

Cloudstone: Multi-Platform, Multi-Language Benchmark and
Measurement Tools for Web 2.0

Will Sobel, Shanti Subramanyam*, Akara Sucharitakul*, Jimmy Nguyen, Hubert Wong,
Sheetal Patil*, Armando Fox, David Patterson

UC Berkeley and *Sun Microsystems

Abstract

Web 2.0 applications place different demands on servers
than their Web 1.0 counterparts: many-to-many user rela-
tionships, richer GUI’s, and user-contributed content vs.
unidirectional “publishing to the masses.” Simultaneously,
the definitive arrival of pay-as-you-go “cloud computing”
and the proliferation of development stacks for software-as-
a-service presents a different collection of degrees of free-
dom in deployment and tuning. To help explore this new
space, we identify a number of non-obvious challenges and
caveats to performing “apples-to-apples” comparisons of
Web 2.0 application deployments. To help explore this
space quantitatively, we offer Cloudstone, an open-source
suite distributed as a set of virtual machine images compris-
ing three implementations of a Web 2.0-representative ap-
plication (Rails, PHP, Java EE) and a Markov-based distrib-
uted workload generator and data collection tools. To illus-
trate its usefulness we present preliminary measurements on
Amazon Elastic Compute Cloud and Sun’s Niagara 2 enter-
prise server, discussing the challenges of comparing plat-
forms or software stacks and how Cloudstone can help
quantify the differences.

1. Why We Need New Workloads
In the last five years, existing Web benchmarking tools

(ab, httperf, SPECWeb) and applications (RuBiS, PetStore)
have become less relevant to current practice in three ways.
First, Web 2.0 application functionality has changed the
characteristics of workloads that servers must handle. Sec-
ond, the definitive arrival of “pay-as-you-go” cloud comput-
ing has brought fast growth and large scale within the reach
of independent developers, making the corresponding con-
cerns of benchmarking, stress testing and scalability much
more broadly applicable. Lastly, debate continues over the
actual performance differences between different develop-
ment stacks, and we currently lack tools to investigate such
questions systematically.
1.1. Web 2.0 Workloads are Different

Following Tim O’Reilly’s widely-cited article [5] , we
distinguish dominant architectures and features of “Web

1.0” applications (c.1995-2005) from those of “Web 2.0”
applications (c.2005-present), noting their effect on applica-
tion server workloads and deployment architectures.

One-to-many vs. many-to-many: the “mass customiza-
tion” of Web 1.0 presents the same content heavily custom-
ized to each user, but since different users’ activities and
profiles rarely affect each other, a natural scaling strategy
involves partitioning by user ID. In contrast, the social net-
working features of Web 2.0, in which each user’s actions
and preferences affect many other users in her network,
suggest no obvious static partitioning as a scaling strategy.

User-contributed content: Whereas Web 1.0 focused on
publishing to users, Web 2.0 users publish to each other via
blogs, photostreams, tagging (Digg, Del.icio.us, etc.), col-
laborative filtering (e.g. Amazon book reviews and recom-
mendations), etc. This changes the read/write ratio and write
patterns compared to Web 1.0 applications.

Richer user experience: The quest for improved interac-
tivity for Web applications has led to heavy use of tech-
nologies such as AJAX (Asynchronous JavaScript And
XML), in which JavaScript code communicates with the
server in the background (e.g. to enable form auto-
completion or dynamic page UI) during what would other-
wise be the Web user’s “think time”. On the one hand, these
techniques generate extra work on the server, much of it
speculative, in contrast to Web 1.0 applications in which the
server dedicated essentially no resources to a given user
during that user’s think times. On the other hand, often the
AJAX features of an application result in less rendering
work on the server. A benchmark should help quantify these
differences.
1.2. Cloud Computing is Different

True pay-as-you-go storage and compute services such as
Amazon’s EC2 and S3 changes the economics of service
deployment in two important ways. One is the much lower
cost of “instant” incremental scalability. Another is because
capacity can be quickly un-deployed to save money, devel-
opers need not provision for very large peaks, nor waste
money on idle capacity during nonpeaks. The net effect is
that linear scaling and stress testing at high load, until re-
cently the purview of heavily-capitalized corporations, are

now part of the operational landscape for independent de-
velopers as well. Even in “locked down” cloud computing
environments such as EC2 where the developer has little
control over network topology or hardware platform, under-
standing the performance bottlenecks imposed by the of-
fered infrastructure is valuable.
1.3. Toward a Web 2.0 Workload, Application & Tools

The Cloudstone toolkit addresses these requirements with
two components. The first is Sun’s open source Web2.0kit1,
which consists of an example web application (a social
events calendar) and a sophisticated application-specific
distributed workload generator and data collector, Faban,
that can scale to thousands of simulated users and supports
fine-grained time-varying workloads. Web2.0kit includes
three implementations of this application: PHP, Java EE and
Rails. All three implementations provide the same Web 2.0
features (user-generated metadata, social networking func-
tions, and a rich AJAX-based GUI) and adhere to each de-
velopment stack’s idioms. Each implementation exposes
architectural as well as implementation-specific deployment
and tuning choices, such as caching alternatives and data-
base tuning parameters. Scripts to prepopulate the database
are included as well, so the tools are ready to use “out of the
box”.

The second Cloudstone component is a set of automation
tools to allow Web2.0kit to be used to run large experiments
on cloud computing environments such as Amazon Elastic
Compute Cloud (EC2).

Cloudstone consists entirely of 100% open source com-
ponents connected in an architecture representative of data-
center-based deployment, and supplied as a set of virtual
machine images for Amazon EC2 that readers are invited to
download immediately (see instructions in section 0). In this
paper we include some preliminary results of running the
Cloudstone application on both a modern many-core enter-
prise server (Sun Niagara 2) and conventional datacenter
hardware. It is our expectation that CloudStone can be used
to systematically investigate questions such as: How do
different development stacks trade off single-node perform-
ance for code complexity and programmer productivity?
What is the relative performance difference between hosting
a Web 2.0 application on a large number of modest-capacity
servers vs. a smaller number of heavily-provisioned many-
core servers? How do two different dynamic provisioning
algorithms respond to workload peaks? What is the cost of
deployment per user?

1 http://cooltools.sunsource.net/Web2.0kit

2. CloudStone Overview
2.1. Goals and Non-Goals

CloudStone’s goal is to capture “typical” Web 2.0 func-
tionality in a datacenter or cloud computing environment,
provide a realistic workload generator, allow flexibility in
deployment to mirror a range of typical best practices for
caching and database tuning, and allow for testing and data
collection of a variety of scenarios, including stress testing,
linear scaling, “hockey stick” dynamic scaling, etc.

A non-goal of CloudStone is to argue for any one devel-
opment stack over another. Many factors influence the
choice of a development stack, and at best CloudStone will
help developers quantify some of the effects of those
choices.

Another non-goal is emulating legacy or Web 1.0 appli-
cations; our choice of application features and development
stacks reflects popular design points for Web 2.0 application
design today.

A further non-goal is to investigate the question of data-
base sharding, partitioning, or scaling. Many projects are
investigating how to improve the scalability of databases,
and it would be far beyond the scope of this project to ex-
periment with all of them. However, the application is writ-
ten in such a way that “plugging” an alternative database
architecture into it should be possible.

Lastly, it is a non-goal to provide the “best” (fastest,
most memory-efficient, most elegant, etc.) implementation
of this particular application in any particular stack. Instead
we strive to code in a way that is generally representative of
each platform’s idioms and takes advantage of each plat-
form’s relative strengths as a competent developer on that
platform would do.
2.2. Components and Typical Workflow

Cloudstone follows the now-canonical three-tier Web
application architecture: a stateless Web server tier, a state-
less or soft-state (caching or affinitized) application server
tier, and a persistence tier. A typical experiment consists of:

1) Choose a deployment architecture and arrange for
Cloudstone’s included scripts to deploy the components

2) Prepare a workload profile for the workload generator
3) Run the experiment, deploying the workload generator

to one or more machines distinct from those on which the
application is deployed

4) Collect the resulting data

Figure 1. The Web2.0kit “social events” application’s functionality
and implementation are representative of Web 2.0 in all three
implementations: Ruby on Rails, Java EE, and PHP.

Cloudstone provides various AMI’s (virtual machine im-
age files compatible with Amazon’s Elastic Compute
Cloud) that conveniently bundle the components to facilitate
this workflow. We describe each of the components briefly.
2.3. Application

Figure 1 shows screenshots of the Web2.0kit social-
events application. Users can browse events by date or tag,
and see embedded maps to event locations; logged-in users
can create events, tag events, attend an event, and add com-
ments and ratings to an event. AJAX is used to make the UI
streamlined and responsive; the same CSS stylesheets,
XHTML markup, and RESTful [cite] URL’s used to navi-
gate the site are common to all three implementations, al-
lowing the same workload generator and data collection
tools to be used with any of them. From the user’s point of
view, all implementations behave identically. The data is
stored in a relational database according to a simple snow-
flake schema; Cloudstone makes use of MySQL and in-
cludes scripts to populate the database with dummy data up
to a desired size. The data is created in a deterministic man-
ner that will always be the same for every run.
2.4. Workload Generation

Faban is a Markov-chain, closed-loop [cite Mor’s paper],
session-based [krishnamurthy] synthetic workload genera-
tor. (See [4] for an overview of approaches to Web load
testing.) Unlike simpler workload generators such as ab or
httperf, a Markov-chain based workload generator distin-
guishes N discrete application workflows, each consisting of
a short sequence of related HTTP roundtrips to the server to
accomplish some task (“add tag”, “log in”, etc.). A corre-
sponding N×N matrix M gives the probability Mij that
workflow j will follow workflow i; this matrix can be de-
rived from site-specific estimates [cite uRB] or by clustering

information in web server logs [cite Menasce]. Many paral-
lel Faban agents on different machines under the control of
a central coordinator; Faban is designed to minimize coor-
dinator-to-worker communication to avoid interfering with
the network behavior of the test run. The number of simu-
lated users can be changed up to twice a minute during the
course of a run according to a text file specifying a work-
load profile. Faban does not use a standard “think-time”
between requests, but opts for a constant spacing of all re-
quests regardless of response time in the previous request.
2.5. Collecting and Analyzing Results

During a run, Faban records the response times of each
request made by the load generator, from the time the re-
quest is issued by Faban until the time at which the last byte
of the response is received. The request rate is measured
between the initiations of successive operations. From these
metrics, Faban calculates the mean, maximum, and 90th
percentile of response times for each operation type. Faban
also records utilization data by running external tools such
as iostat, mpstat, vmstat, netstat, etc. periodically during a
benchmark (the interval and set of additional tools to run is
configurable) and graphs the results. All test data can be
exported (e.g. to Comma-Separated Values) for further
analysis.
2.6. Automation Support

Cloudstone includes Capistrano [cite] scripts to dynami-
cally control the deploy process in our computing environ-
ment. The scripts provide deploy, undeploy, restart and
configure actions for databases, web servers, application
servers, and load balancers. The scripts are invoked by a
central controller that passes them all necessary configura-
tion and setup parameters. The scripts are currently setup for
Amazon EC2, but can be easily modified for use in other
environments as well via Capistrano’s existing extension
mechanisms.

3. The Challenges of Web 2.0 Benchmarking
Performing “fair” comparisons of different deployments

is fraught with difficulty. A stacks comparison compares
different implementations of the same functionality on dif-
ferent software stacks (e.g. Rails vs. PHP); a challenge is
that the available tuning mechanisms are often quite differ-
ent for each platform, being matched to each platform’s
development abstractions. A platform comparison compares
the behavior of the same piece of software in different
hardware environments, e.g. manycore vs. conventional
datacenter server hardware; the radically different hardware
topologies complicate this comparison. To help potential
users of Cloudstone, we outline our basic tuning methodol-

ogy and point out caveats where the choice of platform or
other tuning can trump other effects or otherwise distort
results.

Multiple versions of the application will be made avail-
able with different tuning strategies in place. Currently the
Rails application has two branches, one with caching and
one without. Providing multiple tuning options allows de-
velopers to compare different strategies and determine how
best to implement these strategies in their applications.

Traditional three-tier applications eventually bottleneck
on the persistence tier, which is usually some kind of data-
base. Hence there are generally three degrees of freedom
involved in horizontal scaling:

(1) deploying additional web server, application server,
etc. components and balancing the relative number and
placement of these components to improve hardware utiliza-
tion, until the database becomes the bottleneck;

(2) tuning the database to improve its performance;
(3) deploying caching to reduce the load on the database

or application servers.
Our message in this paper is that Cloudstone as a frame-

work is agnostic to these choices; we have made specific
choices for our initial experiments to reflect what we under-
stand to be contemporary practice, but the Cloudstone
scripts can easily be modified to use alternatives.
3.1. Database Tuning

Database tuning is complex and we do not discuss it here,
though we distinguish two general classes of optimization:

(1) Stack-independent techniques such as adding secon-
dary indices, rewriting or combining queries, re-normalizing
tables, modifying configuration parameters, and exploiting
replication (master-slave, single writer/multiple readers,
clustering, etc.). For example, we have found that MySQL
is very sensitive to configuration: Every change in database
size and hardware configuration requires a change to the
configuration file to achieve optimal performance.

(2) Stack-specific techniques matched to each stack’s da-
tabase access model. For example, PHP requires the devel-
oper hand code all SQL queries, which allows more optimi-
zations for experienced developers but increases the burden
on less-experienced developers (who may write suboptimal
queries). In contrast, Ruby on Rails and similar MVC
frameworks provide object-relational mapping layers that
insulate the developer from interacting directly with the
database, making it less likely for inexperienced developers
to do harm but also limiting the extent of query optimiza-
tions. Even within a framework, different versions may
require changes to database query strategy; for example, the

synthesis of queries that combine multiple tables changed
significantly from Rails version 2.0 to 2.1.

Of course, the choice of database itself has performance
implications. The two most popular choices for Web 2.0
deployments are MySQL and PostgreSQL; we use MySQL
without loss of generality, but Cloudstone is agnostic to the
type of database.
3.2. Deploying Additional Web & Application Servers

Despite the standardization of Web components such as
Apache, different stacks often have different “preferred”
deployment strategies. For example, since Rails processes
run best in a dedicated application server rather than as a
part of a full-featured web server, the preferred Rails de-
ployment topology consists of an Apache or lightppd Web
server acting as a reverse proxy load balancer, one or more
single-threaded application server processes, a database, and
optionally a caching server. We use the Thin application
server2, an optimized version of the popular mongrel server
written in C, to efficiently dispatch requests to Rails. We did
not investigate JVM-based deployment options using
JRuby, but this could be easily handled by the Cloudstone
tools.

In contrast, for PHP the most common deployment is a
simple L4/L7 load balancer connected to several Apache
web servers each integrating the mod_php plugin that exe-
cutes PHP code. The operator sets the maximum allowed
number of worker processes and lets Apache decide dy-
namically how many workers to keep running.

Figure 2. The preferred RoR deployment uses a single logical

Apache process as a load balancer and separate Rails application
servers (we use thin).

2 http://code.macournoyer.com/thin

Figure 3. In contrast to Rails, the preferred PHP deployment uses
Apache's built-in mod_php which can spawn large numbers of
worker processes, rather than separate PHP application servers.

In either scenario, whenever multiple worker processes
are deployed there is a need for a load balancer. The default
mod_proxy load balancer built into Apache is fairly simplis-
tic and does not allow for dynamic reconfiguration. More
sophisticated alternatives include haproxy, pound, and
Nginx, to name a few. We did not make use of an SSL ac-
celerator, a component that offloads SSL certificate negotia-
tion and encryption/decryption from the server, as our cur-
rent operation matrix does not account for SSL operations.
Most web 2.0 applications do not collect or store any per-
sonal information that requires encryption. For SaaS or
retail application application SSL would be a requirement.
3.3. Caching

The easiest way to increase database performance is to
avoid accessing it. This can be done by caching queries and
web content and restructuring queries to reduce joins or
round trips. Usually, the process of adding business-logic-
specific caching cannot be automated since it requires the
developer to specify cache policies on a per-page basis.
Furthermore, the choice of software stack may dictate cach-
ing options.

The degrees of freedom for caching are generally:
(1) What is cached? Rails provides up to three levels of

built-in caching. Caching full pages allows them to be
served directly from a Web (asset) server, completely by-
passing the application server and database, but is rarely
effective for Web 2.0 applications due to the high degree of
page customization. Caching rendered page fragments
reduces the time associated with the rendering of that por-
tion of the page, but additional techniques such as lazy load-
ing of database results are required to take the database
completely out of the loop in this case. Action caching of-
fers a middle ground, reducing database access by serving
the entire content of the page from cache while still allow-
ing filters to be run to enforce authentication and other vali-

dations. Action and fragment caching are a natural fit for
Rails’ abstractions; in contrast, PHP does not provide built-
in abstractions for caching, leaving it to each developer.

(2) Where are cached objects stored? The most popular
choices for Web 2.0 stacks are in local RAM of each appli-
cation server, in a file, or using memcached, a distributed
RAM-based cooperative cache. Memcached has many de-
ployment options for replication to provide redundancy and
higher performance. It has no “native” object model so it
can be used to store rendered content, query results, and
user session data. Since memcached also has a concept of
object lifecycle, it is well suited for storage of data whose
validity is time-limited.

4. Example Measurements and Discussion
NOTE TO REVIEWERS: We expect to have many more

benchmarking results by the workshop date and would be
able to change the paper content and/or presentation accord-
ingly. In addition to using Cloudstone for our research on
datacenter automation, we will be using it for an under-
graduate course on Web development, tuning and scaling.

As the previous section illustrates, the many deployment
options and components make exact comparisons between
frameworks difficult. In our example measurements, we
attempt to keep as many deployment parameters the same as
possible, including caching strategy, database, web server,
and cache server.

We measured the following hardware platforms:
EC2: A single “extra-large compute instance” on EC2: a

64-bit, x86 architecture platform with 15 GB RAM, 4 vir-
tual cores with 2 EC2 Compute Units each (Amazon de-
scribes 1 Compute Unit as “the equivalent CPU capacity of
a 1.0-1.2 GHz 2007 Opteron or Xeon processor”), and
1.7TB of local storage.

N2: A Sun Niagara 2 enterprise server configured with
32GB RAM, 8 UltraSPARC T2 cores at 1.4 GHz with 8
hardware threads per core, 50 GB of local storage.

We chose to answer a seemingly simple question: how
many concurrent (simulated) users can be supported by a
fixed amount of hardware under baseline conditions (no
special database tuning, caching, etc.)? Our goal is not to
promote one or the other platform but to illustrate Cloud-
stone’s utility in addressing the issues that arise in cross-
platform comparisons. We chose a service-level agreement
(SLA) response time thresholds of 1 second, and we defined
success as “90% of requests meeting their SLA’s.”3

3 Large volume sites usually use 99% or even 99.9% as the SLA

compliance threshold; we are working on adding instrumenta-
tion to Faban to collect these as well.

Figure 4 shows the result of deploying the Rails
Web2.0kit application on EC2; Figure 5 shows the same
application on N2. In both configurations, the single server
hosts a MySQL database, an Apache load balancer, and
between 1 and 32 thin processes. In both graphs, the height
of each bar shows the number of concurrent users that can
be “comfortably” served by a given number of server proc-
esses, where “comfortably” means 90% compliance withe
SLA response time threshold. Note that Faban requires a
minimum of 25 simulated users; as Figure 5 shows, on N2
we needed to run 6 copies of the thin server to accommodate
25 users.

Figure 4 suggests that an extra-large EC2 instance may
be a better fit, but this conclusion may be premature. This
baseline run does not enable caching, and with N2’s greater
RAM and some database tuning, we expect the gap to
shrink. Note to reviewers: We will have these results by the
workshop date.

By way of an initial comparison, earlier measurements
[7] of the PHP implementation, using a deployment archi-
tecture similar to that shown in Figure 3, indicated that it
could support up to 200 users on a comparable N2 server.
However, that deployment made extensive use of caching.
We expect to have measurements for both caching and non-
caching versions of the Rails and PHP applications by the
workshop deadline, which is the closest we believe we can
come to an “apples to apples” framework comparison

5. Download & Acknowledgments
NOTE TO REVIEWERS: We are in the process of “pack-

aging” EC2 AMI’s allowing others to download all of this
software, all of which will be Open Source.

Thanks to Peter Bodík for his help with the variable-
workload modifications to Faban and the deployment
scripts.

This research is supported in part by gifts from Sun Mi-
crosystems, Google, Microsoft, Cisco Systems, Hewlett-
Packard, IBM, Network Appliance, Oracle, Siemens AB,
and VMWare, and by matching funds from the State of
California's MICRO program (grants 06-152, 07-010, 06-
148, 07-012, 06-146, 07-009, 06-147, 07-013, 06-149, 06-
150, and 07-008), the National Science Foundation (grant
#CNS-0509559), and the University of California Indus-
try/University Cooperative Research Program (UC Discov-
ery) grant COM07-10240.

Figure 4. Number of users vs. number of server processes with all
components shown in figure 2 on an EC2 “extra large” instance.

Figure 5. Same measurements on 8-core Niagara 2. NOTE: A
minimum of 6 server processes was needed to serve 25 simulated
users, the minimum allowed by Faban’s load generator.

References
[1] George Candea et al., Microreboot—A Technique for Cheap

Recovery. Proc. 6th OSDI, San Francisco, CA, Dec. 2004
[2] Roy T. Fielding and Richard N. Taylor, Principled Design of

the Modern Web Architecture. ACM Trans. on Internet Tech-
nology 2(2): 115–150

[3] D. Krishnamurthy et al., A Synthetic Workload Generation
Technique for Stress Testing Session-Based Systems, IEEE
Trans. on Software Eng. 32(11), Nov. 2006

[4] Daniel Menascé. Load Testing of Web Sites. IEEE Internet
Computing 6(4), July/August 2002

[5] Tim O’Reilly. What is Web 2.0?
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/
what-is-web-20.html, Sept. 2005

[6] Bianca Schroeder, Adam Wierman, Mor Harchol-Balter.
Open vs. Closed: A Cautionary Tale. Proc. NSDI 2006.

[7] Akara Sucharitakul and Shanti Subramanyam. Cadillac or
Nascar? A Non-Religious Investigation of Modern Web Tech-
nologies. Proc.O’Reilly Velocity’08 Conference
(http://en.oreilly.com/velocity2008)

