BLINK

Fast and Generic Collectives for Distributed ML

Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee
Jorgen Thelin, Nikhil R. Devanur, Ion Stoica
DNNs empower state-of-the-art results across many different applications.

- Image Classification
- Robot Control
- Speech Recognition
- Game Playing
Speed-up DNN training: Data Parallelism

Data parallel training speed-up on ImageNet-1K dataset*

Speed-up DNN training: Data Parallelism

Data parallel training speed-up on ImageNet-1K dataset*

Speed-up DNN training: Data Parallelism

Data parallel training speed-up on ImageNet-1K dataset*

Significantly reduce training time

Model Synchronization

\[\nabla W = \nabla W^1 + \nabla W^2 + \cdots + \nabla W^N \]

Despite many performance optimizations, model synchronization is a big overhead in data parallel training on cloud servers.

Multi-GPU scaling performance using TensorFlow*

*Horovod: fast and easy distributed deep learning in TensorFlow, arXiv:1802.05799, 2018
Despite many performance optimizations, model synchronization is a big overhead in data parallel training on cloud servers.

Communication overhead of data-parallel training with Multi-GPU servers using PyTorch^.

>50% communication overhead

Multi-GPU scaling performance using TensorFlow*

Up to 90% communication overhead

^PipeDream: Generalized Pipeline Parallelism for DNN Training, SOSP 2019

*Horovod: fast and easy distributed deep learning in TensorFlow, arXiv:1802.05799, 2018
Model synchronization is a big overhead in data parallel training despite many performance optimizations.

To alleviate communication bottlenecks, recently there have been big improvements in hardware and software.

Communication overhead of data-parallel training with Multi-GPU servers using PyTorch^
State of the art (hardware)

NVIDIA DGX-1

NVIDIA DGX-2
What is inside?

• Computation

 NVIDIA P100: 5.3 Tera-FLOPs
 Double Precision

 NVIDIA V100: 7.8 Tera-FLOPs
 Double Precision
What is inside?

• Computation

 NVIDIA P100: 5.3 Tera-FLOPs
 Double Precision

 NVIDIA V100: 7.8 Tera-FLOPs
 Double Precision

• Faster Interconnects

 PCIe 3.0 (x16) ~10GB/s
 • Shared

 NVLink
 • Point-to-point
 • 1st Gen (P100) ~18GB/s
 • 2nd Gen (V100) ~23GB/s
What is inside?

- **Computation**
 - NVIDIA P100: 5.3 Tera-FLOPs
 - Double Precision
 - NVIDIA V100: 7.8 Tera-FLOPs
 - Double Precision

- **Faster Interconnects**
 - PCIe 3.0 (x16) \(\sim 10\text{GB/s}\)
 - **Shared**
 - NVLink
 - Point-to-point
 - 1\text{st} Gen (P100) \(\sim 18\text{GB/s}\)
 - 2\text{nd} Gen (V100) \(\sim 23\text{GB/s}\)
 - NVSwitch
 - Fully connected crossbar
 - 6x NVLink 2\text{nd} Gen Bandwidth
 \(\sim 130\text{GB/s}\)
State of the art (software)

NCCL
(Nvidia Collective Communication Library)

Ring-based collective communication protocols
Ring-based collectives (e.g. Broadcast)

Topology

Ring Broadcast (from GPU0)
Ring-based collectives (e.g. Broadcast)

Topology

Ring Broadcast (from GPU0)
Ring-based collectives (e.g. Broadcast)

Topology

Ring Broadcast (from GPU0)
Ring-based collectives (e.g. Broadcast)
Ring-based collectives (e.g. Broadcast)

Topology

Ring Broadcast (from GPU0)
Ring-based collectives (e.g. Broadcast)

Topology

Ring Broadcast (from GPU0)
Ring-based collectives (e.g. Broadcast)

Topology

Ring Broadcast (from GPU0)
State of the art (software)

NCCL
(Nvidia Collective Communication Library)

Ring-based collective communication protocols

HOROVOD

gloo

NVIDIA

Uber

Facebook
Can these hardware & software improvements alleviate communication bottleneck in data-parallel training?
Can these hardware & software improvements alleviate communication bottleneck in data-parallel training?

Not Really
High communication overheads even with state-of-the-art hardware (NVLink) and software (NCCL)

Cross-GPU communication measured as the percentage of total epoch time when running within a single 8-GPU DGX-1 box

There are many different 4 GPU allocations with a server
High communication overheads even with state-of-the-art hardware (NVLink) and software (NCCL)

Cross-GPU communication measured as the percentage of total epoch time when running within a single 8-GPU DGX-1 box

4 GPU allocation with highest overhead

4 GPU allocation with lowest overhead

High communication overheads even with state-of-the-art hardware (NVLink) and software (NCCL)
High communication overheads even with state-of-the-art hardware (NVLink) and software (NCCL)

Cross-GPU communication measured as the percentage of total epoch time when running within a single 8-GPU DGX-1 box

High communication overheads is consistent across different number of workers and for a range of DNNs
High communication overheads even with state-of-the-art hardware (NVLink) and software (NCCL)

Cross-GPU communication measured as the percentage of total epoch time when running within a single 8-GPU DGX-1 box.

High communication overheads is consistent across different number of workers and for a range of DNNs.

Communication overheads become more pronounced with increasing GPU computation power.
High communication overheads even with state-of-the-art hardware (NVLink) and software (NCCL) become more pronounced with increasing GPU computation power. We need **Faster** Collective Communication Protocols.

Cross-GPU communication measured as the percentage of total epoch time when running within a single 8-GPU DGX-1 box.
Talk Outline

• Motivation

• Challenges to achieving faster collective communication

• Design

• Evaluation
Challenge 1: Different server configurations

DGX1-P100 (NVLink 1st Gen, \(\sim\)18GB/s)

DGX1-V100 (NVLink 2nd Gen, \(\sim\)23GB/s)
Challenge 1: Different server configurations

Protocols needs to be topology aware to effectively use hardware links.

DGX1-P100 (NVLink 1st Gen, \(\sim\)18GB/s)

DGX1-V100 (NVLink 2nd Gen, \(\sim\)23GB/s)
Challenge 2: Link heterogeneity

PCIe topology

Ring-based collectives can only utilize homogeneous links.

NVLink topology
Challenge 2: Link heterogeneity

Ring-based collectives can only utilize homogeneous links.

Why not heterogeneous links?
e.g. PCIe will be bottleneck if included in a NVLink ring
Challenge 3: Fragmentation in multi-tenant clusters

Within each 8-GPU server, # of GPUs allocated to 40,000 multi-GPU jobs at Microsoft.

Examples of fragmented allocation
(8GPU job across 2 servers)

3 + 5
2 + 6
Challenge 3: Fragmentation in multi-tenant clusters

Many cluster schedulers are not topology-aware.

Without support for efficient migration, DNN jobs must embrace fragmentation to avoid queuing delays.
Challenge 3: Fragmentation in multi-tenant clusters

Within each 8-GPU server, # of GPUs allocated to 40,000 multi-GPU jobs at Microsoft.

Why fragmentation?

Many cluster schedulers are not topology-aware.

Without support for efficient migration, DNN jobs must embrace fragmentation to avoid queuing delays.

Irregular topo. → no ring

Existing solutions (NCCL) fall back to PCIe if they cannot form a NVLink ring.
Can we do better than state-of-the-art?

Topology Heterogeneity

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters

Ring-based collective communication protocols
Can we do better than state-of-the-art?

BLINK

Topology Heterogeneity

1. Different server configurations
2. Link heterogeneity
3. Fragmentation in multi-tenant clusters
Talk Outline

• Motivation

• Challenges to achieving high-performance collective communication
 1. Different server configurations
 2. Link heterogeneity
 3. Fragmentation in multi-tenant clusters

• Design

• Evaluation
How Blink handles topology heterogeneity

Topology Heterogeneity

- Different server configurations

Blink

- Probe available links at job run time
How Blink handles topology heterogeneity

Topology Heterogeneity

- Different server configurations
- Link heterogeneity

Blink

- Probe available links at job run time
- Concurrent data transfer over heterogenous links
How Blink handles topology heterogeneity

Topology Heterogeneity

- Different server configurations
- Link heterogeneity
- Fragmentation in multi-tenant clusters (irregular topology)

Blink

- Probe available links at job run time
- Concurrent data transfer over heterogenous links
- Spanning trees (v.s. Rings) are more flexible and optimal.
How Blink handles topology heterogeneity

Topology Heterogeneity

- Different server configurations
- Link heterogeneity
- Fragmentation in multi-tenant clusters (irregular topology)

Blink

- Probe available links at job run time
- Concurrent data transfer over heterogenous links
- Spanning trees (v.s. Rings) are more flexible and optimal.
- NCCL-compatible API, seamless integration with TF, PyTorch, etc.
Blink workflow

Topology Discovery → Topology → Filter & TreeGen → Trees →CodeGen → libBlink.so, libNCCL.so → Main Program

Scheduler → Assigned GPUs
Blink workflow
Broadcast comparison (Trees v.s. Rings)

6-GPU topology
Broadcast comparison (Trees v.s. Rings)

Broadcast from GPU3

NCCL 2 rings

Unused link
Broadcast comparison (Trees v.s. Rings)

3 Spanning trees > 2 Rings

Use All the links available \(\rightarrow \) Optimal
TreeGen: packing max. spanning trees

• Given available topology, pack max. unidirectional spanning trees.
TreeGen: packing max. spanning trees

• Given available topology, pack max. unidirectional spanning trees.

Optimization problem

\[
\max \sum_i w_i
\]

such that \(\forall e \in E, \sum_i \kappa_i \times w_i < c_e \)

where \(\kappa_i = \begin{cases}
1, & \text{if } e \in T_i \\
0, & \text{otherwise}
\end{cases} \)

Maximize the sum of bandwidth usage among all links

Constrain: amount of BW usage should not exceed ANY link capacity when packing multiple trees
TreeGen: packing max. spanning trees

- Given available topology, pack max. unidirectional spanning trees.

Topology

- **GPU1**
- **GPU2**
- **GPU3**

Packing unidirectional spanning trees

- **GPU1**
- **GPU2**
- **GPU3**

Optimization problem

\[
\max \sum_i w_i \\
\text{such that } \forall e \in E, \sum_i \kappa_i w_i < c_e
\]

where \(\kappa_i =
\begin{cases}
1, & \text{if } e \in T_i \\
0, & \text{otherwise}
\end{cases} \)

Maximize the sum of bandwidth usage among all links.

Constrain: amount of BW usage should not exceed ANY link capacity when packing multiple trees.

- Too many trees!
- **181** spanning trees for 8-GPU DGX-1V

Data size per-tree is too small to fully saturate link BW.
TreeGen: packing max. spanning trees

- Given available topology, pack max. unidirectional spanning trees.

Optimization problem

$$\max \sum_{i} w_i$$

such that $$\forall e \in E, \sum_{i} \kappa_i w_i < c_e$$

where $$\kappa_i = \begin{cases} 1, & \text{if } e \in T_i \\ 0, & \text{otherwise} \end{cases}$$

Approximate packing

$$\max \sum_{i=1}^{k} w_i$$

such that $$\forall e \in E, \sum_{i} \kappa_i \cdot w_i < c_e$$

$$\forall w_i \in \{0, 1\}$$

where $$\kappa_i = \begin{cases} 1, & \text{if } e \in T_i \\ 0, & \text{otherwise} \end{cases}$$

Either a tree use ALL BW of a link, or not use it.

181 trees for 8GPU DGX-1V

6 trees for 8GPU DGX-1V
TreeGen

• Given available topology, pack max. unidirectional spanning trees
• Direct support for one-to-many/many-to-one primitives
 • e.g. Reduce, Broadcast, etc.
TreeGen

• Given available topology, pack max. unidirectional spanning trees

• Direct support for one-to-many/many-to-one primitives
 • e.g. Reduce, Broadcast, etc.

• Extend to many-to-many primitives (e.g. AllReduce)
 • Pick a root node, reduce towards root, then broadcast in reverse direction.
TreeGen for NVSwitch (DGX-2)
TreeGen for NVSwitch (DGX-2)

- With NVSwitch, the connectivity among any subset of GPUs is uniform.
- NCCL constructs a multi-hop ring.

![Diagram of TreeGen for NVSwitch (DGX-2)]
TreeGen for NVSwitch (DGX-2)

- With NVSwitch, the connectivity among any subset of GPUs is uniform
- NCCL constructs a multi-hop ring.

```
GPU1
NVSwitch
GPU2
GPU3
GPU4
```

4GPU Reduce (G1->G4)

Hop Count

1
TreeGen for NVSwitch (DGX-2)

• With NVSwitch, the connectivity among any subset of GPUs is uniform
• NCCL constructs a multi-hop ring.

4GPU Reduce (G1->G4)
TreeGen for NVSwitch (DGX-2)

- With NVSwitch, the connectivity among any subset of GPUs is uniform
- NCCL constructs a multi-hop ring.

![Diagram]

- **4GPU Reduce**
 - (G1->G4)

Hop Count

- NVSwitch
 - GPU1
 - GPU2
 - GPU3
 - GPU4

- Hop Count: 3
TreeGen for NVSwitch (DGX-2)

• With NVSwitch, the connectivity among any subset of GPUs is uniform
• NCCL constructs a multi-hop ring.
TreeGen for NVSwitch (DGX-2)

• DGX-2 single-hop tree

1-hop tree introduces Min. latency

4GPU Reduce
TreeGen for NVSwitch (DGX-2)

- DGX-2 single-hop tree

For N GPUs, N 1-hop trees, with each tree responsible for 1/N data.

AllReduce \rightarrow Reduce, Broadcast

1-hop tree introduces Min. latency
Blink workflow
CodeGen

• Translate TreeGen output (spanning trees) into real data transfer commands

• CodeGen optimizations:
 • Pipelining data chunks to reduce latency
CodeGen

- Translate TreeGen output (spanning trees) into real data transfer commands
- **CodeGen optimizations:**
 - Pipelining data chunks to reduce latency

What chunk size to use?

- Too small, cannot fully utilize BW
- Too big, high latency
CodeGen

- Translate TreeGen output (spanning trees) into real data transfer commands
-CodeGen optimizations:
 - Pipelining data chunks to reduce latency
 - Automatic chunk size selection
 - MIAD (multiple-increase, additive-decrease)
 - What chunk size to use?
 - Too small, cannot fully utilize BW
 - Too big, high latency
CodeGen

• Translate TreeGen output (spanning trees) into real data transfer commands
• CodeGen optimizations:
 • Pipelining data chunks to reduce latency

What chunk size to use?
• Too small, cannot fully utilize BW
• Too big, high latency
CodeGen

- Translate TreeGen output (spanning trees) into real data transfer commands
- CodeGen optimizations:
 - Pipelining data chunks to reduce latency
 - Automatic chunk size selection
 - MIAD (multiple-increase, additive-decrease)

What chunk size to use?
- Too small, cannot fully utilize BW
- Too big, high latency
CodeGen

- Translate TreeGen output (spanning trees) into real data transfer commands
- CodeGen optimizations:
 - Pipelining data chunks to reduce latency
 - Automatic chunk size selection
 - MIAD (multiple-increase, additive-decrease)
 - What chunk size to use?
 - Too small, cannot fully utilize BW
 - Too big, high latency
Blink design recap

• Packing spanning trees while minimizing trees
 • Single hop trees for DGX-2 (NVSwitch)

• Chunking, pipelining transfers for max link utilization
 • Auto chunk size selection with MIAD

• GPU stream reuse for fair sharing of links
• PCIe + NVLink Hybrid transfers
• Support for multi-machine collectives

Drop-in NCCL replacement (load-time, no code recompile)
Talk Outline

• Motivation

• Challenges to achieving high-performance collective communication
 1. Different server configurations
 2. Link heterogeneity
 3. Fragmentation in multi-tenant clusters

• Design

• Evaluation
 • AllReduce and Broadcast Microbenchmarks
 • End-to-end improvements
 • Benefits of One-Hop Trees over Rings or Double Binary trees
 • Rest of the extensive evaluation → refer to the paper
Microbenchmarks (DGX-1V)

Topology

AllReduce
Microbenchmarks (DGX-1V)
Microbenchmarks (DGX-1V)

Topology

NCCL2 (2 rings)

Blink (3 spanning trees)

AllReduce

Throughput (GB/s)

Blink | NCCL 2

4, 5, 6, 7

74
Microbenchmarks (DGX-1V)

AllReduce
(up to 8x speed-up, 2x geo-mean)
Microbenchmarks (DGX-1V)

Broadcast (up to 6x speed-up, 2x geo-mean)

AllReduce (up to 8x speed-up, 2x geo-mean)
End-to-end Benchmarks (DGX-1V)

Blink end-to-end Communication time reduction (ImageNet1K)

up to 87% Communication time reduction (51% avg.)
End-to-end Benchmarks (DGX-1V)

Blink end-to-end Communication time reduction (ImageNet1K) up to 87% Communication time reduction (51% avg.)

Blink end-to-end training time reduction (ImageNet1K) up to 40% end-to-end training time reduction
Microbenchmarks (DGX-2)

16 GPU AllReduce

Throughput
(up to \(3.5x\) speed-up)

Latency
(Up to \(3.32x\) reduction)

Biggest win in small chunk sizes because our 1-hop tree achieve min. latency.
• Topology heterogeneity results in link underutilization for collectives.

• Blink packs spanning trees for optimal link utilization

• Auto-generates one-to-all, all-to-one, all-to-all collectives
 • Broadcast, AllReduce, etc.

• Faster collective communication than NCCL
 • Up to 6x faster Broadcast (2x geo-mean)
 • Up to 8x faster AllReduce (2x geo-mean)
 • Up to 7.7x (2x geo-mean) communication time reduction in E2E data-parallel training on DGX-1 machines.
Back-ups
TreeGen

- Handle hybrid communication (e.g. PCIe & NVLink)
 - Balance amount of data transfer over different link types based on link bandwidth.
 - Take link type switching (i.e. disable_peer_access) latency into account.

\[
\text{Objective } T_{\text{PCIe}} + T_{\text{dpa}} = T_{\text{NVL}}
\]

\[
\Rightarrow D_{\text{PCIe}} = \frac{D_{\text{total}} \times BW_{\text{PCIe}}}{BW_{\text{PCIe}} + BW_{\text{NVL}}} - \frac{T_{\text{dpa}} \times BW_{\text{PCIe}} \times BW_{\text{NVL}}}{BW_{\text{PCIe}} + BW_{\text{NVL}}}
\]

\[
D_{\text{NVL}} = D_{\text{total}} - D_{\text{PCIe}}
\]
TreeGen

- Multi-server transfers

Figure 10: Three-phase AllReduce protocol for cross-machine settings. Data item $X_{m,g}$ refers to data partition X on server m and GPU g. Each data partition has a distinct server-local root. The figure above shows the reduction (function is denoted as $+$) for partition B which has a root at $GPU/2$. Similar protocol is followed for other data partitions.
Multiple DGX-1s DNN Training

- 8-GPU job on 2 DGX-1V machines (5-3 GPU placement)
- Inter-server tput (40Gb/s) < Intra-server tput (40GB/s)
- Projection with 100/400 Gbps inter-server bandwidth, highlight Blink’s advantage.