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Abstract—Control strategies for systems with information
bottlenecks often follow an estimate-then-control paradigm. This
paper presents a “non-coherent” system where this strategy
cannot work and provides an alternative.

The paper considers the estimation and control of a discrete-
time linear system with continuous random observation gain, i.e.
through a non-coherent channel. It is shown that such an unstable
system is not mean-squared observable regardless of the density
of the random observation gain: the mean-squared estimation
error for any estimator must go to infinity. This is surprising in
the context of threshold results for rate-limited estimation.

In contrast to other results with rate-limited feedback, the
paper shows that the system can be closed-loop mean-square sta-
bilized in a certain parameter regime even though its open-loop
counterpart is not mean-square observable. Finally, carry-free
models (generalized deterministic models) provide an intuitive
interpretation for the results.

I. INTRODUCTION

Stringent performance requirements for high-speed decen-
tralized control systems (e.g. self-driving cars) push for a
deeper understanding of the interactions between observers
and controllers. Communication and control have a history
of playing off of each other to explore these interactions. This
work explores non-coherence in control systems (i.e. unknown
random multiplicative gains) as a parallel to non-coherent
communication.

Non-coherent channels emerge when phase-noise, frequency
hopping or fast-fading make it impossible for the receiver to
perfectly track the channel state. Such communication has
been studied as far back as 1969 when Richters conjec-
tured that even for continuous unknown fading-distributions
the optimal input distribution is discrete [1]. The conjecture
was proved in 2001 [2], [3]. Since then we know that the
capacity of channels with unknown Gaussian fading scales
as log log(SNR) as opposed to the log (SNR) scaling of
channels with known fading [4], [5].

Non-coherent observations in control systems can similarly
arise from synchronization and sampling errors in control
systems [6]. Consider a nearly trivial continuous-time system:

Ẋ(t) = a ·X(t).

The system collects samples at regular intervals t0, 2t0, 3t0 and
so on. The system differential equation above implies X(t) =
eatX(0), which gives the difference equation:

X[n+ 1] = eat0 ·X[n].

bX[n + 1]

U [n]

X[n + 1] = aX[n] + U [n] + W [n]

Y [n] = C[n]X[n] + V [n]

X[n + 1] = aX[n] + W [n]

Y [n] = C[n]X[n] + V [n]

Observer Controller

Y [n] Y [n]

System System

Fig. 1. This paper considers the estimation and control of a system with
random multiplicative observation gain, C[n] and random initial state X[0].
V [n],W [n] are white noise and a is a scalar constant.

Say we are recording a sample Y [n] at time nt0, but clock
noise leads to the sample actually being collected at time nt0+
∆t0, where ∆t0 is a continuous-valued random noise variable.
Then we have:

Y [n] = ea(nt0+∆t0)X(0) = β[n]ea(nt0)X(0).

where β[n] is necessarily a continuous-valued random vari-
able. We would have liked to observe Y [n] = ea(nt0)X(0),
but we must make do with the multiplicative random noise.
Thus, with timing jitter, state information is received over a
non-coherent channel. This paper shows that unstable linear
systems with such random continuous multiplicative observa-
tion gains are in fact not mean-square observable in open-loop.

Systems with multiplicative noise were explored around the
same time as questions regarding non-coherent transmission
were being asked. In 1971, Rajasekaran et al. derived the
optimal linear filter for systems with unknown continuous
observation gain [7], but did not consider non-linear strategies.
This optimal linear filter was further analyzed by Tugnait [8],
who noted that error turns out to be stable only in situations
when the system is stable. Kalman filtering with multiplicative
noise was studied in [9], [10], [11], however these works were
also limited to stable systems.

The interaction of information theory and control theory has
highlighted the importance of non-linear strategies (e.g. [12],
[13]), and it is natural to explore the more general setting for
the problems above. The optimality of discrete input distri-
butions for transmission over non-coherent channels suggests
that optimal estimation and control strategies for non-coherent
systems would also be non-linear. However, to the best of our
knowledge, these have not been investigated.



In fact, the recently introduced MMSE dimension [14]
can be interpreted as characterizing the gain achievable by
non-linear estimation over linear estimation in the high-SNR
regime. The MMSE dimension measures the scaling behavior
of the MMSE relative to the SNR as SNR grows in the
presence of additive noise. For purely continuous distributions,
the MMSE-dimension is 1, which implies that non-linear
estimation offers the same scaling as linear estimation. This
leads to a conjecture for the case of multiplicative noise:
for systems with continuous distributions on the state, linear
strategies should be essentially optimal. On the other hand,
the MMSE-dimension for discrete random variables is 0, i.e.
non-linear estimation can offer significant gains. In a control
problem control actions may or may not be able to discretize
a continuous-valued random state. So can we use control to
estimate better?

Unfortunately, the results from [14] cannot be directly
applied to the problem at hand since the noise is multiplicative,
and a naive strategy of taking logs of the system also does
not help as is discussed in Sec. IV-B. Instead, we reduce the
estimation problem to a hypothesis-testing problem and use
that to provide a lower-bound for the open-loop estimation
error that itself must grow unboundedly with time.

The estimation result in this paper contrasts with previous
works in this vein that provide insightful thresholds to serve
as design guidelines for systems. These thresholds provide a
metric for the “uncertainty” in the system and provide regimes
for observability and controllability. For instance, intermittent
Kalman filtering results provide a threshold for the observation
packet-drop probability parameter p, below which it is possible
to track the system in a mean-square sense [15], [16], [17].
Neither the intermittent Kalman filtering setup nor the setup
in this paper allow for coding over the observations, however,
the discrete randomness in the Kalman filtering result allows
for a threshold result.

Tatikonda and Mitter provide a joint threshold for observ-
ability and controllability with R bits of feedback with coding
allowed [18]. R > log a, where a > 0 is the gain of a scalar,
linear system is necessary and sufficient for both estimation
and control. The separation principle states that often the
optimal control is a function purely of the optimal state
estimate. This leads to the estimate-then-control paradigm.
Tatikonda and Mitter in [18] observe: “If the state estimation
error increases with time in an unbounded fashion there will
come a point when we can no longer satisfy the control
objective.”

This raises the natural question: can a system that cannot
be tracked in open-loop be stabilized with feedback? The
answer is: sometimes yes. The ability to interact with the
system lets the controller use a simple linear strategy stabilize
if the uncertainty is small enough. This is reminiscent of the
uncertainty threshold principle [19], which gives stabilizability
threshold in the presence of random multiplicative system

gains with perfect noiseless observations1.
The control problem here is similar to the larger set of

rate-limited control and estimation problems such as [20],
which looks at control over fading channels with erasures, or
[21], [22] which provide a data-rate threshold for stabilization.
Even though technically the feedback in the problem at hand
may include infinitely many bits, the systems’s inability to
choose and code these bits precludes the transmission of useful
information. For further details [23], [24] provide extensive
reviews of the work in rate-limited control and estimation.

So why are non-coherent observations different? One intu-
ition is as follows: since the system is unstable, even a small
multiplicative observation uncertainty leads to a large variation
in the state estimate. The proof of the negative estimation
result comes from first ignoring the additive noise in the state
evolution and observations. Then the estimation problem is
reduced to a hypothesis-testing problem with the help of a
carefully constructed genie who sidesteps the prior on the
initial state to provide side-information to the observer. With
this reduction, the Chernoff-Stein lemma provides a lower-
bound on the MMSE. The key technical lemmas for estimation
are presented in Sec. IV-A to distill the components above,
before the proof of the theorem in given in Sec. IV-B.

The last section Sec. VI uses carry-free models [25], [26] to
provide alternative understanding of why the estimation error
cannot be tracked and to illustrate the mechanics of a control
strategy2. We start by setting up the problem below (Sec. II)
and stating the main results (Sec. III).

II. PROBLEM SETUP

Before we set up the problem, some notational conventions:
scalars and constants are denoted by lower-case, random
variables (r.v.s) are denoted by upper-case letters, realiza-
tions are lower-case. We use the Y n0 to denote the sequence
Y [0], Y [1], · · ·Y [n], and so on. The density of X is denoted
by fX(·), and expectation by E[X].

A. Estimation Setup

Consider the real-valued discrete-time scalar linear sys-
tem (1) as shown in Fig. 1:

X[n+ 1] = a ·X[n] +W [n],

Y [n] = C[n] ·X[n] + V [n] (1)

a ∈ R, a > 1 is a fixed and known scalar. W [n] and V [n]
are i.i.d. white noise N (0, 1) at each time n. C[n] are i.i.d.
random variables. Let X[0] ∼ N (0, 1). We focus on this case,
but our results hold for more general densities over X[0].

The observer has perfect recall and receives Y [n] at time
n. Let Fn be the σ-algebra defined by Y n0 . The observer
generates an estimate X̂[n+ 1] ∈ Fn of X[n+ 1] at time n,

1The estimation results in this paper can also be thought of as the
observability counterpart to the uncertainty threshold principle.

2As a side note, [14] implies that a finite number of bits of side information
cannot change the scaling behavior of the MMSE, and carry-free models
provide a visual interpretation for this.



based on all the past observations Y n0 . Then the mean-squared
estimation error is E[Err[n]2] = E[|X[n+ 1]− X̂[n+ 1]|2].

We consider the case where C[n] ∼ N (µ, σ2). µ, σ ∈ R
are known constants. We also briefly discuss the case where
C[n] ∼ Unif [µ1, µ2].

B. Control Setup

Consider control of the same system:

X[n+ 1] = a ·X[n] + U [n] +W [n],

Y [n] = C[n] ·X[n] + V [n] (2)

where C[n] ∼ N(µ, σ2), µ 6= 0. X[0] ∼ N (0, 1) and U [n] ∈
Fn.

Definition 2.1: The system (2) is mean-square stabilizable
if there exists a causal controller that generates random vari-
ables U [n] ∈ Fn such that limn→∞ E[|X[n]|2] <∞.

III. MAIN RESULTS

Theorem 3.1: For the system in Sec. II-A, eq. (1), with
C[n] ∼ N (µ, σ2), X[0] ∼ N (0, 1), and |a| > 1 (i.e. the
system is unstable), limn→∞ E[Err[n]2] =∞.

Theorem 3.2: The system in Sec. II-B, eq. (2), with C[n] ∼
N (µ, σ2), X[0] ∼ N (0, 1), and |a| > 1, is mean-square
stabilizable if a2 < 1 + µ2

σ2 .
The ideas from these results can be generalized to more

general densities on C[n] and X[0]. While we focus on scalar
systems here, the results also extend to vector systems3.

IV. ESTIMATION

A. Lemmas

Before we go into the proof of Thm. 3.1 we state a
series of lemmas that we will use to bound the estimation
problem using a binary-hypothesis-testing problem. Proofs of
Lemmas 4.1, 4.2, 4.3 are discussed in Appendix A.

Lemma 4.1 states that we can lower-bound the MMSE of a
Gaussian r.v. by the MMSE of a binary r.v.. While there are
some details, the crux of the argument says that a genie giving
the estimator more information about the the parameter Θ can
only help the scaling of the MMSE error. This is the first step
to reduce the problem to a hypothesis-testing problem.

Lemma 4.1: Let Y [0], Y [1], · · ·Y [n] ∼ PΘ. Θ is the pa-
rameter for the distribution and Θ ∼ N (0, 1). Let Fn be the
σ-algebra defined by Y [0], Y [1], · · ·Y [n]. Given fixed r0, r1, ε
such that r1 > r0 and r1−r0 > ε > 0, there exists r.v.s R,R1

and a σ-algebra Hn, such that
• R1 ∼ Unif [r0, r1 − ε]
• R is a discrete r.v. conditioned on R1. R = R1 with

probability 1
2 and R = R1 + ε with probability 1

2 .
• Hn = Fn ∪ FR1 , where FR1 is the σ-algebra generated

by R1.

3For estimation, consider a genie that provides the exact values of all but
one component of the vector valued state to the observer. The arguments here
show that even the last remaining component cannot be estimated. For control,
standard extensions from the literature would establish a sufficient condition
for control.

• min
Θ̂∈Fn

E|Θ− Θ̂|2 ≥ min
R̂∈Hn

γE|R− R̂|2, where 0 < γ < 1

is a constant that depends on r0, r1 but does not depend
on ε.

The second Lemma 4.2 shows that the MMSE for a binary
r.v. can increase by at most a factor of four if the estimator is
restricted to the two values in the range of the r.v..

Lemma 4.2: Let S be a discrete r.v. that that takes values
only on two points s1 < s2. fS(s1) > 0, fS(s2) > 0 and
fS(s) = 0 ∀s 6= s1, s2. Let Hn be the σ-algebra of the
observations. Then,

min
Ŝ∈Hn

E[|S − Ŝ|2] ≥ 1

4
min

Ŝ∈Hn,Ŝ∈{s1,s2}
E[|S − Ŝ|2]. (3)

Lemma 4.3 uses the Chernoff-Stein Lemma to calculate the
probability of type-2 error in a hypothesis-testing problem
when the type-1 error is small and the two hypotheses are
getting closer and closer together. If the KL-divergence be-
tween the hypothesis is small enough, the probability of error
is constant.

Lemma 4.3: Let S be a r.v. taking values s1 and s2

with equal probability, PS(s1) = PS(s2) = 0.5, and let
Y [1], Y [2], · · ·Y [n] ∼ N (µS, σ2S2) = Q. σ 6= 0. Let
P1 be N (µs1, σ

2s2
1) and P2 be N (µs2, σ

2s2
2). Consider the

hypothesis test between H1 : Q = P1 and H2 : Q = P2.
H1, H2 have priors P (H1) = P (H2) = 0.5 and g(Y n0 ) is
the decision rule used. Then define the probabilities of error
as αn = P (g(Y n0 ) = s2|H1 true) and βn = P (g(Y n0 ) =
s1|H2 true).

If s2 − s1 = 1
n , s1 < s2, and 0 ≤ αn <

1
n1+ζ = δn, for

some ζ > 0, then, limn→∞ βn > e−
1
s2 2

1
s2 = κ, a constant

that does not depend on n.
Remark 4.1: The central limit theorem states that the error

of the averaging estimator decays as 1√
n

, and it is natural to
think that (s2 − s1) scaling as 1√

n
would be the right choice

to get a constant probability of error. However, this turns out
to be a little too slow, and in this case the probability of error
can only be lower bounded by 0 using the techniques from
this paper.

B. Proof of Thm. 3.1

We focus on the Gaussian case with C[n] ∼ N (µ, σ2) and
X[0] ∼ N (0, 1) since the proof is the most intuitive and
elucidates the proof strategy. The following section remarks
on extensions to other densities.

We first show that the estimation error cannot remain finite
even for the simpler system4:

X[n+ 1] = a ·X[n],

Y [n] = C[n] ·X[n] (4)

4It is tempting to think that by removing the additive noise to get system (4),
we have reduced the problem to a known one with additive observation noise
as below. Indeed, if we assume the quantities are positive and take logs:

log Y [n] = logX[n] + logC[n].



We reduce the tracking problem to a problem of estimating
the initial state X[0] using Y n0 . However, the estimation error
on X[0] cannot be reduced fast enough to compensate for the
rate at which the state is growing. The key idea of the proof is
to bound the estimation error by a hypothesis-testing problem
and use the Chernoff-Stein lower bound on the probability of
error.

Proof: Consider a simpler system (4), without the noise,
X[0] ∼ N (0, 1), C[n] ∼ N (µ, σ2) i.i.d.. Clearly, if the
estimation error for system (4) is unbounded, then Thm. 3.1
must be true, since system (1) can be reduced to (4) by
giving the noise variables V [n],W [n] as side information to
the estimator.

For the rest of this section X[n], Y [n] are those associated
with system (4). Now, consider

min
X̂[n+1]∈Fn

E|X[n+ 1]− X̂[n+ 1]|2

= min
X̂[n+1]∈Fn

E|an+1X[0]− X̂[n]|2 (5)

=an+1 min
X̂n[0]∈Fn

E|X[0]− X̂n[0]|2. (6)

where X̂n[0] = an+1X̂[n].
The only uncertainty in the system (4) comes from the initial

state X[0]. For system (4), X[n] = an+1X[0] and estimating
of X[n] is equivalent to estimating X[0]. Scaled appropriately,
Y n0 are observations drawn i.i.d. from PX[0](·), where X[0] is
a parameter.
Y [n]

∣∣X[n] ∼ N (µX[n], σ2X[n]2), and we have
Y [n]
an

∣∣X[0] ∼ N (µX[0], σ2X[0]2) = PX[0](·).
Recall Fn is the σ-algebra generated by Y n0 . We start with

the term min
X̂n[0]∈Fn

E|X[0]− X̂n[0]|2. We now use Lemma 4.1

to lower-bound the estimation error of X[0] by the estimation
error that would result if X[0] were a binary random variable.

Choose r0 = 1, r1 = 2 and ε = 1
n , n ≥ 1. Lemma 4.1

implies that ∃ R,R1 and 0 < γ < 1 such that R is a discrete
r.v. that takes only two values r and r + ε between r0 and
r1, and fR(r) = 0.5, fR(r + ε) = 0.5. This gives (7). Hn =

One can use the average 1
n

∑
i(Y [i] − i log a) (with appropriate scaling to

account for logC[n]) as an estimator for the initial state. The central limit
theorem then says that the error on logX[0] decays as 1√

n
. However, this

is not sufficient for us to get a tight lower-bound on the MMSE error for
X[0]: at best the logarithmic bound only helps bound the percentage error
(ratio between X[0] and X̂[0]). For large values of the argument, the log
function is flat and does not discriminate between its inputs, so a bound on
| logX[0]− log X̂[0]| cannot provide a tight bound on the error E[Err[n]].
On the other hand, when X[0] is close to 0, the steep slope of log can allow
for very accurate estimation of X[0]. This second situation is what prevents us
from appropriating the log analysis for the lower-bound on the error. Similarly,
results from [14] also cannot directly apply.

Further, the central limit theorem can only bound the one particular
estimator at hand, and does not help us bound the other non-linear estimators
that might perform better.

Fn ∪ FR1
, where FR1

is the σ-algebra generated by R1.

min
X̂n[0]∈Fn

E|X[0]− X̂n[0]|2

≥ min
R̂∈Hn

γ · E|R− R̂|2 (7)

≥ min
R̂∈Hn,R̂∈{r,r+ε}

γ

4
· E|R− R̂|2 (8)

=
γ

4
· pe(n, ε) · ε2 (9)

≥ γ

4
· 1

2
· (αn + βn)

1

n2
. (10)

(8) states that the MMSE error considered can only be
increased by a factor of 4 by reducing the domain of the
estimator R̂ to {r, r + ε} and follows from Lemma 4.2.
To see (9), note that the probability of error pe(n, ε) =
P (R̂ = r,R = r + ε) + P (R̂ = r + ε, R = r), and hence,
E|R− R̂|2 = pe(n, ε) · ε2 if R̂ ∈ {r, r + ε}.

For (10) define αn = P (R̂ = r|R = r + ε) and βn =
P (R̂ = r + ε|R = r). Let δn = 1

n1+ζ , ζ > 0. Let βδnn =
min
αn<δn

βn. Then, pe(n, ε) = 1
2 (αn + βn). The mean-squared

error in both cases is symmetric and equal to ε2. R̂ is an
estimator restricted to two values.

At this point, the estimation problem is effectively reduced
to a binary-decision problem between the two hypotheses R =
r and R = r+ ε. The Chernoff-Stein lemma characterizes the
probability of error of such a binary-decision problem. This
lemma is used to prove Lemma 4.3 which gives us the key
step below. First, consider the case where αn > δn,

lim
n→∞

an+1 min
X̂n[0]∈Fn

E|X[0]− X̂n[0]|2

≥ lim
n→∞

an+1 · γ
4
· 1

2
· (αn + βn) · 1

n2
(11)

≥ lim
n→∞

an+1 · γ
4
· 1

2
· 1

n1+ζ
· 1

n2
(12)

=∞. (13)

On the other hand if αn < δn, by Lemma 4.3 we have
limn→∞ βδnn > κ

lim
n→∞

an+1 min
X̂n[0]∈Fn

E|X[0]− X̂n[0]|2

≥ lim
n→∞

an+1 · γ
4
· 1

2
· βδnn ·

1

n2
(14)

> κ lim
n→∞

an+1 · γ
4
· 1

2
· 1

n2
(15)

=∞. (16)

Since κ is a constant the exponential term dominates as n→
∞ which gives (16).

C. Uniform C[n], General X[0]

Even in the case where C[n] are drawn from a uniform
distribution and with X[0] drawn from the more general
distribution as above, the estimation error must go to infinity.
The proof above is based on the initial state X[0] being drawn
from a normal distribution. We note that the same technique



can work for any continuous density on X[0], since the crux
of the proof lies in finding two points that are arbitrarily close
to each other5. With some modifications we can also extend
the proof to the case where C[n] has a uniform density. Details
are omitted for space constraints and will be included in the
full paper. The unbounded support of the Gaussian distribution
is not the estimation holdup, nor are special properties of the
Gaussian key for the result.

Theorem 4.4: For the system in Sec. II-A, eq. (1) with
C[n] ∼ Unif [µ1, µ2], |a| > 1, X[0] ∼ fX(·) where fX(·)
is a continuous density, limn→∞ E[Err[n]2] =∞.

Since the uniform distribution is the prototypical continuous
density, using Thm. 4.4, we can use it to prove that the estima-
tion error for a system (1) is unbounded with any continuous
C[n]. The general density case reduces to to the uniform
case by considering a piecewise constant approximation to
the density for C[n], i.e. thinking of a general density as a
mixture of tiny uniform densities. Then reduce the problem to
the uniform case with a genie that reveals which interval C[n]
was drawn from.

V. CONTROL

This section gives the proof of Thm. 3.2. Appropriate
feedback control can stabilize the system in a certain parameter
range, even though it is not mean-square observable in open-
loop.

Proof: Choose U [n] = −dY [n] for some d ∈ R. Then

X[n+ 1] = aX[n]− dY [n] +W [n] (17)
= (a− dC[n])X[n]− dV [n] +W [n]. (18)

Hence,

E[X[n+ 1]2] (19)

= E
[
(a− dC[n])

2
X[n]2

]
+ E

[
d2V [n]2

]
+ E

[
W [n]2

]

(20)

= (a2 − 2adµ+ d2(µ2 + σ2))E[X[n]2] + d2 + 1. (21)

If K = a2−2adµ+d2(µ2 +σ2) < 1 the control can stabilize
the system. Minimizing K gives d = aµ

µ2+σ2 , and for this

choice, K < 1 reduces to a2 < µ2+σ2

σ2 = 1 + µ2

σ2 .

VI. A BIT LEVEL INTERPRETATION

This section uses bit-level pictures to give an interpretation
for the results. The model illustrates how the ability to
modify the state (through control) lets the controller extract
information from the system and stabilize it in closed-loop.

Carry-free models [25], [26] are a bit-level representa-
tion for communication that generalize ADT deterministic
models [27]. The name “carry-free” is derived from the
fact that the addition operation does not involve carry-
overs. Multiplication between two bit-strings is convolution:
ymym−1 · · · y0y−1 · · · = (cmcm−1 · · · ) · (xmxm−1 · · · ), then
yi =

∑
j cjxi−j . The effect of observation noise is captured

5In fact, all we really need is a distribution that contains an interval with
a density.

x3[n] = 1

x2[n]

x1[n]

x0[n]

x�1[n]

+

+

+

+

+

+

+

y5[n] = x3[n]

y4[n] = x2[n]

y3[n] = Ber(.5)

y2[n] = Ber(.5)

y1[n] = Ber(.5)

y0[n] = Ber(.5)

c2[n] = 1

c0[n] = Ber(.5)

c�1[n] = Ber(.5)

c1[n] = 0

Fig. 2. Fig. 2 has mn = 3. So y5[n], y4[n] are deterministic, and y3[n] and
below are random. Note that y5[n] = ccdet · x3[n] = x3[n], and y4[n] =
ccdet · x2[n] + ccdet−1 · x2[n]. cdet = 2, crand = 0. We only show four
levels for the gain c2 to c−1 for simplicity, but the gain levels may extend
downwards indefinitely till −∞.

by a truncation operation. For a polynomial a(z) =
∑
i aiz

i

define ba(z)c =
∑
i≥0 aizi.

We’ll build a carry-free parallel to system (1), with the
observations as transmissions over a channel with unknown
fading. The estimator receives uncoded transmissions of the
state. But before getting into the technical setup, we can see
what is going on in Fig. 2. The xi’s represent the state and yi’s
are the received signal. The gain c[n] has two deterministic bits
c2[n] = 1 and c1[n] = 0. Bits c0[n], c−1[n] · · · are unknown
Bernoulli( 1

2 ) r.v.s. Then y5[n] = x3[n], y4[n] = x2[n] are
clean bits, but the bit-levels y3[n] and lower are contami-
nated by the multiplicative noise. The clean levels of x[n],
i.e. x3[n], x2[n] can be perfectly estimated, but the observer
can extract no information from the contaminated levels. So
x1[n] and lower are invisible. The level of contamination is
increasing as the magnitude of the state (i.e. the maximum
bit-level above noise) increases and hence the state estimation
error grows unboundedly. However, a controller can knock-
off the top clean bit-levels x3[n], x2[n] at each time step, thus
keeping the state bounded. As long as the rate of increase of
bit-levels is not higher than the ability to control, the state can
be stabilized.

To formalize this, let the state as it evolves
in time be represented by the bits x[n] =
xmn [n]xmn−1[n] · · ·x1[n]x0[n].x−1[n]x−2[n] · · · . n is
the time index. The subscript denotes the bit-level, i.e. mn is
the highest non-zero bit-level occupied by the state at time
n. In polynomial notation, we denote the state as x[n](z) =
xmn [n]zmn + xmn−1[n]zmn−1 + · · · + x0[n] + x−1z

−1 · · · .
We denote the carry-free state as x[n](z). We will suppress
the dummy polynomial variable z wherever obvious. The
gain of the system is fixed as a(z) = 1 · zga and is not time
varying.

Define the state evolution as:

x[n+ 1] = a · x[n] (22)

The initial state x[0](z) is a random binary polynomial of



degree m0, P (xi[0] = 1) = 0.5, ∀ i ≤ m0. At each time
step, the system magnitude increases by ga bit-levels due to
the gain a(z). For simplicity we ignore the system evolution
noise. The observation y[n](z) is:

y[n] = bc[n] · x[n]c (23)

We model the bits of the random gain c[n](z) as Bernoulli( 1
2 )

variables. gc is the highest bit-level of c[n](z). The model
in [26] focused on random gains where all the bits were
random. However, this model does not accurately capture
non-zero-mean random variables. We generalize that model
to the one in eq. (25), which allows for both deterministic and
random bits. The random bits are treated similar to noise, and
above a certain level bits are deterministic.

c[n](z) = cgc [n] · zgc + cgc−1[n] · zgc−1 + · · · (24)

= 1 · zcdet + 0 · zcdet−1 + 0 · zcdet−2 + · · ·
+ ccrand [n] · zcrand + ccrand−1[n] · zcrand−1 + · · ·

(25)
= zcdet + crand(z)[n]. (26)

Define:

crand = max{i|ci ∼ Bernoulli(
1

2
)}. (27)

crand is the index of the highest random bit of c[n](z) ∀n.
crand does not vary with n. On the other hand, the value of
the bit at level crand, i.e. ccrand [n], does. Further, ci[n] =
Bernoulli( 1

2 ),∀i ≤ crand and are unknown to the transmitter
and the receiver. If crand < gc, then we also define cdet as the
highest deterministic bit-level of c. ccdet = 1. All bits from
ccdet−1 to ccrand+1 are fixed to be 0 for simplicity.

cdet =

{
max{i|ci = 1} if crand < gc

crand, otherwise.
(28)

By construction, we have cdet ≥ crand.
Definition 6.1: Let x̂[n](z) be any estimate of x[n](z)

based on y[n]. Then the estimation error at time n is defined
as e[n](z) = x[n](z)− x̂[n](z)

Theorem 6.1: Let ge[n] be the highest non-zero bit-level
of e[n](z). Then E[ge[n]] → ∞, i.e. the degree of the error
polynomial is unbounded.

Clearly, the estimator learns the clean (the top cdet− crand)
bits of the state. However, these bits are unchanged as time
increases and the same bits are learned by the estimator again
and again. The second piece of information that is in the
state is the highest non-zero level of x[n](z), mn, which
can be decoded from the highest non-zero level of y[n](z).
This is the part of the information that supposedly scales with
the magnitude of the state, a la the log logSNR result. But
according to our model, mn is a deterministic function of
mn−1, mn = mn−1 + ga, and again, the same information
is re-learned over time. Since the state keeps growing and
we can never learn more than a small finite number of bits
(cdet − crand + logm0), the error must grow unboundedly.

Control Intuition: The carry-free model also provides an
intuition for why the condition a2 < µ2+σ2

σ2 is sufficient to
control system (2). Taking logs of this expression, we have
log a2 < log (µ2 + σ2)−log σ2. The carry-free model suggests
that if ga < cdet − crand then the system can be stabilized,
since at each step, we observe the top cdet−crand bits of x[n].
Through these, we can extract information and then cancel
them with an appropriate control. This cancellation allows new
bits to be learned at the next time step. Hence, the state remains
bounded. (µ2+σ2) is the second-moment of C[n] and its log is
the parallel to cdet, and log σ2 captures the randomness in the
system. This provides a direction to attack rate-limited control
problems even when the pure estimation problem is fragile to
multiplicative noise.

VII. CONCLUSION

This problem highlights how the ability to interact with
the system (through control) might allow an agent to extract
information about the system state. This is reminiscent of
other work in decentralized control and communication, where
source simplification and modification are essential [13], [28].
This suggests future work to understand rate-limited non-
coherent observations as well as non-coherent system gains.
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APPENDIX A: ESTIMATION LEMMA PROOFS

A. Proof of Lemma 4.1

Our proof shows that a we can reduce the estimation
problem over the entire range of Θ ∼ N (0, 1) to an estimation
problem over just two points. We do this by generating Θ as
a mixture of two random variables S and T and using a genie
argument.

Let R1 ∼ Unif [r0, r1 − ε]. andR1 is independent of all
problem parameters. Let

S =

{
R1 with prob. 1

2

R1 + ε with prob. 1
2

(29)

for some fixed ε < r1 − ε − r0. The density of S, fS(s), is
given by:

fS(s) =





1
2(r1−ε−r0) , r0 ≤ s < r0 + ε

1
(r1−ε−r0) , r0 + ε ≤ s ≤ r1 − ε

1
2(r1−ε−r0) , r1 − ε < s ≤ r1

0, otherwise.

(30)

The density of T is essentially a Gaussian density minus
fS(·) with a scaling. Choose γ = 1

2
1√
2π
e−

1
2 r

2
1 . Note γ does



not depend on ε.

fT (t) =





1
1−γ ( 1√

2π
e−

t2

2 − γ 1
2(r1−ε−r0) ), r0 ≤ t < r0 + ε

1
1−γ ( 1√

2π
e−

t2

2 − γ 1
(r1−ε−r0) ), r0 + ε ≤ t ≤ r1 − ε

1
1−γ ( 1√

2π
e−

t2

2 − γ 1
2(r1−ε−r0) ), r1 − ε < t ≤ r1

1
1−γ

1√
2π
e−

t2

2 , otherwise
(31)

The choice of γ ensures that fT (t) ≥ 0 ∀t and is a valid
density. This mixture of S (with probability γ) and T (with
probability 1− γ) leads to Θ ∼ N (0, 1).
H is a γ-biased coin which generates Θ using S, T .

Θ =

{
S if H is heads (prob. γ)
T if H is tails (prob. 1− γ)

(32)

Now consider the MMSE estimate of Θ, given observations
Y n0 . This error could only decrease in the event that a genie
were to reveal more information about Θ. In particular, a genie
observes the realization Θ = θ1 as well as S,R1, T,H .

If H is tails then the exact value of Θ is revealed, and
Θ̂ = Θ. If H is heads, then the realization of the underlying
r.v. R1 = r is revealed. Let FR1

be the σ-algebra generated
by R1. Then, Θ̂ ∈ Hn, where Hn = Fn ∪ FR1 .

We are interested in the error that would be made due to
confusion between r and r + ε after this revelation. Then,

min
Θ̂∈Fn

E|Θ− Θ̂|2 (33)

≥ min
Θ̂∈Hn

E|Θ− Θ̂|2 (34)

= min
Θ̂∈Hn

γE[|Θ− Θ̂|2|H is heads]

+ (1− γ)E[|Θ− Θ̂|2|H is tails] (35)

= min
Θ̂∈Hn

γE[|Θ− Θ̂|2|Θ = S] + (1− γ)E[|Θ− Θ̂|2|Θ = T ]

(36)

≥ min
Θ̂∈Hn

γE[|Θ− Θ̂|2|Θ = S] (37)

= min
Θ̂∈Hn

γE[|S − Θ̂|2|Θ = S,R1 = r] (38)

= min
Θ̂∈Hn

0.5γ
(
E[|S − Θ̂|2|S = r] + E[|S − Θ̂|2|S = r + ε]

)

(39)

(38) follows since when Θ = S the genie reveals R1 = r. For
(39) note that S

∣∣R1 = r with probability 0.5 and S
∣∣R1 = r+ε

with probability 0.5. Let R =̇ S|R1 = r.

R =

{
r with prob. 1

2

r + ε with prob 1
2

(40)

If we substitute R into (39), we get (41), which gives the
desired result.

= min
Θ̂∈Hn

γE[|R− Θ̂|2|Θ = R] (41)

= min
R̂∈Hn

γE[R− R̂|2] (42)

B. Proof of Lemma 4.2
Let the posterior probabilities on on s1 and s2 by the data be

qn and 1− qn. Then, the MMSE estimator Ŝn and associated
mean squared error Err[n] = min

Ŝn∈Hn
E[|S − Ŝn|2] are

Ŝn = qns1 + (1− qn)s2 (43)

Err[n] = qn(s1 − Ŝn))2 + (1− qn)(s2 − Ŝn)2 (44)

Now consider a quantization estimator Squant,n ∈ {s1, s2}.
Errquant[n] is the associated mean-squared error.

Squant,n =

{
s1, if (s1 − Ŝn)2 ≤ (s2 − Ŝn)2 i.e. q ≥ 0.5

s2, if (s1 − Ŝn)2 > (s2 − Ŝn)2 i.e. q < 0.5

(45)

If Squant,n is in error, the magnitude of the error is always
(s2−s1)2. Let pe,quant be the probability with which Squant,n
is in error. So

Errquant[n] = pe,quant(s2 − s1)2 (46)

Clearly, Errquant[n] ≥ Err[n], by the definition of Ŝn.
Consider the expression, Errquant,genie[n], which reduces

the error by a factor of 4.

Errquant,genie[n] =
1

4
Errquant[n] = pe,quant

(
s1 − s2

2

)2

.

(47)

We will show that

Err[n] ≥ Errquant,genie[n]. (48)

To get (48), compare Err[n] and Errquant,genie[n] on
a realization by realization basis. Let qn > 0.5. Then
Squant,n = s1. Also, pe,quant = 1 − qn, since this is the
probability with which S = s2. Since qn > 0.5, we have
s1 ≤ Ŝn < s1+s2

2 < s2. If S = s1, |Errquant,genie[n]|2 = 0,
and |S − Ŝn|2 = (s1− Ŝn)2. So, |Errquant,genie[n]|2 ≤ |S −
Sn|2 in this case. If S = s2, |Errquant,genie[n]|2 =

(
s1−s2

2

)2
and |S− Ŝn|2 = (s1− s2)2. |Errquant,genie[n]|2 ≤ |S− Ŝn|2
in this case as well. A similar argument holds if q ≤ 0.5.
Hence, we have Err[n] ≥ Errquant,genie[n].

Consider now the optimal estimator for S over those esti-
mators that only take values on {s1, s2}

Sopt,n = argmin
Ŝ∈Hn,Ŝ∈{s1,s2}

E[|S − Ŝ|2] (49)

Erropt[n] is the associated mean squared error, and
Erropt,genie[n] is the associated error for the optimal esti-
mator with the help of the genie so that Erropt,genie[n] =
1
4Erropt[n], since the genie reduces the error by a factor of 4.
Sopt,n will have better performance than Squant,n and hence
the probability of error pe,opt ≤ pe,quant. Hence,

Errquant,genie[n] ≥ Erropt,genie[n] =
1

4
Erropt[n] (50)

Hence, (48), (50) imply that Err[n] ≥ 1
4Erropt[n] i.e.

min
Ŝ∈Hn

E[|S − Ŝ|2] ≥ 1

4
min

Ŝ=Hn,Ŝ∈{s1,s2}
E[|S − Ŝ|2] (51)



C. Proof of Lemma 4.3

s2 − s1 = 1
n , thus s1

s2
= 1 − 1

ns2
and

(
s21
s22
− 1
)

=

1
n

(
1
ns22
− 2

s2

)
.

Consider any decision rule, g(Y n0 ). Associated with the
decision rule is an acceptance region for H1 based on Y n0 ,
i.e. the set of values of Y n0 where g(Y n0 ) = s1. Let Bn
denote this acceptance region. Then αn = P1(Bcn) < δn,
so P1(Bn) > 1 − δn. Since D(P1||P2) < ∞, the Chernoff-
Stein lemma (Lem 11.8.1, Thm 11.8.3, [29], pg. 383) implies
P2(Bn) > (1− 2δn)2−nD(P1||P2)+δn . Recall, δn = 1

n1+ζ .
When σ 6= 0,

lim
n→∞

P2(Bn) > lim
n→∞

(1− 2δn)2−n(D(P1||P2)+δ) (52)

= lim
n→∞

(1− 2

n1+ζ
)2−

n

n1+ζ lim
n→∞

2−nD(P1||P2)

(53)

= 1 · 20 lim
n→∞

2−nD(P1||P2) (54)

D(P1||P2) = log
s2
s1

+ .5

(
s21
s22

(
µ2 + σ2

σ2

)
− 1

)
+
µ2

σ2

(
−s1
s2

+
1

2

)
(55)

lim
n→∞

2−nD(P1||P2)

= lim
n→∞

2

{
−n
(
log

s2
s1

+.5

(
s21
s22

(
µ2+σ2

σ2

)
−1

)
+µ2

σ2

(
− s1
s2

+ 1
2

))}
(56)

= lim
n→∞

s1
s2

n
· 2

{
−n

2
1

σ2s22

(s21(µ
2+σ2)−σ2s22−2µ2s1s2+µ

2s22)

}
(57)

= lim
n→∞

s1
s2

n
· 2

{
−n

2
1

σ2s22
(µ2(s21+s

2
2−2s1s2)+σ

2(s21−s
2
2))
}

(58)

= lim
n→∞

s1
s2

n
· 2

{
−n

2
1

σ2s22
(µ2(s1−s2)2−σ2(s2−s1)(s1+s2))

}
(59)

= lim
n→∞

(
1− 1

ns2

)n
· 2

{
−n

2
1

σ2s22

(
µ2 1

n2−σ
2 1
n
(s1+s2)

)}
(60)

= e
− 1
s2 2

1
s2 (61)

Thus, limn→∞ P2(Bn) >
(

2
e

) 1
s2 = κ.
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