
Parallel Reproducible Summation

James Demmel
Mathematics Department and CS Division

University of California at Berkeley
Berkeley, CA 94720

demmel@eecs.berkeley.edu

Hong Diep Nguyen
EECS Department

University of California at Berkeley
Berkeley, CA 94720

hdnguyen@eecs.berkeley.edu

Abstract—Reproducibility, i.e. getting bitwise identical
floating point results from multiple runs of the same pro-
gram, is a property that many users depend on either
for debugging or correctness checking in many codes [10].
However, the combination of dynamic scheduling of parallel
computing resources, and floating point nonassociativity,
makes attaining reproducibility a challenge even for simple
reduction operations like computing the sum of a vector of
numbers in parallel. We propose a technique for floating
point summation that is reproducible independent of the
order of summation. Our technique uses Rump’s algorithm
for error-free vector transformation [7], and is much more
efficient than using (possibly very) high precision arithmetic.
Our algorithm reproducibly computes highly accurate results
with an absolute error bound of n · 2−28 ·macheps ·max |vi|
at a cost of 7n FLOPs and a small constant amount of
extra memory usage. Higher accuracies are also possible
by increasing the number of error-free transformations. As
long as all operations are performed in to-nearest rounding
mode, results computed by the proposed algorithms are
reproducible for any run on any platform. In particular, our
algorithm requires the minimum number of reductions, i.e.
1 reduction of an array of 6 double precision floating point
numbers per sum, and hence is well suited for massively
parallel environments.

I. INTRODUCTION

Given current hardware trends, computing performance
is improved by using more processors, for example from
multi-core platform to many-core platform, as well as
distributed-memory systems, and more recently the cloud
computing (eg map-reduce) environment. Exascale com-
puting (1018 floating point operations per second) is
projected to be available in less than a decade, achieved
by using a huge number of processors, of order 109.
Given the likely hardware heterogeneity in both platform
and network, and the possibility of intermittent failures,
dynamic scheduling will be needed to adapt to chang-
ing resources and loads. This will make it likely that
repeated runs of a program will not execute operations
like reductions in exactly the same order. This in turn will
make reproducibility, i.e. getting bitwise identical results
from run to run, difficult to achieve, because floating point
operations like addition are not associative, so computing
sums in different orders often leads to different results.
Indeed, this is already a challenge on today’s platforms.

Reproducibility is of interest for a number of reasons.
First, it is hard to debug if runs with errors cannot
be reproduced. Second, reproducibility is important, and

sometimes required, for some applications. For example,
in climate and weather modeling, N-body simulation, or
other forward unstable simulations, a very small change
in results at one time step can lead to a very different
result at a later time step. Reproducibility is sometimes
also required for contractual reasons where both sides need
to agree on the results of the same computation.

We note that reproducibility and accuracy are not syn-
onymous. It is natural to consider just using a standard
algorithm at higher precision, say double the precision of
the summands (“working precision”). It is true that this
makes the probability of nonreproducibility much lower
than using working precision. But it does not guarantee
reproducibility, in particular for ill-conditioned inputs,
or when the result is close to half-way between two
floating point numbers in the output precision [9]. And
ill-conditioned inputs, i.e. a tiny sum resulting from a lot
of cancellation, may be the most common case in many
applications. For example, when solving Ax = b using an
iterative method, the goal is to get as much cancellation
in the residual r = Ax− b as possible.

Our goal is to present an algorithm for summations with
the following properties: (1) It computes a reproducible
sum independent of the order of the summands, how
they are assigned to processors, or how they are aligned
in memory. (2) It makes only basic assumptions about
the underlying arithmetic (a subset of the IEEE Standard
754-2008 specified below). (3) It scales as well as a
performance-optimized, non-reproducible implementation,
as n (number of summands) and p (number of processors)
grow. (4) The user can choose the desired accuracy of
the result. In particular, getting a reproducible result with
about the same accuracy as the performance optimized
algorithm should only be a small constant times slower,
but higher accuracy is possible too.

Communication, i.e. moving data between processors,
is the most expensive operation on computers today such
as distributed memory systems and cloud computing en-
vironments, much more expensive than arithmetic, and
hardware trends will only make this performance gap
larger on future architectures, including Exascale. This
means that to achieve goal (3) above, our algorithm may
only do a single reduction operation across the machine,
and each operand in the reduction tree may only be a small
constant factor bigger than a single floating point number.
Furthermore, we can make no assumption about the size

or shape of the reduction tree.
In a related paper [4] we introduced two other algo-

rithms for reproducible summation, that require (3K−1)n
FLOPs 1 and 4Kn FLOPs respectively where n is the
input size and K is the number of passes of the error-free
transformation that can be chosen by the user in order
to obtain the required accuracy. Both these algorithms
produce reproducible results with an error bound of order

(K + c1 · n · ε+ c2 · K · nK+1 · εK−1) · ε ·max |vi| (1)

where ε is the machine epsilon, and c1, c2 are small
constants. Meanwhile the error bound of a standard sum-
mation algorithm is provided by the following theorem.

Theorem 1 (Error bound of standard sum). [5, Section
4.2] Let s be result computed by a standard summation
algorithm. Then

|s−
n∑
i=1

vi| < (n− 1) · ε ·
n∑
i=1

|vi|+O(ε2). (2)

The goal of this paper is to provide techniques to
compute a reproducible sum which is almost of the same
accuracy as the conventional sum, i.e. having an error
bound of the same order as (2) or better.

The error of both algorithms presented in [4] depends
strongly on the input size, i.e. proportional to nK+1.
Therefore the assumption n · ε� 1 in some cases would
not be sufficient to obtain reasonably accurate results.
When n is small so that nK ·εK−1 ≤ 1, then the error bound
provided by (1) is at most about c2 ·K ·n ·ε ·max |vi| which
can be better then the standard summation’s error bound.
Nonetheless, if n is so large that nK ·εK−1 � 1 for a given
K, then the error bound (1) will be � c2 ·K ·n · ε ·max |vi|
which can be much worse than the standard summation’s
error bound. As long as n · ε < 1, this can be remedied
by increasing K at a cost of lowering performance.

More importantly, both these two algorithms require
two reduction operations. It means that they could not
scale as well as an optimized non-reproducible summation
when the number of processors p grows. In this paper,
we introduce a new technique to obtain reproducibility
which both exhibits an improved error bound that is
proportional to n instead of nK+1, and requires only one
reduction operation in order to minimize communication
when running on large-scale systems. As will be seen in
Section V, the slowdown of our proposed algorithm in
comparison with the performance-optimized Intel MKL[2]
library is only 20% in terms of running time when both
algorithms are run on 1024 processors.

The paper is organized as follows. Section II presents
some notation and numerical analysis that will be used
throughout the paper. Section III discusses some related
work as well as our previously proposed pre-rounding
technique to obtain reproducibility. Section IV presents
our new technique to compute the reproducible sum using
only one reduction operation. Section V contains some

1Floating-point Operations

experimental results and Section VI contains conclusions
as well as future work.

II. NOTATION AND BACKGROUND

Denote by R,F,Z the set of real numbers, floating-point
numbers and integers respectively.

In this paper we assume that the floating-point arith-
metic in use complies with the IEEE 754-2008 standard
with five rounding modes: rounding to nearest even,
rounding to nearest with tie-breaking away from 0, round-
ing toward 0, rounding toward +∞, and rounding toward
−∞. To distinguish them from the two rounding to nearest
modes, the last 3 rounding modes are called directed
roundings.

Let f = s × 2e × m ∈ F be a floating-point number
represented in IEEE 754 format, where s = ±1 is
the sign, emax ≥ e ≥ emin is the exponent (usually
referred to as exponent(f)), p is the precision, and
m = m0.m1m2 . . .mp−1,mi ∈ {0, 1}, is the significand
of f . f is said to be normalized if m0 = 1 and e > emin.
f = 0 if all mi = 0 and e = emin. f 6= 0 is said to be
subnormal if m0 = 0 and e = emin.

The unit in the last place, denoted by ulp(f), repre-
sents the spacing between two consecutive floating-point
numbers of the same exponent e: ulp(f) = 2e × 21−p =
2e−(p−1).

The unit in the first place, denoted by ufp(f), repre-
sents the first significant bit of a floating-point number:
ufp(f) = 2e. Obviously we have: ufp(f) ≤ |f | ≤
2ufp(f)− ulp(f) if f is normalized and f 6= 0.

Machine epsilon ε is the spacing between 1 and the next
smaller floating-point number: ε = 2−p.

The unit roundoff u is the upper bound on the relative
error due to rounding. u = ε for rounding to nearest, and
u = 2ε for directed rounding.
fl(·) denotes the evaluated result of an expression in

floating-point arithmetic.
For any normalized floating-point number f ∈ F, and

r ∈ R we have the following properties:
(a) |r − fl(r)| < ulp(fl(r)) < 2ε|fl(r)|,
(b) |r − fl(r)| ≤ u× |fl(r)| and |r − fl(r)| ≤ u× |r|,
(c) 1

2ε
−1ulp(f) = ufp(f) ≤ |f | < ε−1ulp(f) =

2ufp(f).
Another way to represent f is f = M ∗ulp(f), M ∈ Z.

2p−1 ≤ |M | < 2p for normalized numbers and 0 < |M | <
2p−1 for subnormal numbers. Moreover, for any n ∈ Z
and |n| < 2p = ε−1 then n ∗ ulp(f) ∈ F. Let x ∈ R be a
real number, denote xZ = {n ∗ x | n ∈ Z}. If a, b ∈ xZ
then a± b ∈ xZ, letting us deduce the following lemmas.

Lemma 1. Let f, g ∈ F. If |g| ≥ |f | then g ∈ ulp(f)Z.

Lemma 2. Let f, x, y ∈ F where x, y ∈ ulp(f)Z. If
|x + y| < ε−1ulp(f) then x + y ∈ F, i.e. x + y can be
computed exactly.

Let x, y ∈ F. If there is no overflow or underflow in
evaluating fl(x ◦ y), ◦ ∈ {+,−,×, /}, then

fl(x ◦ y) = (x ◦ y)(1 + δ), |δ| ≤ u (3)

which is the standard model for numerical analysis of an
algorithm.

Overflow and underflow can impact the reproducibility.
A floating point computation can overflow or not de-
pending on the order of evaluation. Consider for example
the two following computations which basically evaluate
the same mathematical expression: (1) (MAX DOUBLE −
MAX DOUBLE) + MAX DOUBLE and (2) (MAX DOUBLE +
MAX DOUBLE) − MAX DOUBLE, where MAX DOUBLE is the
maximum value that is representable by a double precision
floating point number. Meanwhile there is no overflow as
well as no rounding error in evaluating (1), an overflow
clearly occurs in evaluating (2). This leads to nonrepro-
ducibility.

If subnormal numbers are supported then underflow
does not impact the reproducibility. However, in case
of no subnormal number support underflow can lead to
nonreproducibility depending on the order of evaluation
as can be seen in the two following mathematically equal
expressions: (1) (MIN DOUBLE + 1.5 ∗ MIN DOUBLE) −
MIN DOUBLE and (2) MIN DOUBLE+(1.5∗MIN DOUBLE−
MIN DOUBLE), where MIN DOUBLE is the minimum postive
value that can be represented by a normal double precision
floating point number. No rounding error and no underflow
occurs in evaluating (1), hence (1) gives 1.5∗MIN DOUBLE.
However, underflow does occur in evaluating (2) and leads
to a different computed result which is MIN DOUBLE.

Therefore, special handling is required for overflow and
underflow [4]. For all the numerical analyses throughout
the paper, we assume that there is no overflow or under-
flow during execution.

III. PRE-ROUNDING TECHNIQUE

First we discuss some simple but inadequate ways to
achieve reproducibility. The first solution is to use a
deterministic computation order by fixing the number of
processors as well as the data assignment and reduction
tree shape. On today’s large machines, let alone at Exas-
cale, such a deterministic computation will lead to sub-
stantial communication overhead due to synchronization.
Moreover, a deterministic computation order also requires
a fixed data order, not achieving goal (1).

Second, reproducibility can be obtained by eliminating
rounding error, to ensure associativity. This can be done
using exact arithmetic [8] or correctly-rounded algorithms.
It will however increase substantially the memory usage
as well as the amount of communication when applied to
more complicated operations such as matrix multiplica-
tion. Third, fixed-point arithmetic can also be used, but at
a cost of limited argument range.

Instead of these, we proposed a technique, called pre-
rounding, to obtain deterministic rounding errors. The
same technique is found in [6], [7] to compute an ac-
curate floating-point summation. We will first present two
algorithms which can also be found in [4]: Algorithm 2
which costs 4n FLOPs in to-nearest rounding mode,
and Algorithm 3 which costs only 3n FLOPs but must
be performed in directed-rounding mode. Then we will

Figure 1. Pre-rounding technique
EMAX EMIN

v1

v2

v3

v4

v5

v6

...

Boundary

Bits discarded
in advance

present a new algorithm, Algorithm 5, which is performed
in to-nearest rounding mode and costs in total 3n floating
point additions and n floating point OR-bit operations.
On some platform, for example on Intel Sandy Bridge
processors, the practical cost of Algorithm 5 is equivalent
to only 3n FLOPs.

The main idea of the pre-rounding technique is to
round input values to a common base according to some
boundary (Figure 1) so that there will be no rounding
error in summing the remaining (leading) parts. Then the
error depends only on input values and the boundary,
not on the intermediate results, which depend on the
order of computation. Thus the computed result will be
reproducible so long as the boundary is reproducible.

The splitting process can be done by directly manip-
ulating the exponent and the mantissa of the floating-
point number, or by using the splitting algorithm proposed
by Rump [6], [7], which is similar to the FastTwoSum
algorithm proposed by Dekker [3].

Algorithm 1 Extract scalar: [S, q, r] = Split(M,x)

Require: M,x ∈ F,M ≥ |x|. All operations are per-
formed in to-nearest rounding mode.

1: S = fl(M + x)
2: q = fl(S −M)
3: r = fl(x− q)

Ensure: x = q + r and S + r = M + x

Algorithm 1 is called an error-free transformation in
to-nearest rounding mode because it computes the sum
of S = fl(M + x) together with its rounding error r =
(M + x)− fl(M + x). In other words the floating-point
number x has been split into two parts q and r which
contains respectively the leading bits and the trailing bits
of x.

Theorem 2 (Algorithm 1 in rounding to nearest [4]). Let
S, q, r ∈ F be the results computed by Algorithm 1. Then
q = S −M , x = q + r,M + x = S + r, q ∈ 1

2ulp(M)Z,
and |r| ≤ 1

2ulp(S) ≤ ulp(M) ≤ 2uM .

According to Theorem 2, the extracted leading part q
is a multiple of 1

2ulp(M), meanwhile the magnitude of
the trailing part r is bounded by ulp(M). It means that
the first bit of r might overlap with the last significant
bit of q. In order to have a disjoint extraction, a stronger
assumption on the value of M is needed.

Corollary 1 (Disjoint splitting). Let S, q, r ∈ F be the
results computed by Algorithm 1. If ulp(S) = ulp(M)
then q ∈ ulp(M)Z, and |r| ≤ 1

2ulp(M).

Proof: The proof is straightforward from Theorem 2
and that S ∈ ulp(M)Z.

Corollary 2. If M = 3·2k, k ∈ N and |x| ≤ 2k−ulp(M)
then x = q + r, q ∈ ulp(M)Z, and |r| ≤ 1

2ulp(M).

Proof: Since |x| ≤ 2k − ulp(M) we have 2k+1 +
ulp(M) ≤M + x ≤ 2k+2 − ulp(M). Therefore 2k+1 +
ulp(M) ≤ S ≤ 2k+2 − ulp(M). This means ulp(S) =
ulp(M). The proof follows from Corollary 1.

Given an input vector v = [v1, . . . , vn], each element
vi is split using the same M into the leading part qi ∈
ulp(M)Z and the trailing part ri ≤ 1

2ulp(M). According
to Lemma 2 if M is big enough so that

∑n
1 |qi| < M

then the sum of leading parts qi can be computed exactly.
In other words, the input vector v has been transformed
exactly into T =

∑n
1 qi and another vector of trailing

parts r = [r1, . . . , rn] where
∑n

1 vi = T +
∑n

1 ri.
According to Corollary 2 we have |qi| = |vi − ri| ≤

|vi|+ |ri| ≤ |vi|+ 1
2ulp(M). So

∑n
1 |qi| ≤

∑n
1 |vi|+ n ·

1
2ulp(M) ≤ n · (max |vi|+ 1

2ulp(M)). Since ulp(M) =
2ε · ufp(M), if ufp(M) ≥ n ·max |vi|/(1 − n ∗ ε) then
ufp(M) ≥

∑n
1 |qi|. This leads to the Algorithm 2 [4].

Algorithm 2 Error-free vector transformation: [T, r] =
ExtractVector(M, v)

Require: v is a vector of n floating-point numbers, M =
1.5 · 2k, k ∈ Z and 2k ≥ n ·max |vi|/(1− n · ε). All
operations are performed in rounding to nearest even
mode.

1: T = 0
2: for i = 1 to n do
3: [S, qi, ri] = Split(M,vi)
4: T = fl(T + qi)
5: end for

Ensure: T is the exact sum of high order parts qi, r is
the vector of low order parts ri.

Since the sum of high order parts T =
∑n

1 qi is exact, it
does not depend on the order of evaluation. Therefore the
result computed by the Algorithm 2 will be reproducible
so long as M is reproducible. This can be achieved by
using M = 1.5 · 2dlog2(δ)e where δ = n · max |vi|/(1 −
n · ε) which is always reproducible since the maximum
operation is associative.

As observed by Rump in [7], M does not need to be the
same for each iteration. We can instead use the updated
value Mi = fl(Mi−1+vi) to split the subsequent element
vi+1. Since Mi−1 + vi is computed without rounding
error, the sum of leading parts

∑n
1 qi can be obtained

by a simple subtraction Mn −M0. According to [4], in
order to obtain reproducibility beside the requirement of
reproducible M , two additional requirements must also be
satisfied:
• All Mi must have the same unit in the last place.

This can be satisfied by using M = 3 · 2k where
2k > n ·max |vi|/(1− 2n · ε).

• All operations must be performed in a directed-
rounding mode to avoid the midpoint issue (the
computed result is exactly halfway between two
consecutive floating-point number).

This leads to the second improved algorithm for error-
free vector transformation, which is reproducible as long
as M is reproducible.

Algorithm 3 Error-free vector transformation: [T, r] =
ExtractVector2(M,v)

Require: v is a vector of n floating-point numbers, M =
3 · 2k, k ∈ Z and 2k ≥ n · max |vi|/(1 − n · ε).
All operations are performed in the same directed
rounding mode.

1: M0 = M
2: for i = 1 to n do
3: [Mi, qi, ri] = Split(Mi−1, vi)
4: end for
5: T = fl(Mn −M0)

Ensure: T is a reproducible sum of all elements of vi, r
is the vector of low order parts of vi.

Algorithm 3 requires only 3n FLOPs, which is 25%
fewer than Algorithm 2. Nonetheless, Algorithm 3 requires
the use of one directed rounding mode which is not
always preferable. First, the default rounding mode on
most processors is to nearest even. Second, in some cases
the to-nearest rounding mode is obligatory as will be seen
in the Section IV. According to [4] the use of directed
rounding mode avoids the midpoint issue which leads
to non-deterministic rounding in to-nearest-even rounding
mode. In fact, this issue can be avoided by simply setting
the last bit of x to 1. This lead to a new algorithm which is
presented in Algorithm 4 to split a floating point number.

Algorithm 4 Extract scalar: [S, q, r] = Split2(M,x)

Require: M,x ∈ F,M > |x|. All operations are per-
formed in to-nearest rounding mode. MASK = 0 . . . 01
is a bit mask which is of the same precision as x and
whose bit representation is full of 0 except for the last
bit which is 1.

1: x̄ = x OR MASK . Set last bit of x to 1
2: S = fl(M + x̄)
3: q = fl(S −M)
4: r = fl(x− q)

Ensure: x = q + r and S + r = M + x

Theorem 3. Let S, q, r ∈ F be the results computed by
Algorithm 4. Then q = S−M , x = q+r, M+x = S+r,
q ∈ 1

2ulp(M)Z, and |r| ≤ ulp(M) + ulp(x).

Proof: Let d = x̄ − x. Since x̄ is computed by
setting the last bit of x to 1, it is easy to see that d ∈
{−ulp(x), 0, ulp(x)} and ulp(x̄) = ulp(x). Therefore
|x̄| ≤ M . Let r̄ = fl(x̄ − q), according to Theorem 2

we have q = S −M , x̄ = q + r̄, q ∈ 1
2ulp(M)Z, and

|r̄| ≤ 1
2ulp(S) ≤ ulp(M).

Since M ≥ |x|, we have M ∈ ulp(x)Z. Hence S =
fl(M + x̄) ∈ ulp(x)Z, q = S − M ∈ ulp(x)Z, r̄ =
x̄ − q ∈ ulp(x)Z, and x − q ∈ ulp(x)Z. Let’s consider
two cases of the value of r̄:

1) |r̄| < 2ufp(x). This implies |r̄| ≤ 2ufp(x)−ulp(x).
|x − q| = |x̄ − d − q| = |r̄ − d| ≤ |r̄| + ulp(x) ≤
2ufp(x). Therefore r = fl(x − q) = x − q and so
S + r = M + x as desired.

2) |r̄| ≥ 2ufp(x). Therefore r̄ ∈ 2ulp(x)Z, and
ε−1ulp(x) = 2ufp(x) ≤ |r̄| ≤ ulp(M). Since
q ∈ 1

2ulp(M)Z, we have q ∈ 2ulp(x)Z. Hence
x̄ = q + r̄ ∈ 2ulp(x)Z, i.e. x̄ ∈ 2ulp(x̄)Z. Since
the last bit of x̄ is 1, this case is invalid.

Therefore we always have r = x − q, i.e. x = q + r.
Consequently |r| ≤ |r̄|+ |d| ≤ ulp(M) + ulp(x).

Corollary 3. Let S, q, r ∈ F be the results computed
by Algorithm 4. If ulp(S) = ulp(M) and ulp(x) <
1
2ulp(M) then q ∈ ulp(M)Z, and |r| ≤ 1

2ulp(M).

Proof: Let r̄ = x̄ − q. According to Corollary 1
we have q ∈ ulp(M)Z and |r̄| ≤ 1

2ulp(M). Since
ulp(x̄) < 1

2ulp(M) and the last bit of x̄ is 1, M + x
cannot be a midpoint. This means that |(M+x)−fl(M+
x)| < 1

2ulp(fl(M + x)), i.e. |r̄| < 1
2ulp(M). Since

ulp(x) < 1
2ulp(M), 1

2ulp(M) ∈ ulp(x)Z. Therefore
|r̄|+ulp(x) ≤ 1

2ulp(M). Moreover |r| = |r̄− (x̄−x)| ≤
|r̄|+ ulp(x). Consequently |r| ≤ 1

2ulp(M). The proof is
complete.

Corollary 4. Let M1,M2, x ∈ F, and [S1, q1, r1] =
Split2(M1, x), and [S2, q2, r2] = Split2(M2, x). If
2ulp(x) < ulp(M1) = ulp(M2) then q1 = q2 and
r1 = r2.

Proof: Let r̄1 = x̄ − q1, and r̄2 = x̄ − q2. From
the proof of Corollary 3 we have q1 ∈ ulp(M1)Z, q2 ∈
ulp(M2)Z, and |r̄1| < 1

2ulp(M1), |r̄2| < 1
2ulp(M2).

Since q1 + r̄1 = q2 + r̄2, it is easy to deduce that q1 = q2.
Therefore r1 = x− q1 = x− q2 = r2.

Setting last bit of vi can be done using an OR-bit
operation. Algorithm 4 costs 4 FLOPs, counting OR as a
FLOP. Nonetheless, as will be seen in Section V, on some
processors for example the Intel Sandy Bridge the floating
point OR-bit operation can be executed in parallel with the
floating point addition operation. In that case, the OR-bit
operation is not counted, and so the cost of Algorithm 4
is only 3 FLOPs.

Corollary 4 means that, if ulp(M) is reproducible then
the splitting is reproducible. This leads to Algorithm 5 to
exactly transform an input vector, which is reproducible
when M is reproducible.

Theorem 4. Let S ∈ F, r ∈ Fn be results computed by
Algorithm 5. Then (S − M) +

∑n
1 ri =

∑n
1 vi, |qi| ≤

2k−dlog2 ne, and
∑n

1 |ri| ≤
n
2 · ulp(M).

Proof: Since 6 ·2k ≤M < 7 ·2k, we have ulp(M) =
2k+3 · ε−1 < 2k−dlog2 ne and M ≤ 7 · 2k − ulp(M).

Algorithm 5 Error-free vector transformation: [S, r] =
ExtractVector3(M,v)

Require: v is a vector of size n� ε−1. M ∈ F: 6 · 2k ≤
M < 7 · 2k, k ∈ Z and max |vi| ≤ 2k−dlog2 ne =
ufp(M) · 2−2−dlog2 ne. All operations are performed
in to-nearest rounding mode.

1: M0 = M
2: for i = 1 to n do
3: [Mi, qi, ri] = Split2(Mi−1, vi)
4: end for
5: S = Mn

Ensure: S−M is a reproducible sum of leading parts of
vi, r is the vector of low order parts of vi.

We will prove by induction that Mi − M =
∑i

1 qj ,
ulp(Mi) = ulp(M), and |qi| ≤ 2k−dlog2 ne for all
1 ≤ i ≤ n. This is true for i = 0. Suppose this is true
for 1 ≤ i < n we will prove it is also true for i + 1.
We have Mi ± 2k−dlog2 ne = M +

∑i
1 qj ± 2k−dlog2 ne

→ |Mi + 2k−dlog2 ne −M | ≤ (i+ 1)2k−dlog2 ne ≤ 2k. In
addition, we have 6·2k ≤M ≤ 7·2k−ulp(M). Therefore
5·2k ≤Mi±2k−dlog2 ne ≤ 8·2k−ulp(M). It is easy to see
that Mi±2k−dlog2 ne ∈ ulp(M)Z, so Mi±2k−dlog2 ne ∈ F
and ulp(Mi ± 2k−dlog2 ne) = ulp(M). Since |vi+1| ≤
2k−dlog2 ne we have Mi − 2k−dlog2 ne ≤ Mi + vi+1 ≤
Mi + 2k−dlog2 ne. Moreover Mi+1 = fl(Mi + vi+1),
therefore Mi − 2k−dlog2 ne ≤ Mi+1 ≤ Mi + 2k−dlog2 ne.
By consequence ulp(Mi+1) = ulp(M), and |qi+1| =
|Mi+1 −Mi| ≤ 2k−dlog2 ne.

According to Corollary 3 we have vj = qj + rj ,
qj ∈ ulp(M)Z and |rj | ≤ 1

2ulp(M) for all 1 ≤ j ≤ i.
Therefore

∑n
1 |ri| ≤

n
2 · ulp(M), and

∑n
1 vi =

∑n
1 qi +∑n

1 ri = Mn−M+
∑n

1 ri, i.e. (S−M)+
∑n

1 ri =
∑n

1 vi.
The proof is complete.

According to Theorem 4 ulp(Mi) = ulp(M) for
all i = 1, . . . , n. Therefore Algorithm 5 is reproducible
as long as M is reproducible. Algorithm 5 costs 4n
FLOPs, counting OR-bit operation as a FLOP. If the OR-
bit operation is not counted then Algorithm 5 costs 3n
FLOPs. For clarity, the cost of Algorithm 5 will be written
as 3n FAdd+n FOr, where FAdd stands for floating point
addition, and FOR stands for an OR-bit operation of two
floating point numbers.

Algorithms 2, 3, and 5 can be used to compute a
reproducible sum of a given input vector, regardless of the
order of computation as well as the platform on which
the algorithm is run. The only requirement is that all
operations must be performed in the same rounding mode,
namely to-nearest rounding mode for Algorithm 2 and 5
and directed-rounding mode for Algorithm 3.

These algorithms have two main drawbacks. First, the
absolute errors of these algorithms depend strongly on the
size of input vector. For both algorithms, the absolute error
is bounded by E = c · n · ulp(M) ≈ c · n · ε · M ≈
c · n2 · ε ·max |vi|, where c is a small constant. This error
bound can be improved by using the K-fold technique,

which will increase the running time substantially when n
is large. The reader can refer to [4] for implementations of
Algorithm 2 and 3 using the K-fold technique, i.e. applying
K passes of error-free transformation to extract K leading
parts of each input floating point instead of just 1 leading
part to improve the computed accuracy. If the trailing parts
are not computed then the cost of the K-fold version of
Algorithm 2 and 3 will be (4K − 1)n FAdd and (3K −
2)n FAdd respectively.

Second, all these three algorithms rely on max |vi| to
determine the extraction factor M . The use of maximum
absolute value requires extra communication, in particular
an extra reduction operation, eg a call to MPI Allreduce

with reduction operator MAX. This violates our goal of
using a single reduction operation. Furthermore, the max-
imum may not be easily available, for example in the
blocked versions of dgemm and trsm [1].

In order to avoid a second reduction operation and to
improve the error bound of reproducible summation, we
propose a new technique called 1-Reduction which will
be presented in the next section.

IV. 1-REDUCTION TECHNIQUE

In order to avoid having to compute the global max-
imum absolute value, we propose a way to precompute
boundaries independently of input data, for example of
form 2i·W for a carefully chosen W. Using precomputed
boundaries requires no communication, and each proces-
sor can use its own local boundary, which is the largest
one to the right of the leading bit of the local maximum
absolute value.

Figure 2. 1-Reduction technique
EMAX EMIN

v1

v2

v3

v4

v5

v6

...

W bits

proc 1

proc 2

proc 3

Since each processor can have a different boundary,
during the reduction we only sum intermediate values
corresponding to the same boundary. Otherwise, only the
intermediate value corresponding to the bigger boundary
will be propagated up the reduction tree. Though it can be
done easily by using two separate reductions, one for the
maximum boundary and one for the summation of partial
sums exceeding this boundary, we only want to use one
reduction. So we combine these two reductions into one,
where we compute both the largest boundary encountered,
as well as the partial sum of the values exceeding this
boundary. This is depicted in Figure 3 for the case of
the 3-fold algorithm which will be explained in the next
section. Therefore we call this technique 1-Reduction.

Figure 3. Special reduction operator
W-bitEMAX EMIN

S1
S1[0] S1[1] S1[2]

S2
S2[0] S2[1] S2[2]

S1 + S2
S1[0] S1[1]+S2[0] S1[2]+S2[1]

The 1-Reduction technique can also be described by
means of binning. A bin corresponds to a chunk of
W adjacent bits along the exponent range. Each bin is
characterized by an index i, which means that the bin
covers the bits from position i ·W to position (i+1) ·W−1
in the exponent range. Each input floating-point value will
then be put in a number of contiguous bins. The values
inside each bin will be summed separately. During the
process of computation, including both local computation
and result propagation along the reduction tree, only the
K left-most bins (those with the highest indices) will be
kept. This is similar to the K-fold technique.

It is important to note that cancellation is not taken
into account during the computation, a bin will always
be propagated even if its carrying value (sum of floating
values that were put into that bin) is zero. It means that the
left-most bin will always be determined by the maximum
absolute value of the input numbers which is reproducible.
Therefore results computed by the 1-Reduction technique
will be reproducible provided that the aggregation of each
bin is exact.

The binning process can be done by converting each
input floating point number into an array of integers. How-
ever, this might require data movement between Floating
Point Unit and Arithmetic Unit. Therefore we propose
to perform the binning process based entirely on floating
point arithmetic, using one of the algorithms presented in
the previous section.

The following subsection will present how to use Al-
gorithm 5 to implement the 1-Reduction technique. Algo-
rithm 2 can also be used with some slight modification.
Nonetheless, as will be explained in subsection IV-A,
Algorithm 3 cannot be used directly due to the use of
directed-rounding.

A. Algorithm

Using the extraction algorithms from Section III to
perform the splitting, M will be chosen from precomputed
values M[i] = 0.75 ·ε−1 ·2i·W. Input floating-point numbers
will be split according to boundaries ulp(M[i]) = 2i·W.

For a scalar x the boundary M[i] will be chosen so that
2(i+1)·W > 2|x| ≥ 2i·W. In order to get the first k leading
parts, x will be split using M[i],M[i+1], . . . ,M[i+k−1].
Since 2(i+1)·W > 2|x|, i.e. |x| < 1

2ulp(M[i+1]), then
fl(M[i+1] + x) = M[i+1] in to-nearest rounding mode.
Therefore for all j > i using M[j] to split x following ei-
ther Algorithm 1 or Algorithm 4 will not change the value
of x. It means that the using any sequence of extraction
factors M[j],M[j+1], . . . ,M[j+k−1], j ≥ i the extracted
part of x that is put into a certain bin will be reproducible

and depend only on the index of that bin. This property
cannot be guaranteed if the operations are performed in
a directed rounding mode since even if ulp(M[j]) � |x|
it is still possible that fl(M[j] + x) 6= M[j] in directed
rounding.

Similarly for an input vector v = [v1, . . . , vn], M[i] is
chosen so that 2(i+1)·W > 2 · max |vi| ≥ 2i·W. In case of
K-fold algorithm, M[i],M[i+1], . . . ,M[i+k−1] will be used.

In addition, in order for Algorithm 5 to be error-free,
and hence be reproducible, it is required to satisfy that
max |vi| ≤ ufp(M[i]) · 2−2−dlog2 ne. Using precomputed
boundaries, we only have 2·max |vi| < 2(i+1)·W. Therefore
in order to avoid overflowing the bin we have to ensure
that 2 · 2(i+1)·W ≤ ufp(M[i]) · 2−2−dlog2 ne. This means
n ≤ 2−(i+1)·W−1 · ufp(0.75 · ε−1 · 2i·W) = ε−1 · 2−W−2. In
case of IEEE double precision, i.e. ε = 2−53, if the bin
width is W = 40, then the maximum number of floating
point numbers that can be summed without overflow is
n ≤ 211 = 2048. Therefore, in order to accommodate
for a input vector one needs to perform the carry-bit
propagation after every NB ≤ ε−1 · 2−W−2 additions. It
means that the algorithm needs to be implemented in a
blocked fashion. It is worth noting that the maximum
absolute value can also be evaluated in blocked fashion.
Denote by v[l:r] = [vl, . . . , vr] a block of input vector
v from index l to r. Algorithm 6 is the pseudo-code
for K-fold 1-Reduction reproducible summation. In total,
Algorithm 6 costs n FMax + (3K − 2)n FAdd + Kn FOr,
where FMax stands for a floating point maximum absolute
value operation.

B. Reproducibility

The reproducibility of Algorithm 6 can be proved by
analyzing each code block of the algorithm.

The algorithm starts with K smallest bins of the ex-
ponent range and no carry bits. The main part of the
algorithm is a for loop (Line 4) that iterates through
the whole input vector v by blocks of NB elements. For
each block, the local maximum absolute value of all the
elements is first computed. This local maximum absolute
value will then be used to update the list of K left-most
bins (Lines 7 to 14). This while loop ensures that m < 2W·
ulp(S1) = ufp(S1)·ε·2W+1 ≤ ufp(S1)·2−2−log2 NB which
is the requirement for Algorithm 5 to be reproducible.
Therefore S1 always corresponds to the updated maximum
absolute value of all the visited elements in v, which
means that at the end of the algorithm S1 will correspond
to maxn1 |vi|. Hence S1 is guaranteed to be reproducible.

The second for loop (Line 15 to 17) performs the
vector transformation to extract the K leading parts cor-
responding to Sk, k ∈ [1, . . . , K], from each input floating
point number. After each extraction, we always have that
|vj | ≤ 1

2ulp(Sk) = ufp(Sk+1) · ε−1 · 2−W−2, therefore
all the K vector transformations on v[i:lN] are error-free.
According to Theorem 4, these leading parts are added to
Sk without any rounding error.

The final loop (Line 18 to 29) is to perform the carry-
bit propagation, which helps to avoid overflow. Essen-

Algorithm 6 Sequential Reproducible Summation:
[S,C] = rsum(v, K, W)

Require: v is a vector of size n. 1 ≤ W < − log2 ε
is the bin width. M[i] = 2i·W, imin ≤ i ≤ imax are
precomputed. K is the number of bins to be kept. NB ≤
ε−1 · 2−W−2 is the block size. S,C ∈ FK

1: for k = 1 to K do . Initialization
2: Sk = M[imin+K−k], Ck = 0
3: end for
4: for i = 1 to n step NB do
5: lN = min(i+ NB− 1, n)
6: m = max |v[i:lN]| . Local maximum absolute
7: while m ≥ 2W ∗ ulp(S1) do . Update
8: for k = K to 2 do
9: Sk = Sk−1

10: Ck = Ck−1
11: end for
12: C1 = 0
13: S1 = 1.5 ∗ 2W ∗ ufp(S1)
14: end while
15: for k = 1 to K do . Extract K first bins
16: [Sk, v[i:lN]] = ExtractVector3(Sk, v[i:lN])
17: end for
18: for k = 1 to K do . Carry-bit Propagation
19: if Sk ≥ 1.75 ∗ ufp(Sk) then
20: Sk = Sk − 0.25 ∗ ufp(Sk)
21: Ck = Ck + 1
22: else if Sk < 1.25 ∗ ufp(Sk) then
23: Sk = Sk + 0.5 ∗ ufp(Sk)
24: Ck = Ck − 2
25: else if Sk < 1.5 ∗ ufp(Sk) then
26: Sk = Sk + 0.25 ∗ ufp(Sk)
27: Ck = Ck − 1
28: end if
29: end for
30: end for
Ensure: Sk, Ck are respectively the leading part and

trailing part of the aggregation of values in the k-th
left most bin.

tially, this carry-bit propagation part is to ensure that
1.5 · ufp(Sk) ≤ Sk < 1.75 · ufp(Sk), which is needed
for the vector transformation of subsequent blocks to be
error-free and reproducible.

The carry-bit is stored in Ck. By consequent, after
each iteration the aggregated value of each bin will be
determined by

Tk = Ck · 0.25 · ufp(Sk) + Sk − 1.5 · ufp(Sk)

= 0.25 · (Ck − 6) · ufp(Sk) + Sk.

In the worst case, the value of |Ck| is bounded by 2 ·d n
NB
e.

In order to avoid overflow, the precision needed to store
Ck is pc = 2 + dlog2

n
NB
e. In other words, if the precision

used to store Ck is pc then Algorithm 6 can compute a
reproducible sum of up to NB · 2pc−2 elements. Moreover,
NB is bounded by NB ≤ ε−1 ·2−W−2, the maximum number

of floating point numbers that can be summed reproducibly
is Nmax = ε−1 ·2pc−W−4. For example, if the bin width is
set to W = 40 and Ck is stored in double precision floating
point numbers then the maximum number of double
precision floating point that can be summed reproducibly
is Nmax = 253 · 253−40−4 = 262 ≈ 4e18, which is
sufficiently large enough for Exascale.

C. Accuracy

The accuracy of the pre-rounding technique depends on
the error of each pre-rounding, which in turn depends
on the boundary. Since each trailing part that is thrown
away in the pre-rounding technique can be bounded by
Boundary, the total error is bounded by n · Boundary.
In the 1-Reduction technique, the boundaries are precom-
puted and do not depend on input data. In the worst
case, the maximum absolute value of input data can be
only slightly larger than the boundary, i.e. max |vi| ≈
1
2ulp(M). Therefore if only one bin is used to perform
the summation, the best error bound that we can get for
the 1-Reduction technique is n ·max |vi|, which is much
too large.

In case of K-fold technique, the computation’s error is
now determined by the minimum boundary being used.
Suppose the gap between two consecutive precomputed
boundaries is W bits. Then the error bound of the K-fold
1-Reduction algorithm is:

absolute error ≤ n · 1

2
ulp(SK)

≤ n · 1

2
ulp(S1) · 2(1−K)·W

< n · 2(1−K)·W−1 ·max |vi|.

This means that the accuracy of 1-Reduction can be tuned
by choosing K according to the accuracy requirement of
each application.

In practice for the summation of double precision
floating-point numbers we use K = 3 and W = 40. W is
a tuning parameter that depends on the desired accuracy,
and the relative costs of basic arithmetic versus the (very
rare) carry propagation from one segment to another.

Given W, K, the absolute error will be bounded by

n · 2−81 ·max |xi| = n · 2−28 · ε ·max |xi|,

which is at least 2−28 times smaller than the error bound
of the standard summation algorithm (n− 1) · ε ·

∑n
1 |xi|.

D. Reduction operator

As explained at the beginning of this section, in order
to compute a reproducible global sum, we need to have
a special reduction operator that takes into account the
binning process.

Using Algorithm 6, the local result of each proces-
sor is a pair of two arrays S,C ∈ FK, which satisfy
1.5 · ufp(Sk) ≤ Sk < 1.75 · ufp(Sk) for all 1 ≤ k ≤ K.
Therefore, the reduction can be performed by implement-
ing a special addition operation of two such pairs of arrays.

An implementation of such a special reduction operator
is presented in Algorithm 7. First, the two input pairs

are aligned to the maximum bin index (Lines 1 to 12).
Then the aggregation is carried out by simply adding the
corresponding mantissas and carries. Finally the carry-
bit propagation (Lines 16 to 25) is performed to avoid
overflow in subsequent reduction steps.

Algorithm 7 1-Reduction’s special reduction operation
[S,C] = RepReduce(S1, C1, S2, C3)

Require: S1, C1, S2, C2 ∈ FK. W is the bin width.
1: if ulp(S21) > ulp(S11) then
2: [S,C] = RepReduce(S2, C2, S1, C1)
3: return
4: end if
5: while ulp(S21) < ulp(S11) do . Right Shifting
6: for k = K to 2 do
7: S2k = S2k−1
8: C2k = C2k−1
9: end for

10: S21 = 1.5 ∗ 2W ∗ ulp(S21)
11: C21 = 0
12: end while
13: for k = 1 to K do . Aggregation
14: Sk = S1k + (S2k − 1.5 ∗ ulp(S2k))
15: Ck = C1k + C2k
16: if Sk ≥ 1.75 ∗ ufp(Sk) then . Carry Propagation
17: Sk = Sk − 0.25 ∗ ufp(Sk)
18: Ck = Ck + 1
19: else if Sk < 1.25 ∗ ufp(Sk) then
20: Sk = Sk + 0.5 ∗ ufp(Sk)
21: Ck = Ck − 2
22: else if Sk < 1.5 ∗ ufp(Sk) then
23: Sk = Sk + 0.25 ∗ ufp(Sk)
24: Ck = Ck − 1
25: end if
26: end for
Ensure: [S,C] is the sum of the K corresponding left-

most bins of both [S1, C1] and [S2, C2].

Using this special reduction operator, a global sum
requires only one reduction over 2 arrays of K elements. In
case of the 3-fold summation of double precision floating
numbers, and Ck being stored in double precision, then the
size of data structure to be reduced will be 2 ∗ 3 ∗ 8 = 48
bytes.

V. EXPERIMENTAL RESULTS

In this section, we present some experimental results
to check the reproducibility, the accuracy, as well as the
performance (both sequential and parallel) of the proposed
1-Reduction technique.

A. Reproducibility and Accuracy

Input data are generated using a linear distribution,
uniform distribution and normal distribution in [−1, 1] for
varying vector sizes n = 103, 104, 105, 106.

In order to check the reproducibility, for each input
vector all elements are summed in different orderings:
increasing, decreasing, increasing magnitude, decreasing

Table I
ACCURACY OF REPRODUCIBLE SUMMATION

Generator vi rsum standard
drand48() 0 [-8.5e-15 , 1.0e-14]
drand48()− 0.5 1.5e-16 [-1.7e-13 , 1.8e-13]
sin(2.0 ∗ π ∗ i/n) 1.5e-15 [−1.0 , 1.0]

magnitude and random permutation. The computed results
are considered reproducible if and only if they are bit-wise
identical for all considered data orderings. As expected,
results computed using Algorithm 6 are reproducible for
all input data. In contrast, results computed by the standard
summation algorithm are rarely reproducible for different
data ordering.

Table I summaries some test results of the summation
of n = 106 double precision floating-point numbers. Com-
puted results of both reproducible summation and standard
summation for different data orderings are compared with
result computed using quad-double precision. The first
column shows the formula used to generate input vector.
The second column shows the relative errors of results
computed by Algorithm 6 using 3 bins of 40-bit width,
which are always reproducible. The third column shows
the range of relative errors of results computed by the
standard summation algorithm.

As can be seen from Table I, in most cases results
computed by Algorithm 6 have smaller relative errors than
results computed by the standard summation algorithm.
Especially in the third case, i.e. vi = sin(2.0∗π∗i/n), the
sum would be identically zero in exact arithmetic. In finite
arithmetic, nonetheless, since we do not have the exact π,
the exact value of

∑n
1 vi is instead very close to zero.

In this case, the standard summation summation could
hardly obtain any correct significant bit in the computed
result. Our proposed 1-Reduction technique, i.e. the rsum

function, however computes a very accurate result which
is correct to almost 15 decimal digits. This correlates with
the fact that the error bound of Algorithm 6 is much
smaller than that of the standard summation algorithm.

B. Performance

In order to check the performance of the proposed 1-
Reduction technique we measured two test sets for sequen-
tial and parallel computing environments respectively.

The first test set measures the performance of the 3-
fold version of Algorithm 5 (which is the building block of
Algorithm 6) as well as the 2-fold versions of Algorithm 2
and Algorithm 3 for varying vector sizes n = 100, . . . , 107

on a single Intel Sandy Bridge core at 2 GHz , with
L1 Cache of 32K, L2 Cache of 256KB, and L3 Cache
of 10MB. Each test is run with warmed-up cache (by
repeating the function call a large number of times) to
amortize the data loading time.

Recall that the theoretical cost of the 2-fold version of
Algorithm 2 is 7n FAdd. The theoretical cost of the 2-fold
version of Algorithm 3 is 4n FAdd. And the theoretical

Figure 4. Effective costs of Error-free transformation algorithms

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 100 1000 10000 100000 1e+06

E
ff

ec
ti

v
e

co
st

 (
x

N
)

Vector size

dasum
Algo 2 (K=2)

Algo 3 (K=2)
Algo 5 (K=3)

cost of the 3-fold version of Algorithm 5 is 7n FAdd +
3n FOr.

Since the summation algorithm does not use any floating
point multiplication, using SSE2 instructions the peak
performance of a standard summation algorithm can be
Ppeak = 2 × 2.0 = 4.0 GFLOPs. Figure 4 plots the
effective cost of each algorithm, which is determined by
Ppeak/(#iterations ∗ n/running time). For example a
ratio 2.0 means that the effective cost of the algorithm is
equivalent to 2n floating point additions.

As can be seen from Figure 4, when the vector size
is large enough (n > 1000) to amortize the cost of loop
control logic as well as of function calls, then the effective
cost of Algorithm 3 (K = 2) and Algorithm 3 (K = 2)
is only slightly higher than 7 and 4 respectively, which
match closely to the FLOP counts of the corresponding
algorithms. Nonetheless, the effective cost of Algorithm 5
(K = 3) is only ≈ 7, which is roughly equal to the effective
cost of Algorithm 2 (K = 2). It means that in this case the
OR-bit operation is not counted.

When the vector sizes get larger (n > 106), the input
vector can no longer fit into the L3 cache which is of
size 10MB and hence can only hold up to 1, 310, 720
double precision floating point numbers. Therefore the
data loading time becomes more important and increases
the effective cost of each algorithm. From Figure 4, the
effective costs of all the three reproducible summation
algorithms both increase by 1 (from 3 to 4 for Algorithm 3,
and from 7 to 8 for Algorithm 2, 5).

As a reference, consider the effective cost of function
dasum from the Intel MKL library [2] to compute the sum
of absolute values of input vector which is also plotted
in Figure 4. When n ∈ [103, 2 · 104], the effective cost
of dasum is close to 1, which means that the cost of
the dasum function is almost the same as the cost of
the standard summation algorithm. It suggests that the
floating point absolute value operation does not contribute
to the cost of the dasum function. Nonetheless, when
n > 2 · 106 the effective cost of dasum increases substan-
tially from 1 to 3. Therefore the dasum function is more
communication-bound than the other three reproducible
summation algorithm.

The second test set checks the scalability
of the proposed 1-Reduction technique in a

massively parallel environment. Figure 5 summarizes
experimental results on Edison, a Cray XC30
(www.nersc.gov/systems/edison-cray-xc30),
for the summation of 106 IEEE double precisions
floating-point numbers. For each number of processors
p ∈ (1, 2, . . . , 1024), we measured the run-time of 4
algorithms: The first uses the optimized non-reproducible
dasum function in the Intel MKL library [2] to compute
the local sum of absolute values, and then MPI-Reduce
to compute the final result. Therefore the running time
consists of two parts: the local summation computing
time which is colored red and the reduction time which
is colored green. The total running time of this algorithm
is always normalized to 1 in the figure. The second
and third run-times are for the two algorithms Fast
Reproducible Sum and Reproducible Sum presented in
[4], which are essentially based on Algorithm 3 and
Algorithm 2 respectively with 2 vector transformation
passes (K = 2); both require 2 reduction steps. Both these
algorithms compute the local maximum absolute value
(magenta part) and communicate to reduce and broadcast
the global maximum absolute value to all processors
(blue part). The fourth run-time is for Algorithm 5 using
K = 3 extraction steps. Similar to normal summation, the
run-time consists of only two parts: the local computing
time (red) and the reduction (green) to reduce the final
result.

For small numbers of processors, the running time
of each algorithm is dominated by the local computing
time (including computing the maximum). Therefore the
reproducible summation algorithms are 3 or more times
slower than the normal sum in terms of running time. Nev-
ertheless, for large numbers of processors the running time
of all algorithms tends to be dominated by communication
time. Consequently the running time of each algorithm
is close to proportional to the number of reductions it
uses. Note that, the AllReduce collective function used
to reduce and broadcast the global maximum absolute
value is even more expensive than the Reduce function.
Therefore, performance-optimized nonreproducible sum-
mation and 1-Reduction are both about twice as fast as the
other two algorithms. For example when p = 512, 1024,
the 1-Reduction technique is only 20% slower than the
performance-optimized summation.

VI. CONCLUSIONS AND FUTURE WORK

The proposed 1-Reduction technique attains repro-
ducibility for parallel heterogeneous computing environ-
ments. Reproducibility is guaranteed regardless of the
number of processors, reduction tree shape, data assign-
ment, data partitioning, etc. Since no extra inter-processor
communication is needed, this technique is well suited
for highly parallel environments including ExaScale and
cloud computing, where communication time tends to
dominate computing time. It can also be applied in data-
streaming applications since the boundaries can be updated
on-the-fly whenever new values come. The 1-Reduction
technique can be applied for example for heterogeneous

Figure 5. Performance of 1-Reduction technique on Edison machine

 0

 1

 2

 3

 4

 5

d
a

s
u

m
A

lg
o

 3
A

lg
o

 2
A

lg
o

 6

d
a

s
u

m
A

lg
o

 3
A

lg
o

 2
A

lg
o

 6

d
a

s
u

m
A

lg
o

 3
A

lg
o

 2
A

lg
o

 6

d
a

s
u

m
A

lg
o

 3
A

lg
o

 2
A

lg
o

 6

d
a

s
u

m
A

lg
o

 3
A

lg
o

 2
A

lg
o

 6

d
a

s
u

m
A

lg
o

 3
A

lg
o

 2
A

lg
o

 6

d
a

s
u

m
A

lg
o

 3
A

lg
o

 2
A

lg
o

 6

d
a

s
u

m
A

lg
o

 3
A

lg
o

 2
A

lg
o

 6

d
a

s
u

m
A

lg
o

 3
A

lg
o

 2
A

lg
o

 6

d
a

s
u

m
A

lg
o

 3
A

lg
o

 2
A

lg
o

 6

d
a

s
u

m
A

lg
o

 3
A

lg
o

 2
A

lg
o

 6

1 2 4 8 16 32 64 128 256 512 1024

T
im

e
 (

n
o
rm

a
liz

e
d
 b

y
 d

a
s
u
m

 t
im

e
)

Processors

local sum
Absolute Max
communication
All-Reduce

3
.1 3
.2

3
.1

2
.9

2
.8

3
.1

3
.0

2
.9

2
.3 2

.4

2
.2

4
.7

4
.7

4
.4

4
.1

3
.9

3
.7

3
.6

3
.1

2
.3

2
.3

2
.2

4
.9

5
.0

4
.6

4
.3

3
.9

3
.4

3
.0

2
.2

1
.4

1
.2

1
.2

systems that involves both general-purpose CPUs and
GPUs (Graphics Processing Unit). The order of evaluation
changes radically when porting code from CPU to GPU,
therefore it is much harder for a performance-optimized
floating point library to guarantee reproducibility between
CPU and GPU.

Though in this paper we have only demonstrated this
technique for summation, it can be applied to other
operations that use summation as a reduction operator,
for example dot product, matrix-vector multiplication, and
matrix-matrix multiplication. We also plan to apply this
technique to prefix-sum as well as higher level BLAS and
linear algebra routines.

Even though our proposed 1-Reduction technique
works both correctly and with performance close to that
of performance-optimized nonreproducible summation in
massively parallel environment, it is still slower than a
performance-optimized summation by a factor of 7 in
terms of FLOP count. This slowdown cannot be easily
amortized by communication cost in other computation-
bound operations such as matrix-matrix multiplication.
Therefore we are also investigating possibilities of hard-
ware support to reduce that cost. Ideally, if we can
combine both the bin indexing and the bin aggregation
step into a single instruction then the slowdown of local
summation would be reduced to 1. It means that we
can obtain reproducibility at almost the same cost as a
performance-optimized nonreproducible algorithm.

REFERENCES

[1] BLAS - Basic Linear Algebra Subroutines,
htttp://www.netlib.org/blas/.

[2] MKL - Intel R© Math Kernel Library,
www.intel.com/software/products/mkl/.

[3] T. J. Dekker. A floating-point technique for extending the
available precision. Numerische Methematik, 18(3):224–
242, 1971.

[4] James Demmel and Hong Diep Nguyen. Fast Reproducible
Floating-Point Summation. In 21st IEEE Symposium on
Computer Arithmetic, Austin, Texas, USA, April 2013.

[5] Nicholas J. Higham. Accuracy and Stability of Numerical
Algorithms. Society for Industrial and Applied Mathemat-
ics, Philadelphia, PA, USA, 1996.

[6] Siegfried M. Rump. Ultimately fast accurate summation.
SIAM Journal on Scientific Computing (SISC), 31(5):3466–
3502, 2009.

[7] Siegfried M. Rump, Takeshi Ogita, and Shin’ichi Oishi.
Fast high precision summation. Nonlinear Theory and Its
Applications, IEICE, 1(1):2–24, 2010.

[8] Stefan Siegel and Jürgen Wolff von Gudenberg. A long
accumulator like a carry-save adder. Computing, 94(2-
4):203–213, March 2012.

[9] Michela Taufer, Omar Padron, Philip Saponaro, and
Sandeep Patel. Improving numerical reproducibility and
stability in large-scale numerical simulation on GPUs. In
IPDPS, pages 1–9, 2010.

[10] Oreste Villa, Daniel Chavarria-Miranda, Vidhya Gurumoor-
thi, Andres Marquez, and Sriram Krishnamoorthy. Effects
of floating-point non-associativity on numerical computa-
tions on massively multithreaded systems. In Cray User
Group meeting, CUG, 2009.

