
Enabling Synergy in IoT: Platform to Service and Beyond

Michael P Andersen∗, Gabe Fierro†, David E. Culler‡

Electrical Engineering and Computer Science, UC Berkeley

Email: ∗m.andersen@cs.berkeley.edu, †gtfierro@cs.berkeley.edu, ‡culler@cs.berkeley.edu,

Abstract—To enable a prosperous Internet of Things, devices
and services must be extensible and adapt to changes in the
environment or user interaction patterns. These requirements
manifest as a set of design principles for each of the layers
in an IoT ecosystem, from hardware to cloud services. This
paper gives concrete guidelines learned from building a full-
stack Synergistic IoT platform.

Keywords-Internet of Things; Wireless sensor networks;
Sensor motes;

I. INTRODUCTION

The Internet of Things that we imagine involves far

more than the mere ability of many miniature computational

devices embedded in the fabric of everyday life to com-

municate. We expect that these devices will be specialized

in ways reflecting the ‘thing’ they are a part of, that

distinctive ensembles of connected things will provide rich

functionality as natural-to-use applications and services, that

space and proximity matter, as they dictate context and

deliniate boundaries of applicability, trust, and authority, and

that all of this will leverage the deep storage and processing

resources of the cloud, as well as its potentially global

visibility. This is a fundamentally heterogeneous world, and

yet we imagine seamless, nearly spontaneous interactions

among diverse collections of things working together - in a

word, synergy.

And yet, the prelude to the IoT we see all around us

today stands in stark contrast to this conception. While

the smartphone is ubiquitous and wearable devices are

everywhere, almost invariably for one to work with the other

an application for the particular thing must be preloaded onto

the phone and the two devices must be explicitly paired

using a particular, common link and protocol. The situation

is no better with Zigbee or z-wave ‘things’, essentially each

requiring a product-specific gateway and unable to interact

with the phones and wearables of the BLE universe - despite

immense effort to develop detailed application profiles. WiFi

scarcely improves the situation, despite inheriting the ability

for a device from any vendor to communicate with any other;

we still need, for example, a dedicated application for the

phone to interact with the thermostat - or resort to interacting

with its web-accessible avatar. Certainly the phone serves as

an intermediary in many ways, possessing PAN, LAN, and

WAN links, but strangely this largely means isolated vendor-

specific stacks pass through it.

This situation led us to develop a complete IoT system

in which to explore the issues of synergy at various levels,

as illustrated by Figure 1. Simply applying the techniques

associated with “the Internet” is not enough. We do need

end-to-end communication amongst devices using distinct

physical links, but the proximity and relationship of those

devices matter, so decoupling through bridges and routers

is not enough. We do need devices to access content

provided by other devices in a uniform manner, but the

path identifying that information is largely determined by

the relationships between the providers and their context.

Notification, events, and APIs are the norm, rather than GET-

ting documents. Applications might be viewed as mash-ups

of physically dependent services, but there also needs to be

a principled way to assemble those ensembles from context.

Adaptability

Unattended

Assembly

Scale

Off the shelf
components L

o
w

 p
o
w

e
r

Choice ofuserland

A
syn

c
h
ro

n
o
u
s

p
ro

g
ra

m
m

in
g

Cross-network

advertisements +

service manifest

S
e
lf-d

e
sc

rib
in

g

se
rvic

e
s

E
xp

lic
it m

e
ta

d
a
ta

,

C
o
n
tin

u
o
u
s Q

u
e
ry-B

a
se

d

S
yn

d
ic

a
tio

n

Decoupling with multi-protocol, 

NAT-traversing pubsub middleware

Extensible by end-user

R
e
d
u
c
e
 a

d
m

in
istra

tive
 b

u
rd

e
n

fo
r a

u
th

e
n
tic

a
tio

n
 a

n
d
 a

u
th

o
riza

tio
n

Hardware

Section 3

Firmware

Section 4

Person-“where”

Section 5

Local-“where”

Section 5

Wide-“where”

Section 6 

Figure 1: An effective IoT solution requires addressing

adaptability and unattended assembly and operation at every

tier.

This paper seeks to bring to the fore the key issues

encountered in the quest to achieve synergy in the IoT.

These issues arise at every level and they have some com-

monality. Enclosing complex, highly specialized behavior

behind a simple interface is key. Service descriptions must be

more than a specification to permit vendor interoperability;

they should permit bootstrapping from context to avoid

pre-configuration and should be accessible independent of

the link between things, yet should not prohibit peer-to-

peer interaction. Relationships should be extracted from

metadata, and hence things should be notified as such

metadata changes. “Middleboxes” have important roles to



play, including bridging, adaptation and routing amongst

heterogeneous technologies, but also establishing points of

presence and boundaries of trust.

We begin with a very brief description of our exploratory

system to provide a concrete framing of the study. The re-

mainder is organized in layers: first hardware, then firmware,

then three scopes of interaction which we term person-

where, local-where and wide-where - expanding conven-

tional notions of PAN, LAN, WAN to include the interac-

tions and services that occur in those domains.

II. SYNERGY

The system architecture developed to explore synergy in

IoT is shown schematically in Figure 2.

Hardware: At the device level, we have introduced a new

platform that brings together embedded wireless networking,

wearables and “Maker” developments, typified by IEEE

802.15.4, BLE and Arduino peripherals, respectively. (See

[6] for a complete description.) This platform is built around

the Storm module, designed in 2013, with a Cortex-M4,

802.15.4 radio, and flash, mounted on an Arduino-compliant

carrier, Firestorm (Figure 3), which provides BLE commu-

nication with a Cortex-M0+ SoC, and several sensors. This

design point was intended to capture what embedded IoT

might converge to, and, indeed, now several system-on-chip

offerings provide ample flash, powerful MCUs and 802.15.4

or Bluetooth radios. Storm is extremely low power (2.3 µ

in sleep with RTC active) and supports many peripherals

(63 GPIO pins). This adds to the commercial ecosystem

of wearables, embedded Linux boxes (Raspberry Pi’s and

Beaglebones), BLE tags, and such.

Storm/Firestorm

Synergy Kernel

C++ Userland Lua Userland

SVCD

Gateway

CQBS BOSSWAVE

Section 3

Section 4

Section 4CSection 4D

Section 5

Section 6Section 5

Figure 2: An IoT system architecture

Firmware: An extension of TinyOS [12] was developed

for this platform that utilizes the newly available protection

mechanisms (MPUs) to establish a clear user/system bound-

ary in the domain of networked things lighter than a Pi. A

syscall interface and language runtime was developed that

exposes low-power, event-driven execution to user level and

two language environments were created - Lua and C++.

This allows instantiation of a breadth of user-programmable

‘things’ not represented in the commercial landscape.

USB for 
debugging

BLE radio

IEEE 
802.15.4

radio

Cortex M4

Arduino 
compatibility

Onboard 
acceleration, 
temperature 

and lux sensors

Figure 3: The Firestorm platform

Person-where: In this setting, we developed a self-

describing service tier to enable automated assembly of

purpose-driven ensembles at the scope of the individual

person, which subsumes phones interacting with things in

the environment and wearables interacting with spaces and

things. Such assembly must not require pre-configured appli-

cations and bindings. Things project their API and services

in a manner that allows the phone to bootstrap itself into

the context, using complete descriptions in the cloud. This

scope retains a sense of individual management.

Local-where: In a similar manner, collections of things

can assemble into federated ensembles to provide services

and interfaces that expand that of the individual devices.

This relies on discovery of context and interfaces through

queries to consistent metadata. Services and enclosing ap-

plications are associated with place, rather than person, and

must operate unattended, requiring automated notification of

changes as represented in the metadata. Local tier routing

and computing resources bridge and translate heterogeneous

elements.

Wide-where: Beyond simply tunneling local interactions

to resources hosted in the cloud, broader-scale ensembles

containing devices owned by multiple parties should also

be able to be assembled into meaningful services and

applications. To support this, a web of trust infrastructure is

created; this establishes the namespace in which interactions

occur, establishment of identity and delegation of trust.

III. HARDWARE

The hardware of an IoT device sets the stage for the

capabilities of the entire stack. A device must be made

adaptable by unifying communication modes: device-to-

device, device-to-internet and device-to-person. It must be

extensible and foster innovation by facilitating the reuse

of available sensors and actuators. And it must do this

without compromising on lower power operation - the tenet

of unattended battery powered devices.



A. Communications

To create a true Internet of Things, we need features from

multiple wireless communication protocols. Bluetooth Low

Energy is the predominant technology in off-the-shelf smart

devices as it is intended for connecting a human to a smart

device. Looking forward, however, protocols like IEEE

802.15.4 are better suited for device-to-device interaction,

having seen decades of research into automatic, unattended

IP mesh network formation. BLE has only recently seen

research into carrying IP traffic and peer-to-peer (as opposed

to peripheral-to-phone) communication [19][14].

In addition, connecting an IoT ensemble to the Internet

poses different challenges. Neither BLE nor IEEE 802.15.4

are known for ubiquitous Internet connectivity (although

both can do so, by introducing new devices into the en-

vironment such as a gateway or mobile phone). The best

protocol for this functionality is 802.11.x (WiFi). WiFi with

Internet access is readily available in many of the places that

IoT devices would reside.

At the time of writing, it does not seem like any of these

protocols is in a position to subsume the others. It is only

by utilizing all three that we can construct unattended IoT

device ensembles.

Fortunately, this requirement to support multiple protocols

is becoming increasingly less difficult: recent trends in SoC

design and “turnkey” software abstractions have decreased

the difficulty of supporting BLE and, to a lesser extent,

802.15.4. Improvements in lower power MCU (microcon-

troller) design and fabrication means that these dedicated

peripheral controllers do not significantly increase the power

budget of the platform.

B. Extensibility

For IoT devices to reach ubiquity, the barrier to entry

must be low. In the embedded space, one of the ways this

can be achieved is through re-use, lowering investment cost

and therefore the cost of failure. This is exemplified by the

Maker community where many good ideas can be prototyped

using an ensemble of off-the-shelf controllers, sensors and

actuators. The Firestorm successfully preserves this ability

to rapidly innovate by maintaining pin-compatibility with

Arduino shields, but still providing a platform that is use-

ful for pilot-stage use by offering production-grade energy

efficiency. This combination allows for rapid assembly of

smart, Internet-connected devices without the expense and

associated risk involved in hardware design and fabrication.

C. Low power

The whole-circuit design is also influenced by the goal

of low power. There are often conflicts between the desire

for adaptability or extensibility and the concerns relating to

unattended use. In particular, sensors and debugging support

can significantly increase power consumption if care is not

taken.

As an example of where this disjunction compromises a

platform, consider the Arduino Zero. Here, the MCU is very

low power, and could enable piloting IoT devices based on

the platform, with sleep currents of < 10 µA. Unfortunately,

the desire for easy debugging and support for high power

peripherals raises the minimum sleep current by three orders

of magnitude to 1.5 mA, reducing the maximum battery

life on a pair of AA batteries from more than ten years

to a month. With consideration of the interactions between

the applications running on the platform, the peripheral

components and the MCU, it is possible to design a platform

that obtains low power operation while preserving ideal

usability characteristics. The Firestorm has an idle current

of 9.6 µA while still possessing USB debugging, multiple

sensors and a power rail that can drive 800 mA - more than

enough even for peripherals like WiFi radios. This is done

by extending the mechanisms for low power that exist within

the MCU - gateable power and clock domains - to the board

as a whole.

IV. FIRMWARE

The architecture and programming paradigms used in the

firmware can be chosen to complement the hardware design

and projected use cases of the platform.

A. Curtailing complexity

As low-power MCUs become increasingly capable, much

of the complexity in IoT device development can be hidden

from firmware engineers by software abstraction layers.

Ironically, this complexity is primarily a result of the

increase in device capabilities. For example, in order to

achieve low power operation on modern, highly capable

microcontrollers, the designers offer fine-grained control of

peripherals and clock domains, so that only the features cur-

rently being used contribute to the power consumption. This

highly hardware-specific power control must be mastered by

any battery powered IoT device, a burden that increases the

difficulty of application development. The solution to this,

as used by the Firestorm, is to isolate this complexity in a

kernel layer so that applications do not need to manage it

explicitly.

As another example, advances in radio technology have

allowed for the creation of low power software-defined-

radios such as the CC2650 that can communicate with

both 802.15.4 and BLE. The downside is that the software

becomes more complex. To mitigate this, Texas Instruments

provides the software control in ROM that executes on a

separate MCU within the SoC, and the application interacts

with a higher-level API. Similarly, the NRF51822 BLE

SoC used on the Firestorm ships with a “soft-device” that

provides a similar level of abstraction, implementing the

Bluetooth stack and simplifying the interface to it.

These trends need to be carried through wherever possible

in IoT framework development. By isolating complexity in



reusable self-contained modules (whether this be hardware

or software), we lower the barrier to entry. Some embedded

operating systems achieve this by providing libraries that are

linked to at compile time, but this restricts the application

programming model. By leveraging the memory protection

unit (MPU) and dual stack pointers present on Cortex-M

microcontrollers, the application and supporting kernel can

be fully decoupled. This approach is clearly not new, but it

is only recently possible to take this approach on embedded

platforms while still remaining in the µA energy budget.

Communication between the application and the kernel on

the Firestorm uses a syscall ABI. This allows the userland to

be implemented in any language, and allows for preemption

of the userland without any explicit cooperation from the

application code.

B. Meeting the hardware half-way

When designing firmware for low power hardware, the

biggest challenge is resolving the disjunction between the

programming pattern used for application development and

the inherent behavior of the hardware. For example, the

most commonly used embedded programming language, C,

is efficient at expressing sequential logic with blocking calls.

Unfortunately, if a sequence of embedded device operations

is expressed in this way, it leads to inefficient CPU usage

and power. For example, if the analog to digital converter

is exposed via a blocking API with the CPU spinning

until the sampling operation is complete, it is obvious that

more power will be consumed than if the CPU is allowed

to execute other code or enter a low power mode while

the sample is being acquired. If the event-based nature of

the hardware is captured in the C application, it leads to

fragmented logic. The code initiating the sample will occur

in a different place than the code handling completion of the

sample, which may be in an interrupt handler or a different

callback function.

There are two means of elegantly resolving the conflict

between the desire to have simple, readable code and the

desire to make efficient use of the hardware. The first

option is to use lightweight threads that are suspended

during blocking calls to asynchronous operations. This is

the method used by some IoT operating systems such as

RIOT-OS [7]. The second option is to use closures to handle

the completion events. Closures can be defined in the same

place as the asynchronous operation initiation, with code that

appears sequential. This method is widely used in Javascript

based frameworks.

There are quite a few languages that have the necessary

primitives to support closures as a means of expressing

asynchronous events. C does not, but C++11, Lua, Rust,

Javascript and Python do. We explore two generic use cases

which fall on opposite ends of the application spectrum.

Lua is a highly dynamic interpreted language that, as a

consequence, trivially supports modification of code while

it is running. For rapid development and use cases where

the application logic is changing frequently (such as devices

modifying other device behavior) languages like Lua are a

good choice. Conversely, for long-lived applications that do

not require runtime changes to the code, C++ is a good

choice as it is resource-efficient and more deterministic than

Lua.

C. A C++ userland

While many IoT applications can benefit from the agility

of dynamic languages such as Lua, discussed below, C-

type languages remain the staple of production embedded

applications because of their predictability. We argue that

using C++11 for application development offers significant

advantages over existing C based approaches.

The principle advance that has led to C++ being a inter-

esting embedded language was the introduction of lambda

functions, which are essentially closures. Traditionally, an

asynchronous operation in C is expressed as a split-phase

pair. When a function is invoked, a callback is passed,

along with a context object that is used by the callback

to demultiplex the invoker and take appropriate action. The

difficulty is that as the same callback may arise from mul-

tiple different sources, this demultiplexing quickly becomes

unmanageable. For example, the spi_complete operation

would need to determine where the SPI operation was

invoked, and how to advance the state machine to proceed.

By using closures, each invocation of the SPI operation can

provide a unique callback in the scope of the invocation, with

the context object constructed transparently as the variables

captured by the lambda. The result is code that is far more

legible.

This problem of demultiplexing asynchronous operations

is not new; it has also been solved by making such operations

appear synchronous, using threads. The difficulty here is that

threads are very resource intensive. Often the stacks must

be overprovisioned as they cannot be expanded at runtime

given the lack of a virtual memory system. Furthermore,

the entire memory for the stack is unavailable for use

by other parts of the system while the thread is active.

In contrast, the closure model only keeps the referenced

variables in memory, and the stack does not persist from

one closure invocation to the next (assuming closures are

executed using a task queue). This means that application

developers can create many more chains of asynchronous

operations using closures than they could using threads, with

the same resource footprint. The disadvantage of callback

approaches is that it is syntactically less elegant than the

thread based approach: long chains of asynchronous events

can cause what is colloquially known as callback hell - very

deep levels of nested functions. In our experience, this is

well worth the increase in resource efficiency, and can be

mitigated by refactoring.



One use of the C++ userland on Firestorm was for

firmware on the smart chair discussed in Section VI. The

challenge is that these chairs are deployed in remote lo-

cations, and must operate unattended for many months.

The firmware implements reliable communication, a flash

filesystem, control logic and other pieces of functionality,

all involving highly asynchronous logic. The use of C++

closures greatly reduces the complexity in comparison to C

and nesC designs, and therefore increases the reliability.

D. Lua userland

In addition to the production-grade C++ userland, we

also constructed a Lua userland. While a Lua application

uses more resources than a C++ application, it has several

advantages. Applications can be prototyped interactively on

the device via a serial or TCP shell. Individual symbols

and variables can be added or replaced at runtime without

rebooting the application. Programs can be modified at

runtime to adapt to devices appearing in their ensemble.

As an example, this dynamic userland facilitates the

creation of an infrastructure for measuring routing and net-

work performance in a wireless mote deployment, bringing

together past work on Active Networks [16], code dissemi-

nation [11], and network testbeds [20]. The ability to replace

Lua symbols and functions over the network at runtime

lets every mote in the deployment perform as an Active

Network node that can dynamically constrain the routing

topology, alter traffic generation, and choose which metrics

to collect and report without having to manually program

each individual mote between experiments.

In our realization, a distributed collection of Firestorm

motes all run the TinyOS kernel with a Lua-based userland

(see Figure 4) running a short program that defines a

traffic generator, a reporting function, and initialization and

termination conditions for the network experiment. As seen

in Figure 5, this code can be sent over IP, either link-local

or globally routed, or over Bluetooth. The Bluetooth link

can be used to diagnose a broken 802.15.4 link and pull out

the necessary debug information. This is particularly useful

when diagnosing routing loops that would otherwise island

the node and prevent real-time reporting from happening. We

have used this platform extensively to study the applicability

of the RPL [21] standard for IoT devices.

V. PERSON-WHERE

The assembly of local, purpose-driven ensembles presents

challenges in how to conduct discovery and account for

heterogeneity in devices and services. At scale, these com-

positions cannot rely on pre-configured applications or the

intervention of a human operator. Instead, devices must

bootstrap themselves into an application by discovering

nearby self-describing services.

The powerful, asynchronous userland environment en-

ables the self-assembly of dynamic, cross-network appli-

TinyOS port

Lua/C Userland

C Kernel

Storm Hardware

TinyRPL

BLIP IPv6

Lua libs

C libsWAX
Container

Code

Capsule

N
e
tw

o
rk

 S
ta

ts

S
y
s
c
a
lls

Figure 4: The full ”Wireless Active Networks” (WAX) hard-

ware/software stack for network experimentation. Kernel

syscalls take advantage of the synergy between hardware

and firmware to expose low-level metrics on the radio stack

that would otherwise be difficult to incorporate.

802.15.4 Mesh

Local Patching

BLE

Code Propagation

Through WSN

Root

Code Upload Via 

Serial Connection

Code Upload 

Over Border 

Router

LaptopBluetooth Phone

Figure 5: Modifying existing code over the network

cations within a personal area. The key functionality is

a brokerless, local publish/subscribe discovery mechanism

that is symmetric over IPv6/802.15.4 and BLE. We focus

our discussion on devices interacting within a broadcast-

domain, and defer our discussion of discovery and service

composition in a local-area network to the next section.

A. Discovery

For the most part, current discovery mechanisms for

networked things follow one of two patterns:

1) Pairwise master-client binding within a broadcast do-

main, usually using BLE (e.g. for wearables)

2) Service invocation in a local-area network, usually

over an IP network

Despite often supporting both patterns, commercially-

available platforms tend to partition functionality into one

or the other. The Firestorm platform explores symmetrically

exposing functionality both as a human-interfacing device as

well as in connectionless machine-to-machine interactions.

To provide for effective discovery of devices and invocation



SVCD Function Description

init() Initializes sockets and begins advertisements

add_service(svc_id) Add a new service with the given identifier

add_attr(svc_id, attr_id, write_fn) Attach a callback function for writes to the specified

attribute

notify(svc_id, attr_id, value) Notify subscribers on the given attribute of a new value

subscribe(targetip, svc_id, attr_id,

on_notify) -> subscription_id

Subscribe to changes on an attribute by the specified

provider

unsubscribe(subscription_id) Unsubscribe from the indicated subscription

advert_received(payload, src_ip) Triggered when a service advertisement is heard from a

device identified by the src_ip. Payload includes list of

services and attributes provided

Figure 6: API for cross-network service description and utilization. The implementation transparently uses both BLE and

802.15.4 system calls and less than 250 lines of Lua code

of services within a broadcast domain, a platform must

attend to self-describing services, adaptability to usage pat-

terns and event subscriptions.

In general, self-describing devices should communicate

their capabilities as well as contextual information (“meta-

data”) which allows a discovery process to determine the

relationship between itself and a device. In personal-scale

ensembles, which reside within a broadcast domain, the

hearing of a service advertisement is enough to establish

proximity and determine a relationship. Ensembles should be

able to form themselves using only the service descriptions

contained in heard advertisements.

Secondly, with a characteristic-oriented service advertise-

ment framework, a service can be written for symmetric use

over both BLE and 802.15.4, allowing a single definition of a

service to adapt as users and devices change their interaction

patterns.

A third feature that greatly simplifies application devel-

opment is the ability to subscribe to changes in a device’s

attributes or characteristics. While this is possible using

polling techniques (or natively using BLE GATT notifica-

tions), we wish to provide the application programmer with

a unified API for creating and handling subscriptions across

networks.

The SVCD framework integrates these design points into

a simple, asynchronous API (Figure 6). Current discovery

mechanisms are insufficient for meeting our objectives for

one or more of the following reasons:

• discovery does not include a list of available services

and characteristics, requiring some intermediary to sup-

ply this information (UPnP [13], DNS-SD [8])

• discovery cannot be performed in a peer-to-peer manner

by devices, requiring an external coordinator (Zig-

Bee [5])

• discovery mechanisms are not limited to a broadcast

domain or otherwise lack sufficient contextual infor-

mation for devices to determine relevance (UPnP, DNS-

SD, Bonjour)

• services do not provide real-time subscriptions or noti-

fications of data changes (ZigBee, DNS-SD)

B. SVCD: synergistic service discovery

Our solution presents a unified API, SVCD, for imple-

menting self-describing services that advertise simultane-

ously over BLE and 802.15.4. To maintain compatibility

with mobile phones, we retain use of the GATT for ad-

vertising over BLE, and use structured link-local multicast

packets for advertising over 802.15.4.

An instance of SVCD is identified by a unique 2-byte

ID derived from the MAC address of the mote running the

instance. Each instance advertises a set of services; each

service is composed of a set of read or read/write attributes.

Services and attributes are indexed by unique 2-byte identi-

fiers recorded in a GitHub-hosted central manifest file that

lists full human- and machine-readable descriptions of the

family of known services. Placing the manifest on GitHub

means that mobile phones can easily discover and make use

of local services discovered via BLE, even providing human-

readable descriptions of the services to the end user. Most

importantly, this can be accomplished without the phone

application being explicitly programmed with knowledge of

all possible services and attributes.

Figure 7 is an example of a service description contained

in the service manifest file. The use of succinct identifiers

and service/attribute grouping means there is a clean repre-

sentation for both BLE and 802.15.4. The service/attribute

distinction mirrors the GATT’s service/characteristic struc-

ture and can be directly represented as such. For the 802.15.4

implementation, services and attributes are encapsulated in

MessagePack [1], an efficient binary serialization protocol.

The upshot is that even a size-restricted advertisement can

contain a complete description of all services and attributes

offered by a device. This is in contrast to UPnP, in which

advertisements do not contain an actual description of ser-



"pm.storm.svc.fsSensors": {

"id": "0x300f",

"name": "FireStorm sensing profile",

"desc": "Sensing profile for FireStorm",

"attributes": {

"pm.storm.attr.fsSensors.temperature": {

"id": "0x401b",

"name": "Temperature Reading",

"format": [

["s8", "C", "Temperature in Celsius" ]

]

},

"pm.storm.attr.fsSensors.occupancy": {

...

}

}

}

Figure 7: Example of a service advertising on-board sensors

for the Firestorm platform. The format field informs the

data type, unit and description of the arguments or readings

on an attribute.

vices, but rather a URL pointer to where those descriptions

reside.

The API, as seen in Figure 6, provides a simple but pow-

erful platform for constructing applications over discovered

services. It unifies the creation of services and attributes

across both 802.15.4 and BLE and provides facilities for

subscribing to heard devices (subscribe) and publishing

to subscribers (notify).

Asynchrony simplifies the API: service discovery and sub-

scription are inherently event-based, and advertisements and

invocation are usually handled asynchronously via timers

or callbacks. In this way, the SVCD API can make use of

the low-power features of the underlying hardware. What’s

more, the system is resilient to the inevitable moving,

replacing and re-programming of service providers. This

type of robustness to change is essential in a true Internet

of Things, as we will explore in Section VI.

C. Applications

This framework simplifies IoT device creation. Consider

a thermal comfort application leveraging the cooperation

between hardware, firmware and personal-area services: at

a high level, discovered temperature sensors drive the actu-

ation of an off-the-shelf space heater towards maintaining a

temperature setpoint (Figure 8).

First, leveraging an Arduino Relay Shield from the Maker

community simplifies retrofitting the “dumb” space heater

with actuation capabilities. This shield is attached to a

Firestorm running SVCD, which communicates with a set

of Firestorm-based temperature sensors distributed through-

out a space exposed as a discoverable temperature service

(Figure 7) using just a few lines of Lua code.

The application running on the space heater Firestorm

advertises a setpoint attribute that takes a target temperature

Firestorm 

Temperature 

Sensors

Temperature Service 

subscription 

(802.15.4 unicast)

Temperature Service 

advertisement 

(802.15.4 broadcast)

Heater Setpoint 

Service advertisement 

(BLE advertisement)

Broadcast Domain

Phone app pairs with 

heater's BLE service

while avg_temp() < setpoint do
    storm.io.set(storm.io.GP0, 1)
end
storm.io.set(storm.io.GP0, 0)

heater.lua

Figure 8: Example of composing locally-discovered services

into an ensemble application using a mobile phone, 802.15.4

and BLE.

as input. Each of these advertised values (temperature and

setpoint) are incorporated into the central manifest.

A user’s phone discovers the setpoint attribute advertised

by the space heater and prompts the user to input a desired

temperature. Asynchronously, the heater listens to service

advertisements, discovers the set of temperature sensors and

subscribes to their values. This demonstrates the benefit of

broadcast-domain discovery: the found sensors are known

to be relevant to the application because they would only be

heard if their measurements were physically relevant. The

space heater’s Firestorm averages these temperature sensors

and actuates the heater if the measured area temperature is

lower than the user-provided setpoint.

VI. LOCAL-WHERE

Composing applications over ensembles of devices in an

area larger than a broadcast domain raises several challenges:

• The context of discovered devices and services cannot

be assumed and must be explicitly managed. This

predicates the need for a discovery service that can

leverage rich metadata describing the set of available

devices and services.

• Accounting for metadata must be complemented with a

method for accounting for change in that metadata. De-

vices and environments inevitably change; an effective

discovery service must provide a continually consistent

view of which resources match an application’s request.

• The number of applications and devices to account for

is larger without the restriction of a broadcast domain.

There is a need for a layer of indirection to reduce

the load on low-power, low-bandwidth, duty-cycled

embedded devices.



• More advanced applications will require historical data

access as well as real-time streaming. It is intractable

for embedded devices to provide these services directly.

This family of concerns can be addressed with the in-

troduction of a local server that handles device and service

discovery, management of device metadata, data archival and

access, and a continuous query-based syndication (CQBS)

mechanism for real-time data consumption via a multipro-

tocol broker. This central component is referred to as the

CQBS archiver.

In accounting for these new challenges, two principles

carry over from personal-area ensembles:

1) Devices and services need to be self describing, and

2) devices, services and encompassing applications need

to operate unattended.

A. Metadata-driven discovery

Device descriptions require a principled representation

that supports granular discovery of relationships between

devices and services, rather than solely on the names of

which interfaces a device provides.

Stream: Thermostat Temperature Sensor

UUID: e44ddf7a-cf0b-11e5-952f-6003089ed1d0

Timeseries:
(current value)

Properties

Metadata

UnitOfMeasure: Fahrenheit

Time: Feb 9 01:03:51 2016 UTC

Value: 77

Point/Type: Sensor

Point/Sensor: Temperature

Location/Room: 410

Location/Building: Soda Hall

Device/Thermostat: Thermostat 345

Figure 9: A stream example of a thermostat’s temperature

sensor

Each device advertises itself to the CQBS archiver as a set

of streams: a stream (Figure 9) is a virtual representation of a

specific sensor or actuator channel, indexed by a universally

unique identifier (UUID). Each stream has two associated

structures produced by the device and stored at the archiver:

• A timeseries: a single progression of <timestamp,

value> pairs. A value is the state of the stream at the

provided timestamp. Values are not limited to numerical

data.

• A metadata set: a bag of structured key-value pairs

describing the context of the device and the details of

the stream (i.e. what it senses or actuates)

Metadata describes the context of a device and its services,

which may include parameters such as location, ownership

and role1 of the device as well as attributes of each sensor

or actuator, including engineering units, data type and write

1E.g. lighting, heating, printing, visualization, etc

properties. Applications discover devices and services by

expressing to the CQBS archiver a SQL-like query that

operates on this metadata; these queries describe the rela-

tionships between devices and services.

The challenge here is that metadata often changes: for

example a device may be moved, a modular sensor plat-

form may be altered, or the installation environment may

change. The method of continuous query-based syndication,

implemented at the archiver, addresses this by dynamically

updating the results of an application’s discovery query and

informing the application in real-time. Devices notify the

archiver when their metadata changes, enabling the archiver

to maintain a consistent view of the state and context of all

devices and services.

For applications to operate unattended, they must be able

to a) express a robust definition of the set of devices and

services it needs, and b) maintain a consistent view of that

set even as devices and their context change. Continuously

evaluated metadata-driven queries allow applications to be

informed of changes to the set of services they use.

B. Continuous query-based syndication

An application initializes a continuous subscription by

sending a query to the archiver, which evaluates it and

returns the initial set of matching devices and services, but

persists the query. As metadata updates arrive at the archiver

(either via a device’s update or an administrative command),

the archiver locates the affected queries and reevaluates

them. If the results of the query have changed, the difference

is sent to each application subscribed to that query.

An example can be found in the simplified deployment

in Figure 10. An application wants to discover the set of

temperature sensors in room 410 in building Soda Hall,

which is expressed in the illustrated query.

CQBS delivers updates to the set of streams captured by

a metadata query, so that a subscriber always has an up-to-

date view of the resources it is using. This is in contrast to

systems that only provide static queries over sensor stream

metadata [15] or provide query-based subscriptions that

do not update the publisher-consumer binding as metadata

changes [9].

These concerns remain largely unaddressed by modern

systems concerned with the composition of services over

networked things. These systems – including CORBA [17],

Jini [18], AllJoyn [3] and Iotivity [10] – generally offer

limited discovery capabilities that do not identify how the

implementer of an interface is related to other resources

required by an application. In other words, this approach

assumes that the application or application developer has

enough prior contextual information on the set of discov-

ered resources to disambiguate which are relevant to the

application. The detection of changed metadata is usually

relegated to periodic advertisements and client- or server-

side timeouts, which can still result in stale data, particularly



Temperature       <8094e7d4…>

Humidity             <903d0057…>

Heating Setpoint <57170259…>

Cooling Setpoint <6d5c0391…> 

Capability <UUID>

Sensors
(Read)

Actuators
(Read/Write)

Thermostat

P
ro

to
c

o
l 
A

d
a

p
te

rs
M

s
g

P
a
c
k
/U

D
P,

 J
S

O
N

/H
T

T
P,

 
J
S

O
N

/W
e
b

s
o

c
k
e
ts

M
e

s
s
a

g
e

 B
ro

k
e

r

C
o

n
ti

n
u

o
u

s
 Q

u
e

ry
 P

ro
c

e
s
s
o

r

Metadata
Store

Timeseries
Data Store

On/Off            <e73bb823…>

Brightness      <eaa389fd…>

Hue                 <ef5a1828…>

Capability <UUID>

Actuators
(Read/Write)

Lamp

Archiver

Application

Subscription Query:

SELECT * WHERE

Metadata/Location/Room=410 AND

Metadata/Location/Building=“Soda” AND

Metadata/Point/Type="Sensor" AND

Metadata/Point/Measure="Temperature"
Discovery +

Subscription

Metadata +

Timeseries

Updates

Figure 10: The archiver is the central component in a local-area IoT deployment. Devices register themselves with the archiver

using rich metadata to describe their context. Applications can then discover these devices by expressing queries over the

metadata. Applications can also access historical and real-time (CQBS) data from the devices by querying or subscribing to

the archiver. SELECT * indicates that the application wants to receive all metadata for each matching stream.

in the case of real-time data-streaming applications.

C. Discovery of modular interfaces

IoT middleware often groups too much functionality into

a single interface meaning that the mapping of device to

interface is not straightforward: a device may not offer all

functions an interface expects, or it may offer more. As

the heterogeneity of devices grows, a device may only be

adequately “covered” by one or more (incomplete) inter-

faces. As an example, consider the the AllJoyn Lighting

Service [4] which advertises binary control of lighting as

well as brightness, hue and power consumption. Because

AllJoyn only supports discovery on identity (names) and

interface names [2], applications can encounter two prob-

lems. Firstly, an application cannot query specifically for

a brightness or hue capability, and there is no guarantee

that those functions are even offered by the underlying

lighting device. Secondly, an application interested in power

consumption must know to query for the lighting interface in

order to get the power monitoring services. In practice, this

requires all applications to have knowledge of all features

of all possible interfaces. This argues for more granular

descriptions of device capabilities.

For example, consider how a thermostat would be rep-

resented as streams to the CQBS archiver: a thermostat’s

“sensors” would include its temperature and humidity read-

ings and its “actuators” would include heating and cooling

setpoints and fan settings. Each of these capabilities would

be described independent from each other and in a standard

way; this allows applications to discover individual streams

that provide the specific functionalities required, rather than

searching for all available interfaces that may or may not

provide them.

D. Local-area applications

The utility of CQBS can be demonstrated in the con-

struction of an IoT application that integrates a collection of

smart, networked chairs with a building’s HVAC system. The

chairs possess a family of sensors – occupancy, temperature

and humidity – and actuators – heating strips and cooling

fans – that can mitigate user discomfort. On a per-room

basis, the application samples the temperature readings from

the chairs and combines this information with whether

occupants are using the heating or cooling features of the

chairs. If all occupants in a room have enabled the heat

setting on their chairs, then the room is likely too cold. The

application can then adjust the HVAC settings for that room

to increase user comfort.

The challenge of integrating mobile devices like chairs

with static infrastructure in a building is accounting for

stale metadata. Chairs often move from office to office, and

building components such as thermostats may be replaced. If

the application is “hardcoded” to a set of chair sensors and to

a set of HVAC endpoints, any change in those devices would

invalidate the control decision. Using CQBS, the application

can subscribe to the relationship between a room and the

chairs it contains, and use notifications of changed metadata

to adjust its control loop.

VII. WIDE-WHERE

When creating larger scale ensembles, or ensembles that

contain devices owned by multiple parties, there are addi-

tional concerns over those discussed above. We can summa-

rize these as:

• How is identity managed at scale?

• How are devices, services and their interfaces named

and referred to? How do we group these?

• Where are these references stored, and where would a

user or service look to find other devices and services?

• Given a reference, how does that get resolved to an

actual IP endpoint to send traffic to?

• Many IoT devices and services are not directly reach-

able from the Internet (NAT for example). How would

these devices and services communicate?

• How can we fully decouple producers from consumers?

• How would secure transport mechanisms such as SSL

work at such a large scale? Can we lower the admin-

istrative burden?

• How would permissions for operations on IoT devices

and services work? Can we lower the management



overhead?

BOSSWAVE, or BW, is an exploration of the problem,

and one possible solution. Initially for ensembles of services

and devices in smart buildings (hence Building Operating

System Services Wide Area Verified Exchange), this system

is an extension of the principles in the previous two sections.

A. Identity

When considering security and identity, we must consider

that an IoT system consists of more than just devices and

services, but also the people that own and manage them. All

of these components require a form of identity to be able to

describe a security policy. A scalable definition of identity

must be easily verifiable, but also easy to create. An SSL

certificate, for example, does not quite meet these criteria

as it requires the cooperation of a hierarchy of certificate

authorities to generate. The correct CA certificates also need

to be available in order to verify an identity.

The approach used by BW to solve this problem is

to define identity using a small ECDSA public key and

define any person, device or service in possession of the

corresponding private key as equivalent to the entity that the

key identifies. Identity can then be verified using signatures,

which does not require the cooperation of any third parties.

B. Namespaces and interfaces

In order for an interface to be referenced by other ser-

vices, it needs to be named. For management and discovery

purposes it is also convenient to be able to group services

into namespaces. For example, an organization would create

a namespace and group devices and services within that

namespace so that searches for services and devices based

on metadata-defined relationships have a natural bound.

To establish resource names, BW uses URIs where the

first element of the URI is the public key of the entity

that owns the namespace. This definition of a namespace

eliminates the resolution step required to determine which

entity owns the namespace and can grant permissions on

it. This is in contrast to SSL certificates which only prove

that some trusted authority believes a domain belongs to an

identity. Here the namespace name is defined by the identity

owning it.

To obtain an IP address of a server to communicate with

given a URI, BW uses a DNS resolution on the namespace

key (this could also be a lookup in a DHT). The resulting

SRV record contains the IP address of the BW server that

routes traffic for that namespace and that server’s public key.

The whole record is signed by the namespace’s private key,

i.e. the URI contains all the information required to verify

that the DNS record is correct, so the record cannot be faked.

C. Communication patterns

In the Internet of Things, it is advantageous to have mid-

dleware relaying messages between devices so that firewalls

and NAT appliances do not prevent devices or services

from communicating and so that increased consumer load

does not affect producers. The BW router is responsible for

this relaying. Devices and services connect to a BW router

running locally (or nearby) that they trust completely, com-

municating using a simple plaintext protocol that is designed

to be easily implementable in a variety of languages. As part

of the initial handshake, the client transmits its private key

to the trusted router. The local trusted router then performs

the necessary cryptographic operations to sign outgoing

messages and verify incoming messages. The namespace

resolution process described above yields the information

for a BW server that will route traffic and store state. This

is called the designated router for the namespace. Based on

the resource’s namespace, the local router will forward the

message to the appropriate designated router. The designated

router must be globally reachable, but a client’s local trusted

router can be behind a NAT.

To provide secure transport, preventing snooping of traffic

and impersonation of the designated router, SSL is used for

communication between BW routers. To avoid the admin-

istrative (and financial) overhead of obtaining CA signed

certificates, self-signed SSL certificates are used and made

secure by adding an additional signature made using the

router’s private key. In this way, the designated router cannot

be impersonated or subjected to man-in-the-middle attacks

as the trusted local router knows what the designated router’s

public entity key is in advance (it is in the DNS record that

is signed by the namespace entity).

D. Permissions

While permissions in the Internet of Things can poten-

tially be very complex, it is worth considering the simplest

possible permission model that scales well, both technically

and administratively:

• Permissions are granted directly to entities, not interme-

diate forms of identity that require runtime resolution

• Permissions are granted and revoked by the same

people who manage the devices and services that the

permissions affect

• Permissions are verifiable with minimal trust of external

parties and no communication to external servers

BW obtains these by basing its permission system on

the de-facto method of permission management between

humans: peer to peer requesting and granting with delegation

to trusted intermediaries.

To make this clear, consider the following scenario. A

company’s building manager installs some overhead fans in

a shared office space, and tells the floor manager that she is

allowed to control the speed. The floor manager then tells

the other employees in that space that they should feel free

to turn on the fans whenever they feel uncomfortable. The

exchange of permissions looks as follows:



Can 
install 

devices

Can 
use 
fans

Can 
use 
fans

Company Building 
Manager

Floor 
Manager

Floor 
Employees

In BW, the permissions are granted in exactly the same

way. Each of the “people” in the above figure translates

to an entity. The company, from which all the permissions

originate, administers a namespace bw://KC/. Each arrow

in the diagram is declaring that a source entity trusts a

destination entity with certain permissions on a resource.

These declarations of trust or DOTs are formally a tuple

of the granter’s key Kfrom, the grantee’s key Kto, a

resource identifier (URI), and a set of permissions P . To

make the tuple unforgeable, we append a signature over

(Kfrom,Kto, URI, P ) created using the granter’s private

key. As these DOTs are tamper proof, we can store them in

a DHT or any other public repository.

When an employee in the room sends a message to turn

on a fan, the BW message includes a standalone proof of

permissions in the headers. This proof is a chain of DOTs

where the grantor of each DOT matches the grantee of the

previous DOT. The permissions granted by the chain are the

intersection of the permissions granted by each individual

DOT. For a BW router or a message recipient to consider

a chain valid, it must begin with the namespace entity, and

end with the entity that signed the message.

This permissions model satisfies the design principles

set out above. As our notion of identity allows for non-

interactive verification of message origin via signatures,

granting permissions directly to identities is very effective in

reducing complexity and vulnerability. By leveraging chains

of DOTs, we create a decentralized web of trust model

that allows the individuals making human trust decisions

to directly create the digital representations of that trust.

Furthermore, the web of trust model does not rely on third

parties or central servers to manage permissions - messages

contain self-standing proofs of trust and can be verified

without contacting external servers or maintaining a database

of certificate authorities. This characteristic is useful for IoT

devices, as it means that we do not incur expensive network

round trips in order to verify incoming messages.

E. Persistent data

In addition to handling messages intended for real-time

consumption, BW also allows clients to persist messages

to a URI that can then be queried later. This is used, for

example, to store contextual information about devices and

services. The persist and query permissions are also granted

via DOTs. In order for a service or device to find other

services and devices, it builds a DOT chain giving it query

permissions on URIs matching a certain pattern (denoted by

the DOTs). It can then query the BW router for persisted

messages within that URI set, or subscribe to those URIs.

Within each interface in the namespace, metadata regarding

the interface such as where the sensor is located, is stored

using persist messages. As an example, an application could

be built that utilizes HVAC data from multiple companies’

buildings to determine if a given building is consuming more

or less heating energy than buildings of similar construction.

Once appropriate permissions on each of the building names-

paces is acquired (via personal interactions), the relevant

streams of information can be located by querying for

persisted metadata. The application can verify that all the

metadata and data it is basing decisions on originated from

trusted principles as the DOT chains are present in the

persisted objects.

VIII. CONCLUSION

A True IoT device is one that embodies the spirit of the

Internet - a heterogeneous network infrastructure connecting

dissimilar machines running a diversity of software. The

success of the Internet and the modern World Wide Web

is in no small part due to a careful design that leverages

these diverse technologies, being mindful of their strengths

and weaknesses, to create something more than the sum of

its parts.

This spirit, when applied to the Internet of Things drives

us to architect systems that embrace and utilize the dif-

ferences between available technologies, and mediate the

often conflicting requirements of each layer of the stack

comprising an IoT ensemble. Throughout the stack, a core

principle has been that of enabling unattended interoperabil-

ity between devices.

At a hardware level, the myriad of connectivity options

must be considered complementary, rather than competing,

to achieve interoperability between devices, services and

people. Furthermore, interaction with the thriving industry of

off-the-shelf sensors, actuators and development platforms

such as those from the Maker movement is central to

creating the environment of low-risk innovation required to

fuel the success of the Internet of Things at a meaningful

scale.

At the firmware layer, embedded programming can bor-

row from event-based software architecture developments,

leveraging patterns that better mirror the asynchronous na-

ture of the hardware beneath it, and the services above

it. This results in more understandable and more power-

efficient code, a key requirement for unattended battery-

powered devices.

At a person-scale, the use of a dynamic application

programming environment enables an adaptable service in-

frastructure that can borrow security from the implicit trust

inherent in physical proximity to allow devices to discover

and use each other without human interaction. These ca-

pabilities allow a smart device to leverage nearby devices



based on the functionality they advertise, rather than their

identity.

By leveraging a central coordinating archiver, ensembles

can scale across a local area. The addition of more powerful

device descriptions in the form of metadata allows for

ensembles to be predicated on arbitrary device context such

as its function, location or user-defined group. This context

can be manipulated externally by a human or a service,

making the system more resilient to changes over time.

Ensembles defined by context can adapt unattended as new

devices are added and old ones are retired.

Finally, scalable, secure ensembles can be constructed

across a wide scale by utilizing a decentralised pub/sub

system that manages permissions in a manner isomorphic

to human management of permissions - peer to peer. This

structure maintains the advantages present in the local-where

solution, such as ensembles based on relations, not identity,

but addresses the problems that arise when principals come

from multiple administrative domains and there is no longer

complete trust between all individuals. Scalability in the

IoT goes beyond computational power, and involves the

administrative load that devices place on people. Unattended

operation implies not just the device itself, but the security

configuration as well. A web-of-trust security model min-

imizes the overhead of converting human permissions into

technical ones, and allows unattended isolation of devices

from untrusted traffic, even as the set of authorized parties

changes.

ACKNOWLEDGMENTS

This material is based upon work supported by the Ful-

bright Scholarship Program and National Science Founda-

tion under grants CPS-1239552. Any opinions, findings, and

conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the

views of the National Science Foundation.

REFERENCES

[1] MsgPack. http://msgpack.org/index.html, 2015.

[2] A. Alliance. Advertisement and Discovery.
https://allseenalliance.org/framework/documentation/
learn/core/system-description/advertisement-discovery,
2015.

[3] A. Alliance. AllJoyn: proximity based peer-to-peer technol-
ogy. https://www.alljoyn.org, 2015.

[4] A. Alliance. Getting Started with the
AllJoynTM Lighting Service Framework 15.04 .
https://wiki.allseenalliance.org/ media/tsc/lighting/
getting started alljoyn lighting service framework 15.04

lighting controller service.pdf, 2015.

[5] Z. Alliance. Zigbee specification, 2006.

[6] M. P. Andersen, G. Fierro, and D. Culler. System design
for a synergistic, low power mote/ble embedded platform.
In Information Processing in Sensor Networks, 2016. IPSN
2016. IEEE, 2016.

[7] E. Baccelli, O. Hahm, M. Günes, M. Wählisch, and T. C.
Schmidt. Riot os: Towards an os for the internet of things.
In Computer Communications Workshops (INFOCOM WK-
SHPS), 2013 IEEE Conference on, pages 79–80. IEEE, 2013.

[8] S. Cheshire and M. Krochmal. DNS-based service discovery.
Technical report, 2013.

[9] S. Dawson-Haggerty, X. Jiang, G. Tolle, J. Ortiz, and
D. Culler. sMAP: a simple measurement and actuation profile
for physical information. In Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems, pages
197–210. ACM, 2010.

[10] L. Foundation. IoTivity. https://www.iotivity.org, 2015.

[11] J. W. Hui and D. Culler. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
Proceedings of the 2nd international conference on Embedded
networked sensor systems, pages 81–94. ACM, 2004.

[12] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, et al.
Tinyos: An operating system for sensor networks. In Ambient
intelligence, pages 115–148. Springer, 2005.

[13] B. Miller, T. Nixon, C. Tai, M. D. Wood, et al. Home
networking with universal plug and play. Communications
Magazine, IEEE, 39(12):104–109, 2001.

[14] Z. Shelby, J. Nieminen, T. Savolainen, M. Isomaki, B. Patil,
and C. Gomez. IPv6 over BLUETOOTH(R) Low Energy.
IETF RFC 7668, Oct. 2015.

[15] A. Sheth, C. Henson, and S. S. Sahoo. Semantic sensor web.
Internet Computing, IEEE, 12(4):78–83, 2008.

[16] D. L. Tennenhouse and D. J. Wetherall. Towards an active
network architecture. In DARPA Active Networks Conference
and Exposition, 2002. Proceedings, pages 2–15. IEEE, 2002.

[17] S. Vinoski. CORBA: integrating diverse applications within
distributed heterogeneous environments. Communications
Magazine, IEEE, 35(2):46–55, 1997.

[18] J. Waldo. The Jini architecture for network-centric computing.
Communications of the ACM, 42(7):76–82, 1999.

[19] H. Wang, M. Xi, J. Liu, and C. Chen. Transmitting ipv6
packets over bluetooth low energy based on bluez. In
Advanced Communication Technology (ICACT), 2013 15th
International Conference on, pages 72–77. IEEE, 2013.

[20] G. Werner-Allen, P. Swieskowski, and M. Welsh. Motelab:
A wireless sensor network testbed. In Proceedings of the 4th
international symposium on Information processing in sensor
networks, page 68. IEEE Press, 2005.

[21] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis,
K. Pister, R. Struik, J. Vasseur, and R. Alexander. RPL: IPv6
Routing Protocol for Low-Power and Lossy Networks. RFC
6550 (Proposed Standard), Mar. 2012.


