
2000 Programming Problems 11

5. One of the functions performed by a typical GUI-building package (GUI: Graphical
User Interface) is to lay out a set of subwindows within some larger window (in Java, for
example, this is the job of LayoutManagers). In this problem you’ll build part of such
a facility. The basic units we deal with are what we’ll call windows, each of which is a
rectangle whose sides are either vertical or horizontal (no slanting lines). A window may
be a subwindow of a another, in which case it lies entirely inside the other (which is called
its parent).

Here, we’ll do a simplified layout manager. We start with an empty window containing
no children. At each point in the process, there will be a rectangular, unassigned area of
the window, initially all of it. We can add a child window to the top, bottom, left, or right
of this unassigned area. When adding a window to the top or bottom, we must specify its
height, but not width. When adding to the left or right, we specify width, but not height.
The idea is that the child is positioned at the indicated side of the unassigned area, and
that it expands in width (on the top and bottom) or height (on the left or right) to fill the
whole side of the unassigned area. After doing this, we end up with a hierarchy of nested
windows. We’ll assume there is one outermost window containing all the rest. To complete
the process, we specify both a height and width for this outermost window.

For example, consider 7 windows: #1 is the outermost, size 400 × 200 (width times
height). First, we place window #2 with height 50 on the top of #1. Then we put window
#3 with width 100 on the left of #2. Then we place window #4 with width 150 on the left
of the remaining space of #2. Next, we put window #5 with width 120 on the left of the
remainder of window #1. Then, window #6 on the right of #1 with width 140. Finally,
we put window #7 at the bottom of #1 with height 50. Here is the result:

#1
unassigned

#3 #4 #2 unassigned

#5 #6

#7

(0,0)

(0,150)

(0,200) (100,200) (250,200) (400,200)

(400,150)
(100,150)

(120,0)

(120,50)

(260,0)

Window #2 here encloses #3 and #4, and window #1 includes all the rest. Windows
#3–7 are all unassigned space, since they contain no children.

Input to your program is in free form. It begins with two integers, W , and H , the
width and height of window #1, which is the outer window. Next there are entries for
each of the remaining windows, each of the form



2000 Programming Problems 12

N P s d

where N is the number of the window, P the number of its parent, s the dimension (width
or height, depending on placement) of the window, and d is one of the letters T, B, L, or
R, for top, bottom, left, or right. Assume that window numbers are consecutive starting
at 2 for the first non-top-level window, and that parents always precede children.

The output consists of a list of the number, coordinates of the lower-left corner, width,
and height of each window. Use the format shown in the example below, which shows the
input and results from the preceding example.

Input Output

400 200

2 1 50 T

3 2 100 L

4 2 150 L

5 1 120 L

6 1 140 R

7 1 50 B

1. 400x200 @ (0,0)

2. 400x50 @ (0,150)

3. 100x50 @ (0,150)

4. 150x50 @ (100,150)

5. 120x150 @ (0,0)

6. 140x150 @ (260,0)

7. 140x50 @ (120,0)


