 ", this represents two atoms of N (nitrogen). If it occurs on a line (molecule) with C_{i} equal to 3 , it represents 6 atoms. A sign of +1 indicates that this molecule appears on the left of an equation, and -1 indicates that it appears on the right. The problem, then, is to get the result of adding up the number of atoms of N with a +1 sign and subtracting the number of atoms with -1 sign so as to get a total of 0 . Further, the C_{i} must be chosen so that this happens for all atoms simultaneously. An atom may be repeated in a given line of input, as in
$+16 \mathrm{C} 1 \mathrm{H} 5 \mathrm{C} 1 \mathrm{O} 1 \mathrm{O} \quad 1 \mathrm{H} \quad 1$,
which stands for $\mathrm{CH}_{5} \mathrm{COOH}$.
The input for the illustrative equation at the beginning of this problem is

```
+1 2 H 2 O 1
+1
-1 1 O 2
-1 3 C 6 H 12 O 6
00 00
```

and the output is to be as shown in that example.

